Photo, A. N. Mirzaoff A FRENCH METHOD OF MEASURING VERTICAL CONFORMATION, CONSIDERED IMPORTANT FOR ATHLETESPhoto, A. N. MirzaoffA FRENCH METHOD OF MEASURING VERTICAL CONFORMATION, CONSIDERED IMPORTANT FOR ATHLETES
Photo, A. N. Mirzaoff THE CURVE OF THE SPINE MEASURED AND DRAWN FOR STUDY OF AN ATHLETE’S POSSIBILITIESPhoto, A. N. MirzaoffTHE CURVE OF THE SPINE MEASURED AND DRAWN FOR STUDY OF AN ATHLETE’S POSSIBILITIES
of the limbs are all according to a single plan to be described in a moment. The spinal column is a remarkable example of strength combined with flexibility and elasticity. It is made up of thirty-three bones orvertebræ; each of these has a disk-shaped part known as thebody, and these disks are placed in line as shown in the figure. Between each disk and its neighbor is an elastic pad composed of a mixture of cartilage and elastic connective tissue. There is a small amount of give in each pad and this, taken along the whole length of the spinal column, is enough to give it the great flexibility which it enjoys. During the day the weight of the body packs these pads down hard, so that it is said that a man may be as much as an inch shorter at night than in the morning. Behind the disk each vertebra has an arch of bone, and beyond and beside this arch most of them have projections. All the arches together make up a bony canal which contains and protects the spinal cord. The projections serve for the attachment of the ribs and the back muscles by which the bending motions of the body are made.
The rib cage includes the breastbone and twelve pairs of ribs. It serves two purposes: to protect the heart and lungs from injury; and to take part in the movements of breathing. The latter function involves some degree of motion of the rib cage. All the ribs are attached behind to the vertebral column in a fashion that permits of a little motion up and down. All except the last two are fastened in front, seven pairs to the breastbone, three pairs each to the rib above it. In breathing the breastbone and ribs are moved up and down by muscles attached to them.
The shoulder girdle is made up of the collar bones and shoulder blades. Each collar bone is fastened at its inner end to the upper edge of the breastbone; this is the only direct contact the shoulder girdle has with any other part of the skeleton of the trunk; at the point where collar bone and shoulder blade meet, there is a shallow cup into which the head of the skeleton of the arm fits. The arrangement is favorable to great freedom of movement of the arm. Not only is the shoulder joint very flexible owing to the shallowness of the cup into which the arm bone fits, but the shoulder blade itself is capable of a considerable range of movement. This is because it is imbedded in and held in place by muscles. If one watches a person with bare shoulders while he raises his arms, it will be seen that the shoulder blades do not move much while the arms are being lifted to the horizontal position, but as that point is passed they begin to swing outward rapidly, so that when the arms are high above the head the shoulder blades are in a quite different position from that which they have when the arms are down.
The hip girdle consists of five bones of the vertebral column welded firmly together to make up what is called the sacrum, and two other large bones known as the innominate bones, each of which, in turn, is made up of three bones tightly fused together. The innominate bones are firmly joined to the sacrum at the back and they meet in front, also in a firm joint. The hip girdle orpelvisis rigid, suiting it to bear the strains that come upon it on account of its position at the junction of the legs with the trunk. At the outer side of each innominate bone is a cup, much deeper than the correspondingcup of the shoulder girdle, and into this fits the head of the skeleton of the leg. The arrangement is a typical ball and socket, and has been much copied in machinery where a flexible joint is required. In a good many people the union of the innominate bones to the sacrum is not so firm but that it yields somewhat when strains are put on it. Ordinary strains in these cases produce severe backache. Heavy strains may cause an excessively painful as well as disabling dislocation. In either case medical attention is needed.
Each arm can be subdivided into upper arm, forearm, wrist, and hand. The skeleton of the upper arm is a single long bone. The forearm has two bones, one of which is hinged at the elbow to the bone of the upper arm in a way to limit the movement to the single back and forth swing of which the elbow is capable. The other bone of the forearm can be rolled over the one which is fast at the elbow; this is what happens whenever the hand is changed from the palm up to the palm down position. There are eight bones in the wrist; these are irregular in shape, and are so grouped as to permit of a very wide range of movement. The bones of the hand and fingers make up five rows numbering four bones each for the fingers and three for the thumb. The joints are all practically simple hinges except for the one where the thumb joins the wrist, which is a much more flexible joint; flexible enough, in fact, to allow the thumb to be brought opposite any of the fingers. No animal except man enjoys this degree of flexibility in the thumb, so no animal equals man in the nicety of the grasp, particularly of small tools. When we recall how constantly we take advantage of this property of our hands we can realize howgreatly our superiority over the lower animals has been aided by this rather slight structural difference between our hands and theirs.
THE BONES OF THE ARM a, upper arm; b, forearm; c, wrist; d, hand (From Martin’s “Human Body”)THE BONES OF THE ARMa, upper arm; b, forearm; c, wrist; d, hand(From Martin’s “Human Body”)
The leg subdivides along the same lines as the arm into upper leg, or thigh, lower leg, or shin, and foot. The order of bones is, on the whole, the same; one in the thigh; two in the lower leg. Instead of a flexible wrist the corresponding bones of the foot are grouped into a less flexible, but much stronger,heel and upper instep. Two of the bones of this group are fused together into one, reducing the total number from eight to seven. The bones of the lower instep and toes correspond in number and arrangement to those of the hand and fingers, but the great toe does not have superior flexibility as does the thumb. There is one bone in the leg, the knee cap orpatella, that does not correspond to any bone in the arm, although it does correspond to a part of a bone, namely, the projection, at the elbow, of the long bone of the forearm. A feature of the skeleton of the foot that is worth a word is the arching of the instep. This undoubtedly adds greatly to the ease of walking. The natural position for the foot is, of course, with both the heel and the ball of the foot on the ground. For some reason it has become the universal custom among civilized people to raise the heel off the ground by adding a heel to the shoe. This does not seem to make much difference as long as the heel is not too high. In fact soldiers wearing properly fitted heel shoes can march as far and fast as can be expected. Excessively high heels throw the weight too much on the ball of the foot, thus doing away with the benefits that come from the arching of the instep. The effect on the gait is very apparent in any one who walks in high-heeled shoes. The foot itself does not appear to be greatly harmed by the wearing of high heels provided the shoes are otherwise well fitting. Whether the heels are high or low, the fit of the shoe is of utmost importance to the preservation of the feet. Crowding the feet into shoes that are too small in any direction is a fruitful means of bringing on foot trouble. Wearing shoes that are loose enough to allow the foot to turn overinside the shoe is nearly as bad. If the shoes are properly fitted in the beginning and then the heels are kept squared up, so that the feet will always stand straight on the ground, there will usually be little trouble with fallen arches or other foot disturbances.
BONES OF THE LEG a, thigh; b, shin; c, foot; d, knee cap (From Martin’s “Human Body”)BONES OF THE LEGa, thigh; b, shin; c, foot; d, knee cap (From Martin’s “Human Body”)
The bones are fastened together at the movable joints by stout sheets or bands of connective tissue known as ligaments. These hold them in place verysecurely and as additional support the muscles which surround every joint help to prevent the bones from slipping out of place. At nearly all the joints of the body the combined action of ligaments and muscles is sufficient to guarantee the joint against dislocation; the shoulder joint, and to a less extent the hip joint, is more likely to suffer this accident. The reason is that in obtaining flexibility of movement security of attachment is somewhat lessened. If the ligaments at the shoulder were tight enough to prevent the joint from ever becoming dislocated they would bind it to a serious degree. Most of the ligaments are of inelastic connective tissue, but those that fasten the separate vertebræ of the spinal column together are elastic, allowing of the bending in every direction which makes our backs as flexible as they are. The only movable joints which are bound by other means than ligaments are the connections of the ribs with the breastbone. These are of cartilage, but the movement here is so slight that the cartilage yields enough to permit it.
This completes our account of the bony skeleton. We shall finish the description of the supporting framework by a word about what may be called the connective tissue skeleton. The bony skeleton serves to support the body as a whole and to permit the muscles to do their work; the individual organs and the cells which make them up are held in place by sheets and bands of connective tissue. These are coarse and strong when their purpose is to support a large and heavy organ like the stomach; they become finer and finer as the parts to be supported become smaller, and when the individual cells are reached the connective tissue which surrounds themis almost inconceivably delicate. So completely does connective tissue permeate the whole body that it has been said that if everything else could be dissolved away, leaving only this tissue in place, there would still remain a model of the body, complete to the last detail.
OUR account of the body has now reached the point where we can take up in detail the special activities of the different kinds of cells. The first to be considered is motion, both because it is the familiar sign of life, as pointed out in the first chapter, and because it has so much to do with everything that enters into life. There are probably no animals that live out their entire lives without making any active motions, although some parasites, like the tapeworm, are stationary most of the time. There are a number of different ways in which movements are brought about. The very simplest animals, which consist of nothing but a bit of protoplasm, move by causing the protoplasm to flow bodily in one direction or another, a projection of part of the protoplasm being balanced by withdrawal of an equal part on the opposite side, and the whole mass progresses in the direction of the first projection. Next beyond this simplest means comes motion by tiny threads of protoplasm which project beyond the surface of the cell and whip back and forth. The stroke of these threads orcilia, as they are called, is stronger in one direction than in the other, so the effect of their beating is to propel the cell of which they are part in one direction through the water; or if they are on a surface which is stationary they set up a current in thewater itself. This latter is the means by which oysters and similar animals which are anchored to the rocks get their food supplies. In some one-celled animals there are only one or two large cilia at one end; these beat back and forth, propelling the animal much as a fish swims.
The commonest, as well as the most effective, means of making motions is by cells specially developed for that purpose. These are called muscle cells, and every highly organized animal depends on them for most if not all of the motions which take place in its body. In muscle cells the functional metabolism takes the form of forcible changes in shape of the cells by which bodily motions are brought about. A muscle cell might be described as a mechanical device for transforming the chemical energy of burning fuel into the energy of motion. We have something comparable in the automobile cylinder, where the energy obtained from the explosive burning of the air-gas mixture drives the piston and so propels the car. Of course the two devices are not even remotely alike in the actual way in which they operate; their resemblance is purely the general one of converting one type of energy (chemical) into another type (motion).
There are three kinds of muscle cells in our bodies. The simplest are those that are found in the wall of the stomach and intestines and other internal organs that are capable of movements; the next kind is found only in the heart; the third, and most complex, makes up the bulk of our muscular tissue; it is the muscle that moves the bones. The first kind, because it shows no particular markings when examined through the microscope, is usually called smooth muscle; the second kind is known as heartmuscle; the third kind, because it moves the skeleton, is named skeletal muscle. We shall devote most of our attention to this third kind of muscle, because it is a much more efficient machine than the others, and also because it has to do with our general bodily movements instead of with motions of internal organs.
A single skeletal muscle cell is an exceedingly slender fiber, much smaller than the finest thread; it may also be very short, not more than a twenty-fifth of an inch long, or it may be as much as an inch long. A muscle is made up of many of these fibers grouped side by side in bundles, and also, if the muscle is long, placed end to end. The fibers are held in place and fastened together by connective tissue. Lean meat consists of thousands of these muscle cells with their connective tissue fastenings. In coarse meat there is relatively more connective tissue and less actual muscle tissue than in the finer grades. In every muscle the connective tissue is loose enough to allow body fluid to penetrate among the muscle cells. Blood vessels are also distributed through the mass of the muscles between and among the cells; thus their nutrition is provided for.
Although not all muscle cells are exactly equal in power, on the whole theforcethat muscle can show is the force of one cell multiplied by the number of cells that can join in the pull. A strong muscle must have many cells side by side; in other words it must be thick. Also, thedistancethrough which muscles can make movements depends on their length, so a muscle that has to pull for a considerable way must be long, and since single muscle cells are short there will have to be a good many cells endto end to make the whole muscle long enough for its task. The actual make-up and arrangement of muscles in the body depends in part, therefore, on the thickness and length needed for the particular work to be done, and in part on the architecture of the part of the body where the muscle is located. For example, the strongest muscle in the body is that by which one rises on the toes. This muscle operates by pulling upward at the back of the heel. If it were located right at the ankle, where it would have to be if attached directly to the place where its force is exerted, the resulting clumsiness can easily be imagined. By shifting it up to the middle of the lower leg room is found for the large mass of muscle needed for the work. The connection with the heel is made by means of a long and very strong tendon, known as the tendon of Achilles, because that was the part Achilles’ mother failed to immerse when she was dipping the infant in the river Styx to make him invulnerable. Other equally good examples are the muscles for operating the fingers. If placed in the hands, the latter would be too bulky and clumsy for any kind of efficient use. By placing them up in the forearms out of the way, and connecting them with the fingers by long tendons, delicacy is secured for the hands.
The muscles of the arms and legs are arranged in groups about the joints, and these groups always include opposing sets. Thus if the joint is a simple hinge, as at the elbow, where the only motion possible is back and forth, there will be one muscle to bend the joint and another opposing muscle to straighten it out again. The first is known as aflexor; the second as anextensor. In the arm the biceps, on the upper surface, is the flexor and thetriceps, on the under side, the extensor. Joints that permit of motion in several directions have correspondingly more opposing sets of muscles acting upon them. The same scheme applies to the trunk, but since in the trunk instead of a few very movable joints we have the whole row of slightly movable vertebræ, the grouping of muscles is more complicated. Not all the skeletal muscles work about joints. The tongue, the muscles of the lips and about the eyes, those along the front of the abdomen, and some others are attached to bones only at one end or not at all, and do their work by pulling upon one another.
THE BICEPS MUSCLE AND THE ARM BONES (From Martin’s “Human Body”)THE BICEPS MUSCLE AND THE ARM BONES(From Martin’s “Human Body”)
In earlier paragraphs we have seen that the movements made by muscles represent their functional metabolism, and also that the actions of whole muscles are merely the sum of the actions of the individual cells. Our present task is to see how muscles act; in other words to examine their functional metabolism. One feature that must be in mind from the very beginning is that the functionalmetabolism of muscle cells is under control; they do not go off at random, but only when started. This is more or less true of the functional metabolism of all the cells in highly organized animals. The agency that starts them off is named a stimulus. To picture how stimuli act we shall have to think for a moment of the state of affairs in cells at rest. As we have tried to make clear, cells at rest are not stagnating; a more or less active basic metabolism goes on within them all the time. This metabolism is of such a sort that it does not disturb the balance existing within the cell. The various chemical processes go on, using up material and producing wastes, but without arousing the additional chemical processes of functional metabolism. Meanwhile the substances that are required for this latter are present in the cell, so that when the disturbance that we call a stimulus comes along there is an increase in the total amount of metabolism, the extra chemical processes being those which perform the special function of the cell. In the case of muscle cells the stimulus ordinarily reaches them by way of the nervous system, although electric shocks, sharp blows, some irritating chemicals, and perhaps one or two other kinds of disturbance can act as stimuli. The effect of the stimulus is to start certain chemical processes; these in turn bring about the forcible shortening which is the thing that happens in active muscle. In skeletal muscle the shortening may be very rapid; the muscle can contract and relax again more quickly than the eye can follow. This is true at the temperature of our bodies. In cold-blooded animals, like fish or frogs, muscles become sluggish when they are cold. We see here one of the advantages we enjoy in havingbodies that stay at the same temperature the year around; if our bodies cooled off in cold weather as do those of frogs, we should have to do as they do, become inactive whenever the weather becomes cold. As each muscle cell shortens it pulls upon the connective tissue that surrounds it; this communicates with the connective tissue of other cells, and all the connective tissue within the mass of the muscle fastens to the very stout sheets or cords of the same at the ends which are called tendons, by which the muscles are attached to the bones. Thus, although the pull of any single cell is so feeble as to be scarcely measurable, when hundreds or thousands of them pull all at once the effect may be very powerful.
We are familiar with the very wide range of effort that our muscles can show. They may contract with utmost delicacy, as when we hold a humming bird’s egg in our fingers, or they may pull with a force, in our largest muscles, of several hundred pounds. Of course this possibility of variation is of great advantage in our use of our muscles. It depends upon the very large number of individual fibers of which even our smallest muscles are made up. Whenever any single fiber contracts, it pulls to its full extent; if only a few become active, the pull of the whole muscle will be slight; as more come into action, more force will be exerted; the muscle will show its utmost power when all the fibers are contracting at once. We are conscious of greater mental effort when we make a powerful muscular contraction. This can be explained as due to the greater nervous discharge required to excite all the muscle fibers at once.
One feature of muscular action calls for an additional word. This is the temporary loss of power,resulting from too long-continued use, which is calledfatigue. We know that a well-constructed machine can operate day in and day out without having to stop to rest; why cannot our muscles do the same? Evidently the necessity of resting cuts down the possibilities of life more than any other one thing; our real life is only two-thirds as long as it counts up in years because we have to spend one-third of the time in sleep. Of course muscular fatigue is not the only kind; there is nervous fatigue, as well, about which something will be said later. The activity of our muscles is based on functional metabolism; it follows, therefore, that fatigue is also due to metabolism. We can think of two ways in which metabolism might cause fatigue; the first of these is by using up the materials which furnish energy; clearly no cells can go on working after they have exhausted their supplies of fuel. The second results from the fact that metabolism produces waste products. It is a familiar fact of chemistry that when the substances formed in chemical processes are not removed they interfere with the processes themselves. In active muscles very rapid metabolism is going on and large quantities of waste substance are being formed; these have to be discharged from the cells into the surrounding fluid, and removed from there in turn by the blood. We can easily imagine that this might not take place as fast as necessary to keep the cells from becoming more or less clogged; in fact this clogging is exactly what happens, so that muscles begin to show fatigue some time before their supplies of fuel material are used up.
One familiar fact of muscular fatigue is that soreness, which indicates that fatigue has really
Photo, Metropolitan Museum MUSCULAR DEVELOPMENT OF AN ATHLETE—THE DISCUS THROWER OF MYRONPhoto, Metropolitan MuseumMUSCULAR DEVELOPMENT OF AN ATHLETE—THE DISCUS THROWER OF MYRON
A MODERN “VICTORY”—MISS SABIE AT PRACTICEA MODERN “VICTORY”—MISS SABIE AT PRACTICE
been present in large amount, occurs much more often when we use our muscles in ways to which we are not accustomed than when they are exercised according to habit. It is the experience of every one who does manual labor that when he gets a new job, one that calls for different use of the muscles than he has been in the habit of, his muscles are very sore until he is “broken in.” After that, although he does as much or even more work than at first, he no longer becomes sore. This is explained as being due to two things. First, whenever we make an unaccustomed movement we overstimulate our muscles; that is, we call more fibers into action than are necessary to do the job; as the motion becomes familiar we cut down the action to that which just meets the demand. Thus there is a great deal more metabolism than necessary when unfamiliar motions are being made. Then, secondly, there is a spot in every muscle cell, just at the point where the nerve makes its connection with the muscle, that is more easily fatigued than any other part of the muscle cell. This spot, by becoming fatigued first, tends to cause metabolism to stop in time to prevent the rest of the cell from being seriously fatigued. Only when we are so much interested in what we are doing that we pay no attention to the fatigue of this safety spot, or when necessity keeps us at work after we would quit if we had our own way, do we push the metabolism so far that muscular soreness results. Other types of fatigue, including feelings of exhaustion, are due to effects on the nervous system, and will be described when we have that system before us.
Before we leave the subject of the skeletal muscles it will be interesting to say a word about thedifferent kinds of motions that they bring about. We have already seen that they work by pulling at the joints, and we have no intention of enlarging on that topic. What we want to do here is to group the bodily motions into a few classes, regardless of what joints are actually moved. First, and most important, comeslocomotion; by that we mean any motions that move the body from one place to another. Under that head we have walking, running, swimming, jumping; in birds, flying. Next in order comesgrasping; this includes all motions by which we take hold of anything. We can realize the importance of this group of movements when we think that our fore limbs are specifically grasping organs, while in the great majority of animals they are organs of locomotion along with the hind limbs. Originally grasping had to do, undoubtedly, with the taking of food and not much else. In civilized man we have in addition the use of all kinds of tools from the coarsest to the finest. In most four-legged animals the chief organ of grasping is the mouth. We still use our mouths to some extent as grasping organs, and could probably learn to make even more use of them in that direction if forced to it.Chewingandswallowingmake up a group of movements concerned primarily with the handling of food after it has been grasped. Not much need be said about them. Of small extent but great importance are the motions connected withsense perception; these include chiefly the motions of the body, neck, and eyes invision; we are constantly turning to look at something; in such animals as horses movements of the ears help greatly inhearing; and both man and animals make sniffing motions to increase the keenness ofsmelling. There is a group of motions devoted tovoice production(including breathing). In man the vocal cords, tongue, and muscles of the cheeks are the chief muscles that have to do with the voice, not including the muscles of breathing, which, of course, are essential. The interesting things about the vocal cords are the excessive fineness of their operation, enabling expert singers to produce tones that vary by only a few vibrations a second, and the amazing exactitude of the control that the nerves have over them, so that good singers can set them at the tension needed for producing a particular tone with absolute certainty. The tongue is not a single muscle, but a mass of several muscles working one upon the other. It plays a part both in voice production and in the chewing of food. As an organ of voice production it helps by changing the shape of the mouth cavity. Speech depends very largely on this, since not the tension of the vocal cords but the shape of the mouth and throat determines the making of letters and syllables.
In addition to these familiar uses of the muscles there is a use which is just as important but about which we are apt to think less. This is their use in connection with posture, the taking and holding of particular bodily positions. Posture is unlike other muscular activities in several things. In the first place there is a steady, but rather feeble, tension which can be held without marked fatigue for long periods; all other forms of muscular contraction become severely fatiguing rather quickly if held steadily. In the second place the nervous control of posture seems to be different in some respects from our ordinary control of our muscles. Finally there is some doubt as to whether the contractionsof the muscles themselves are the same. Measurements of the functional metabolism of posture show that it is much less than would be expected if the muscular action were of the ordinary type. This, of course, explains why posture is less fatiguing than other forms of activity.
The other two kinds of muscle, heart muscle and smooth muscle, must have a word of description. Heart muscle contracts quickly and powerfully, as does skeletal. It differs from skeletal in not depending on nervous stimulation to make it contract; the heart can be cut clean out of the body and will go on beating for a short time; in cold-blooded animals, like frogs or turtles, for a long time. This could not be true if the heart muscle had to be aroused to activity by nerves. Besides being automatic, heart muscle shows the peculiarity that whenever it contracts all the fibers join. We do not have a varying strength of pull shown by heart muscle as we do in skeletal. As we shall see, it would be a serious disadvantage rather than an advantage if heart muscle were to be like skeletal in this respect.
Smooth muscle has the duty of operating the internal organs. For this function no great strength is required; the motions do not have to be powerful. Nor is rapid motion important. Smooth muscle does not have to be so highly developed, then, as is skeletal. It is sluggish and rather feeble in its actions. There are, however, two points of superiority about smooth muscle, which fit in well with its special task. The first of these is its freedom from fatigue. There are in the body numerous smooth muscle masses that are in contraction practically all the time. This would be impossibleif fatigue were to develop. These masses make up what are called thesphincters, rings of muscle surrounding openings like that from the esophagus to the stomach or from the stomach to the small intestine. It is the duty of these sphincters to hold the openings closed all the time except occasionally when they open for just an instant to let material through. The second point about smooth muscle which fits it for its work is that it is capable of stretching out greatly or contracting sharply without much difference in the force with which it is pulling. For example, at the beginning of a meal the walls of the stomach are drawn up, so that the food that is swallowed enters a small space. With the progress of the meal the stomach enlarges, so that at the end it has a much greater bulk than at the beginning. But the actual pressure of the stomach upon its contents is about the same as at the beginning. If the stomach were an ordinary elastic bag this could not happen; the walls would have to stretch as the stomach filled, and the stretching would mean greater pressure. Since the stomach walls are of smooth muscle they adjust themselves to the progress of the meal. It is important to note that there is a limit to this possibility of adjustment. If one is so greedy as to keep on stuffing after the stomach has reached its full size, stretching does occur, and if this is repeated it may lead to a diseased condition known as “dilated stomach,” which will cause much digestive trouble.
WE have talked a good deal about muscles and the different sorts of activities they can perform. We have also mentioned the fact that the skeletal muscles are under accurate nervous control. Our next task is to investigate the control of this nervous control; in other words to find out just what it is that causes the nerves to stimulate the muscles so that they shall perform as skillfully and usefully as they do. In Chapter II we saw that our bodily movements are adjusted to our needs through the sense organs. These bring information of the situation and we act accordingly. We may group the kinds of information which the sense organs furnish under three heads; first, what is going on inside our bodies; second, what is happening at the surface of the body, and third, what is happening at a distance from us. The senses which bring the first kind of information are called theinternalsenses; the second group are thecontactsenses; and the third are thedistancesenses. We need to remember that the primary purpose of the senses is to guide our muscles, and that our muscles are to find food for us, to keep us from bodily harm, and to assist in the perpetuation of life by propagating and caring for the young. By keeping these facts in mind we shall have no difficulty in understandingthe way in which the various senses do their work.
Pain, hunger, and thirst are the internal senses with which we are most familiar. Pain is evidently a protective sense. It is never aroused unless something is amiss; for that reason pain should never be neglected. Of course, in the majority of cases the pain is due to some simple disturbance which can be located, and if no permanent harm is to follow, or if no relief is possible, the heroic bearing of the pain is meritorious; but thousands of women, thinking mistakenly that to complain of suffering is a sign of weakness, or hoping to spare loved ones distress, bear in secret or make light of pains that are the signs of insidious disease, curable if taken in hand early enough, but sure to cause acutest suffering and untimely death if allowed to go on unchecked. Unfortunately our most dangerous internal enemies, the organisms of infectious disease, do not give warning of their attack by causing pain until the disease itself is so far advanced that there is no escaping it. In this respect pain falls short of being efficient as a means of warning us against impending injury.
Hunger and thirst are the stimuli which drive us to the taking of food and water. It is interesting to think that of all the living things that roam the earth only men have discovered the connection between the taking of food and the avoidance of starvation; all other animals are impelled to nourish themselves wholly through the operation of these senses. There are two distinct phases to hunger. The first is appetite, and this by itself seems not to be a sense in the strict meaning of the word, but rather a memory of agreeable experiences associatedwith the taking of food. In man appetite is often sufficient by itself to lead to eating, as is proved by the frequency with which food is eaten between meals when there cannot possibly be any genuine hunger, but probably in animals it acts to arouse genuine hunger, rather than to cause eating by itself. Genuine hunger is a sense as definite as any other. It is aroused by spasmodic contractions of the stomach. These contractions cannot occur except when the wall of the stomach is in a certain state of tension. Various things can influence the coming on of this degree of tension in the stomach, and so the possibility of hunger. Appetite itself probably does this very effectively. Habit seems also to have something to do with it. Hunger is usually felt just as mealtime draws near, and it is often much keener at noon or night than before breakfast, although the stomach has been longer empty at breakfast than at any other meal. A curious fact about hunger is that it may disappear completely after a few days of complete starvation. Contrary to the popular idea that hunger becomes more and more acute as starvation continues, the testimony of practically all persons who have starved for more than a few days is that all sensations of hunger, as well as all strong longings for food, subside and do not return. This is especially true if the body is kept quiet and if the mind is diverted, so that recollection of meals particularly enjoyed shall not come up.
Thirst is due to actual drying of the throat. When the cells lining that region become deficient in moisture the sense is aroused. The drying may occur from without or from within. When it occurs from without, as in sleeping with the mouth open,relief can usually be obtained by merely swallowing saliva copiously. The same treatment helps for the moment when the lack of moisture is due to deficiency in the amount in the body, but in this latter case no permanent relief can be had except by the taking of water. When the amount in the body falls below the proper level no comfort can be had until the loss has been made good. An interesting thing about thirst is that it is the only sense which is said never to be lost or seriously impaired by disease.
In addition to these familiar internal senses we have some that are less well known. They are for the purpose of what may be described as the routine guidance of the muscles. The act of walking, as we well know, is made up of a series of muscular movements which are both accurately timed and accurately graded. We obtain startling realization of this when we come to the bottom step on our way down stairs without noticing that we have arrived there. This timing and grading are done for us by our bodies without our having to attend to it. The amount of labor that is saved is shown by walking upon railroad ties. These are irregularly spaced, and on that account it is necessary for us to pay attention to every step. There is no comparison between the fatigue of this kind of walking and ordinary progress along a smooth path. The senses that keep track of the position of the body and of individual muscles are known respectively as the equilibrium sense and the muscle-and-joint sense. The equilibrium sense has as its organ a part of the internal ear. Deeply imbedded in the bone is a series of chambers and canals lined with a delicate membrane and filled with liquid. The canals, which are three in number in each ear, are semicircularin shape, and accordingly have been named thesemicircular canals. One of them is horizontal; the other two are vertical, and the two vertical canals lie at right angles to one another. This arrangement makes it inevitable that any movement of the head, in any direction whatsoever, will register differently on the canal system than any other movement, which is exactly what is required to make the apparatus efficient as an organ by which motions of the body are kept track of and guided. Along with the semicircular canals is a structure known as thevestibulewhich registers the position of the head, and so indirectly of the body, when no movements are being made. We are not ordinarily conscious of the working of these senses; they carry on their guidance of muscular movement without our attention. We can, however, pay attention to what they show if we wish. For example, one who is swimming under water is never in doubt as to whether his head is turned up or down, even though his eyes may be shut. His knowledge of position in such a place is obtained from his equilibrium organ, even though he may not be aware of the fact. Sometimes the organ becomes diseased. The results, so far as the victim is concerned, are highly distressing. He usually has to stay in bed because he cannot balance himself well enough to get about.
The organs for muscle-and-joint sense consist of tiny spindles distributed around the joints and embedded within the mass of the muscles. They are arranged so as to be affected by every motion of a joint or every contraction of a muscle. They register not only the fact of motion but also the extent. There is a disease, commonly known as locomotor ataxia, in which the muscle-and-joint sense is impairedor lost, particularly in the legs. The result is that walking becomes difficult and unsteady, and usually impossible when the eyes are shut or the room is dark. This is because the victim learns to make his sight serve instead of his muscle-and-joint sense for guiding his muscular movements, and when this also is withdrawn all knowledge of where his legs are or what they are doing fails, and the only course is to fall down or lie down as quickly as possible.
We have some additional bodily sensations, such as nausea, repletion, fatigue, ill feeling ormalaise, which guide our conduct more or less, and are not very different in consciousness from hunger or thirst. So far as is known there are no sense organs by which these sensations are aroused. They are not strictly senses, therefore. We do not know enough about how they originate to say anything more about them.
Thecontact sensesare touch, warmth, cold, and taste. Pain that comes as the result of bodily injury might also be classified as a contact sense, since its cause is something that comes in direct contact with the body from outside, but it differs from internal pain only in its source and not at all in the sensations it arouses, so there is no need of describing it over again. The sense of touch is the fundamental sense; the very lowest animals, even those that have no specially developed sense organs, and few organs of any kind, react to the contact of objects with their bodies just as the highest animals react to the sense of touch. When no other information is available, that of simple contact guides the animal in its securing of food and its avoidance of harm. In accordance with this primitive character of the touch sense, thepsychologists tell us that we interpret the information from our more highly developed sense organs, sight particularly, in terms of the feel of objects. When we look at anything our judgment of it actually consists in an idea of how it would feel if we were to take hold of it. Our touch organs consist of tiny spots scattered all over the surface of the body. They are much closer together on some parts than on others. The total number is estimated at a half million or more. A good way to test their sensitiveness is by pressing down on different parts of the skin with fine hairs. When this is done it is found that the most sensitive regions—the tip of the tongue, for instance—are fifty or sixty times as sensitive as the dullest regions, like the small of the back. To obtain sensations of touch it is necessary that there be unaffected points alongside those that are affected. If all are acted on alike, there will be no more sensation than if none is acted upon. This can be shown by dipping the hand into quicksilver. The very heavy liquid presses on all the touch points hard enough to affect them, but since it presses on all alike nothing at all can be felt except along the line where the hand enters the quicksilver where the pressure is strongly marked. It is this feature of the touch sense that makes the wearing of clothing bearable. If we had to feel the contact of the clothes constantly we should presently find them so trying that we could no longer endure them. We do feel rough places and are often seriously annoyed by them, so we can judge what would be the effect if the whole surface were felt as plainly.
Closely related to touch is the sensation of tickling or itching. Curious facts about this sensation are the violence of the feeling that may be aroused by verydelicate irritation, drawing a thread along the corner of the nose, for example; the persistence of the feeling beyond the actual irritation; and the effectiveness of scratching as a means of alleviating the condition. Almost nothing is known in explanation of any of these peculiarities.
In addition to organs of touch the skin contains two kinds of organs for perceiving differences of temperature. The first of these detects warmth; the second cold. It is by means of these senses that we judge whether the place where we are is of a suitable temperature in which to remain; whether we should be quiet or active; whether special provisions, like changes in the clothing, are necessary. In the case of both senses the temperature of the skin is the comparison point. We judge that an object is warm or cold according as its temperature is above or below that of the skin which touches it. The ears are usually a few degrees cooler than the hands; thus it is possible for one and the same object to feel cold to the hands and warm to the ears. The two kinds of temperature organs are side by side in the skin, although there are many more “cold” spots than “warmth” spots. Very warm objects affect both kinds, and then we get the sensation that we call “hot,” as distinguished from merely warm. The cold spots are a little nearer the surface of the skin than are the warmth spots; for this reason a hot bath may feel cold at the very instant of stepping into it, although the sensation changes to hot almost at once. We need to remember that our sensations of warmth or cold depend altogether on the state of the skin, and tell us nothing at all about whether our bodies as a whole are warm or cold. Because the blood is always warm a flushed skin always feels warm, andto produce flushing by means of alcohol has long been used as a means of making the body feel warm and comfortable. This may be a serious mistake in cold weather, for to drive the blood to the surface then may mean that the body as a whole will cool off to the point of actual injury. It is better to feel cold and conserve the body’s heat than to feel warm and waste it.
TASTE BUDS (From Martin’s “Human Body”)TASTE BUDS(From Martin’s “Human Body”)
The last of the contact senses is that of taste. This is found only on the tongue. Scattered about on that organ are many tiny sense organs known as taste buds. These are usually in little hollows, so they cannot be affected unless liquids which can enter the hollows are on the surface of the tongue. If the tongue is wiped dry and then dry sugar is sprinkled on it, no sweet taste will develop so long as the dryness continues. The purpose of taste is evidently to give final information about the food after it has passed the inspection of the other senses and has been inserted into the mouth, but before it is swallowed. In the higher animals there has been a subdivision of this sense into two. The other is the senseof smell. In large part smell is a distance sense, and will be treated when we are talking about the distance senses. Smell has monopolized most of the properties of food-judging, so there is left for taste proper only four kinds of perception. These are sweet, sour, salty and bitter. We have, apparently, four kinds of taste buds, one for each of these kinds of taste. All the other sensations that we call taste are flavors, and are really smells. Of the four tastes sour and bitter would probably be called warning and sweet and salty recommending. Only by practice do we come to care for bitter foods, and children usually object just as strongly to those that are sour. Tropical savages, for whom salt is a rarity, esteem it much more highly than sugar, which they can usually get in abundance.
In concluding this chapter we need to remember that the contact senses make up the court of last resort; by the time anything comes close enough to the body to act upon any of them it is so close that the effect in guiding the muscles must be immediate; there is no time for deliberation; whatever the muscles are going to do in response to information thus obtained must be done at once. Later we shall see how this affects our whole bodily make-up.
THE three senses that give us information of what is happening beyond the surface of our bodies are smell, hearing, and sight. Since smell is closely related to taste, which was talked about in the last chapter, we shall take it up first. Smell is like taste in that it is aroused by chemical substances, but to be smelled these must be in gaseous form, not dissolved in water, as for taste. The organ for smell is in the upper part of the nasal chamber. There are really two of them, one in each nostril. They are made up simply of little patches of mucous membrane, as the membrane that lines the nose is called, in which are many of the particular kind of cells that are affected by odors. An interesting thing about these patches is that they are not in the part of the nostrils through which the main current of air sweeps in breathing, but in a little pocket off this main channel. If air containing an odorous substance is breathed in or out, a little of it works its way into the side pocket and is smelled. If we wish to get more of the odor we do it by sniffing, which is changing the shape of the nostrils to throw the air current more directly against the smell organs.
These organs are amazingly sensitive. It is hard to appreciate the minuteness of the amounts of material that can be smelled. Especially is this true of those animals that have a really keen sense of