CHAPTER VIII.

FOOD.

From what has been said, it must appear evident that only such dishes make good food as contain the same constituents as the blood.

To have these constituents, food must contain salt, fat, and sugar; all these ingredients must, of course, be in a certain proportion.

That water is essential for the support and renewal of the body is clear to every one. The flesh we eat, contains nearly eighty per cent. of water, and yet a man must die, if he were to eat nothing but meat and to have no water, for the reason that the eighty per cent. of water he takes in would by no means be sufficient to form all the liquids necessary for the human body.

The albumen that we eat, forms in the blood chiefly the substances composing the muscular part of the flesh. But it is an error to suppose, that therefore it is absolutely necessary to eat eggs—the white of an egg is nearly pure albumen—because the caseine (cheese) contains precisely the same ingredients as the albumen; for we have seen before, and our readers are doubtless aware of it, that the mother's milk contains caseine, while it is entirely free of albumen. Hence, he who eats plenty of caseine, as do shepherds in Switzerland, for example, scarcely needs any meat. But besides caseine there is another element, viz., the vegetable albumen called gluten, which contains albuminous matter; so do all glutinous plants. Peas,beans, and lentils in particular form food productive of flesh.

The salts that must be given to the blood, do not only consist in the common kitchen-salt. By the expression "Salts" are meant various combinations of substances which are usually not considered articles of food, for example, the combinations of phosphorus, iron, etc., but are not visible to the eye. They help to form bones, teeth, nails, cartilages, and hair.

The fat which we take, appears to many people to be a very important part of our food, and they believe that by eating much fat, one may become fat. But this is not correct. Ferocious animals that live only on meat and fat, do not get fat; while herbivorous animals fatten excessively, if provided with good mast, consisting of course but of plants. Yet fat is, for all this, by no means superfluous to our body. Man needs it, because it is the fat which chiefly supports his respiration. But the fat that is needed for the body, is formed by man himself; so that but little of it need be eaten, and that little only for the purpose of helping to form new fat from sugar.

It is therefore best to consider fat and sugar as food belonging together; for the fat is formed in the body from sugar, and the small quantity of fat which we take daily is only to promote the transformation of sugar into fat.

But let no one believe that one must needs actually eat sugar; no, every food that contains starch supplies the place of sugar very well, as starch is changed, when in the body, first to sugar and then to fat. The potato contains starch and serves its purpose well; it is necessary, however, to put butter with it in order that the starch and sugar formed from the potato in the stomach, may be easily converted into fat.

An excellent article of food is bread, for it contains nearly all the elements of nutrition. It contains vegetablealbumen, and therefore is converted into flesh. It has nearly all the salts that are essential to the body; moreover, it contains starch from which fat is produced. Therefore, by the mere addition of a little butter in order to make the formation of fat easier, and by drinking water besides, the human body is able to exist. On the other hand, the potato, if taken alone, is an insufficient means of nutrition. Neither would meat or albumen, if taken alone, be able to preserve life.

Various experiments have been tried with animals, and a great deal of information about the best means of feeding the body has been collected. In order to investigate the effect of the nutritive qualities of food, inquiries have been made especially at military establishments, such as barracks, etc.

ABOUT NOURISHMENT.

In obedience to the demands of modern science, numerous experiments about nutrition have been made, in regard to digestion as well as to the effects of hunger and of various elements of food.

As to digestion, the most excellent observations were made on men afflicted with a fistula in the abdomen, that is, a wound penetrating to the stomach. By means of this wound, it was ascertained very minutely how long it took to digest food, and what kind of transformation it underwent. From this and other experiments it appeared, that the time for digestion, though varying greatly with the various articles of food, lasts from one and one-half to five and one-half hours. Those most quickly digested are: soft sweet apples, beaten eggs, and cooked brain. To digest boiled milk, raw eggs, soft sour apples, roasted beef, liver, two hours were required. Cooked spinal marrow, raw cabbage, fresh milk, roasted beef, oysters, soft-boiled eggs, and raw ham, took nearly three hours. Wheat bread, old cheese, potatoes were digested in nearly three and one-half hours; pork, boiled cabbage, lamb's fat, not before five hours.

The experiments about the effects produced by hunger were tried only on animals. The results were that during the state of starvation three-fourths of the blood disappeared; the fat was almost entirely consumed; the flesh disappeared one-half; even the skin diminished one-third, and the bones lost about one-sixth of their weight. The leastdecrease was found to be in the nerves, a striking proof that nerves possess a great power of self-preservation, provided there be but a minimum of matter to feed them. From numerous experiments the conclusion was drawn, that an adult weighing about one hundred and thirty pounds must die if he were to lose, say fifty pounds, by starvation.

With regard to the effects of the various articles of food, experiments applied to dogs have shown that they can live on bones for a long time; but that they die if fed on sugar only, and when examined after death, no trace of any fat is to be found.

Animals fed on substances that contained no phosphorus and lime became fat; but they died for want of the proper nourishment for their bones. Animals died also when nourished only with pure albumen or pure caseine. The most remarkable fact in this connection is, that they perished in the same length of time in which they would have died,if they had taken no food whatever.

Experiments tried on man have shown that it is injurious to eatuniformfood. A constant change in our food is extremely nourishing and healthy. This is an experience made in prisons and barracks; changes of food are made there every day during the week, so that each day they have a different dinner. Once, a physician in England wished to try the effects of uniform food on himself. He took nothing but bread and water for forty-five days; in consequence of this he decreased eight pounds. Then he ate for four weeks but bread and sugar, then bread and oil three weeks; but finally he succumbed under his experiments, and died, after having experimented thus for eight months.

We must not, therefore, call it daintiness when we feel an appetite for more variety of food, or if we soon get tired of uniform meals: a constant change in this respectis necessary. Experiments have shown that rabbits continue their health, if alternately they receive one day potatoes, the next day barley; but if they receive exclusively potatoes or barley, they soon die.

In conclusion, we will mention a few articles of food and their qualities. Among grains, wheat is known to be the most nutritive, and wheat bread and meat taken together is always good, wholesome food. Rice produces fat, but if taken by itself, it is not worth much, since it is nourishing only if eaten with butter, or fat, and a little meat. Potato is a cheap, and yet an expensive food; for it contains very little nutriment. In order to be of benefit it must be eaten in great quantity; besides, it is necessary to season it with salt, butter, or fat, as otherwise it would be totally useless. A good diet is peas, beans, and lentils; but their hulls are indigestible, and must be removed.

In general, beverages are not counted among articles of food; and kitchen-salt is commonly believed to be but a matter of taste; but this is a great mistake. Coffee and tea, too, are nourishing in their way; good beer is equal to half a dinner, and as to salt, a frequent relish of the same is an excellent means of nutrition.

Cheap coffee, cheap beer, and cheap salt are therefore a great benefit to the people.

SOMETHING ABOUT ILLUMINATION.

From time to time we hear of plans to illuminate whole cities by a great light from a single point. The credulity of the newspaper public about affairs belonging to Physics is so great, that we are not surprised if such plans are spoken of as practicable; though, indeed, one needs but cast a glance of reflection on them, to be at once convinced of their impracticability.

The impracticability does not consist so much in this, that no such intense light can be made artificially, as in the circumstance that the illuminating power of light decreases enormously as we recede from it.

In order to explain this to our readers, let us suppose that on some high point in New York city, say Trinity-church steeple, an intensely brilliant light be placed, as bright as can be produced by gases or electricity. We shall see, presently, how the remoter streets in New York would be illuminated.

For the sake of clearness, let us imagine for a moment, that at a square's distance from Trinity church there is a street, intersecting Broadway at right angles. We will call it "A" street. At a square's distance from "A" street let us imagine another street running parallel to it, which we will call "B" street; and again, at a square's distance, a street parallel to "B" street, called "C" street; thus let us imagine seven streets in all—from "A" to "G"—running parallel, each at a square's distance from the other, and intersecting Broadway at right angles. Besides this, let ussuppose there is a street called "X" street, running parallel with Broadway and at a square's distance from it; then we shall have seven squares, which are to be illuminated by one great light.

It is well known that light decreases in intensity the further we recede from it; but this intensity decreases in a peculiar proportion. In order to understand this proportion we must pause a moment, for it is something not easily comprehended. We hope, however, to present it in such a shape, that the attentive reader will find no difficulty in grasping a great law of nature, which, moreover, is of the greatest moment for a multitude of cases.

Physics teach us, by calculation and experiments, the following:

If a light illuminates a certain space, its intensity at twice the distance is not twice as feeble, but two times two, equal four times, as feeble. At three times the distance it does not shine three times as feeble, but three times three, that is nine times. In scientific language this is expressed thus: "The intensity of light decreases in the ratio of the square of the distance from its source."

Let us now try to apply this to our example.

We will take it for granted that the great light on Trinity steeple shines so bright, that one is just able to read these pages at a square's distance, viz., on "A" street.

On "B" street it will be much darker than on "A" street; it will be precisely four times darker, because "B" street is twice the distance from Trinity church, and 2 × 2 = 4. Hence, if we wish to read this on "B" street, our letters must cover four times the space they do now.

"C" street is three times as far from the light as "A" street; hence it will be nine times darker there, for 3 × 3 = 9. This page in order to be readable there, would then have to cover nine times the space it occupies now.

The next street, being four times as remote from thelight as "A" street, our letters, according to the rule given above, would have to cover sixteen times the present space, for it is sixteen times darker there than on "A" street.

"E" street, which lies at five times the distance from the light, will be twenty-five times darker, for 5 × 5 = 25. "F" street, which is six times the distance, we shall find thirty-six times darker; and, lastly, "G" street, seven times the distance from the light, will be forty-nine times darker than "A" street, because 7 × 7 = 49. The letters of a piece of writing, in order to be legible there, must cover forty-nine times the surface that our letters cover now.

But the reader will exclaim: "This evil can be remedied. We need but place forty-nine lights on Trinity steeple; there will then be sufficient light on "G" street for any newspaper to be read." Our friend will easily perceive, however, that it is more judicious to distribute forty-nine lights in different places on Broadway, than to put them all on one spot.

This is sufficient to convince any one that we may be able to illuminate large public places withonelight, but not the streets of a city, and still less whole cities.

ILLUMINATION OF THE PLANETS BY THE SUN.

It was demonstrated above, that it is impossible to illuminate large distances by a single light. Yet we must acknowledge that nature herself does this, and that the sun is the only light which shines throughout the solar system; for the light which is seen in the planets is but light received and reflected from the sun.

This is sufficient reason for us to believe, that there are not on every planet creatures as we see them on our earth; but that, on the contrary, each celestial body may be inhabited by creatures organized according to the distance of the planet from the sun; that is, adapted to the degree of light produced there by the sun.

For the natural sciences teach us, that solar light is subject to the same laws as our artificial light: it decreases as the distance increases. The planets more remote from the sun are illuminated less than those nearer to it. The ratio in which this light decreases, is precisely the same as that of the terrestrial light illustrated above, viz., according to the square of the distance. In other words, when the distance is double, the intensity of the light is one-fourth as great; when three times, one-ninth as great; when four times more remote, one-sixteenth as strong, etc.; in short, at every distance as much weaker as the distance multiplied by itself.

Presently we shall see that the planets are illuminated in inverse proportion to their distance from the sun. From this alone we come to the conclusion, that on every planetthe living beings must necessarily be differently constituted.

The name of the planet nearest to the sun is Mercury. It is about two and a half times nearer to the sun than our earth, therefore it receives nearly seven times as much light. We can scarcely conceive such an intensity of light and all the consequences resulting from it. If instead of one sun we should happen to have three, there is no doubt that we should go blind; but seven suns, that is, seven times the light of our brightest days, we could not endure, even if our eyes were closed; the more so, as our eyelids, even when firmly closed, do not protect us from the sun's light entirely. This is a proof of our assertion, that the living beings on the planet Mercury must be differently organized from us.

Venus, the third planet, is one and a third times nearer to the sun than we are. The light on that planet, therefore, is nearly twice as bright as on ours. But inasmuch as even this would be unbearable for us, the creatures on this planet must likewise be different from us.

The third planet is the earth we inhabit. The intensity of the sunlight in bright summer days is well known to us from experience, although no one has as yet been successful in measuring its degree as precisely as has been done with heat by the thermometer. It is true that in modern times a certain Mr. Schell, in Berlin, proposed to measure light accurately, in a way that elicited the approbation of naturalists, especially of Alexander von Humboldt. However, the experiments proposed have not yet been properly carried out, though they are very useful to photographists. Therefore we do not know, up to the present time, whether there is any difference in the light of two cloudless summer days; just as little are we able to determine how much the moon's light is weaker than the sun's.

The fourth planet's name is Mars; its distance from thesun is one and a half times our distance from the sun. There the sun's light is about half as strong as with us. Now, although we often may have days which are half as bright as others, it is yet very doubtful whether we could live on Mars; for light does not act upon our eyes only, but on our whole body and its health. It is likely that the very want of light there would prove fatal to us.

The twenty-four newly discovered planets have days that are nearly six times darker than ours. The daylight on these planets is probably as it was with us during the great eclipse of the sun in July, 1851. This light was very interesting for a few minutes, but if it were to continue it would certainly make us melancholy.

Far worse yet fare the remoter planets. On the planet Jupiter it is as much as thirty times darker than with us. On Saturn, eighty times. On Uranus, even three hundred times; and upon the last of the planets, Neptune, discovered in 1845, light is nine hundred times more feeble than upon our globe.

Although it is true that all of the remoter planets have many moons or satellites, yet it must not be forgotten that the moons themselves are but very feebly illuminated; that their light benefits during the night only, and even then only lovers and night revellers.

A WONDERFUL DISCOVERY.

Many people are greatly surprised, that when a new planet is discovered—and within late years this has been frequently the case—astronomers should be able to determine a few days afterwards its distance from the sun, together with the number of years necessary for its orbit. "How is it possible," they ask, "to survey a new guest after such a short acquaintance so accurately, as to foretell his path, nay, even the time of his course?"

Nevertheless it is true that this can be done, and certainly no stage-coach nor locomotive can announce the hour and minute of its arrival with as much accuracy as the astronomer can foretell the arrival of a celestial body, though he may have observed it but a short time.

More yet is done sometimes. In 1846, a naturalist in Paris, Leverrier by name, found out, without looking in the sky, without making observations with the telescope, simply by dint of calculation, that there must exist a planet at a distance from us of 2,862 millions of miles; that this planet takes 60,238 days and 11 hours to move round the sun; that it is 24 1/2 heavier than our earth, and that it must be found at a given time at a given place in the sky; provided, of course, the quality of the telescope be such as to enable it to be seen.

Leverrier communicated all this to the Academy of Sciences in Paris. The Academy did not by any means say, "The man is insane; how can he know what is going on 2,862 millions of miles from us; he does not even knowwhat kind of weather we shall have to-morrow!" Neither did they say, "This man wishes to sport with us, for he maintains things that no one can prove to be false!" Nor, "The man is a swindler, for he very likely has seen the planet accidentally, and pretends now that he discovered it by his learning." No, nothing of the kind; on the contrary, his communication was received with the proper regard for its importance; Leverrier was well known as a great naturalist.

Having thus learned how he made the discovery, the members of the Academy felt convinced that there were good reasons to believe his assertions to be true.

Complete success crowned his efforts.

He made the announcement to the Academy in January, 1846; on the 31st of August he sent in further reports about the planet, which he had not seen as yet. The surprise and astonishment on the part of scientific men can scarcely be imagined, while on the part of the uneducated there were but smiles and incredulity.

On the 23d of September, Mr. Galle—now Director of the Breslau Observatory, at that time Assistant in that of Berlin, a gentleman who had distinguished himself before by successful observations and discoveries, received a letter from Leverrier, requesting him to watch for the new planet at a place designated in the heavens. Though other cities at that time possessed better telescopes than Berlin, this city was chosen because of its favorable situation for observations.

That same evening Galle directed his telescope to that spot in the sky indicated by Leverrier, and, at an exceedingly small distance from it, actually discovered the planet.

This discovery of Leverrier is very justly called the greatest triumph that ever crowned a scientific inquiry. Indeed, nothing of the kind had ever transpired before; our century may well be proud of it. But, my friendly reader,he who lives in this age without having any idea whatever of the way in which such discoveries are made—he does not deserve to be called a contemporary of this age.

We will not try to make an astronomer out of you; we merely wish to explain to you the miracle of this discovery.

MAIN SUPPORT OF LEVERRIER'S DISCOVERY.

When Leverrier was working at his great discovery he did not strike out a new path in science; he was supported by a great law of nature, the base of all astronomical knowledge. It is the law of gravitation, discovered by Sir Isaac Newton.

Those of our readers who have fully understood what we said before(page 50)about light, will now easily comprehend, what we are going to say about the force of gravity.

Every heavenly body is endowed with the power of attraction; that is, it attracts every other body in the same manner that a magnet attracts iron. If the celestial bodies, or, to speak only of one class, if all the planets were at rest, that is, without motion, they would, on account of the great attractive power of the sun, rapidly approach it, and finally unite with it and form one body.

That this does not take place, may be ascribed solely to the fact that all planets have their own motion. This motion, combined with the attractive force of the sun, causes them to move in circles around it.

This may be illustrated by the following: Suppose a strong magnet to lie in the centre of a table. Now, suppose some one to place an iron ball on the table; then will this ball run straightway towards the magnet. But if some one were to roll the ball so that it should pass the magnet, it would at first run in a straight line, but the magnet attracting it at every moment of time, the ball would be compelled todeviate from its straight course and would begin to circulate round the magnet.

We see that this circular motion round the magnet springs from two forces: first, from the hand that starts the ball in a straight line; and secondly, from the attraction of the magnet, which at every moment draws the ball towards itself.

Newton, the greatest natural philosopher of all times, who lived in England two hundred years ago, proved, that all the orbits round the sun, as described by the planets, are caused by two such forces; by the motion of the planets peculiar to themselves, which, if not interfered with, would make them fly through space in a straight line; and by the attractive force of the sun, which is continually disturbing that straight course, thus forcing the planets to move in circles around him.

But Newton has discovered more than this. He succeeded in proving that, knowing the time of a planet's revolution around the sun, we can determine precisely with what force the attractive power of the sun affects it. For if the sun's attractive power is strong, the planet will revolve very quickly; if weak, it will move slowly.

Were the sun, for example, all of a sudden to lose a portion of his attractive force, the consequence would be that the earth must revolve around him more slowly. Our year, which now has three hundred and sixty-five days, would then have a much greater number of days.

Newton has also shown—and this is for us the main thing—that the attractive force of the sun is strong in his close proximity, but that it diminishes as the distance from him increases. In other words, the remoter planets are attracted by the sun with less force than those nearer to him. The attractive force decreases with the distance in the same proportion as light, which, we saw a little while ago, decreases in intensity as the square of the distance increases.This means, that a planet at a distance from the sun twice as great as that of the earth, is attracted with only one-fourth the force; one that is three times the distance, with one-ninth of the force, etc.

This great law pervades all nature. It is the basis of the science of astronomy, and was the main support of Leverrier's discovery.

THE GREAT DISCOVERY.

Perhaps the question presents itself to the thinking reader: If it be true that the heavenly bodies attract each other, why do not the planets attract one another in such a manner that they will run round and about each other?

Newton himself proposed this question; he also found the answer. The attractive power of a celestial body depends upon its larger or smaller mass. In our solar system the sun's mass is so much larger than that of any of the planets, that the balance of attractive power is largely in his favor; hence the revolving of the planets around him. If the sun were to disappear suddenly the effect of the attractive influence of the planets upon one another would be tremendous. There can be no doubt that they would all begin to revolve around Jupiter, because that planet has the largest mass. To give some examples in figures,—the sun's mass is 355,499 heavier, while Jupiter's is but 339 times heavier than that of the earth. It is evident that, the sun's mass being more than a thousand times larger than Jupiter's, so long as the sun exists the earth will never revolve around Jupiter.

Yet Jupiter is not without influence upon the earth; and though it is not able to draw it out of its course round the sun, yet it attracts the earth to some extent. Observations and computations have shown us, that the earth's orbit around the sun, owing to the attraction of Jupiter, is somewhat changed, or, as it is called, "disturbed."

As with Jupiter and the earth, so with all the otherplanets; their mutual attraction disturb their orbits round the sun. In reality, every planet revolves in an orbit which, without this "disturbance," would be a different one. The computation of these disturbances constitutes a great difficulty in astronomy, and requires the keenest and most energetic studies ever made in science.

Perhaps some of our readers may ask here, whether in course of time these disturbances will become so great as to throw our whole solar system into confusion? Well, the same question was proposed by a great mathematician named Laplace, who lived towards the end of the last century. But he himself answered the question in an immortal work, "The Mechanics of the Heavens." He furnished the proof, that all disturbances last but a certain time; and that the solar system is constructed so that the very attractions by which the disturbances are caused, produce at the end of certain periods a regulation or rectification; so that in the end there is always complete order.

After what has been said, it is evident that if one of the planets were invisible, its presence would still be known to our naturalists, on account of the disturbances it would cause in the orbits of the other planets; unless, perhaps, its mass be so insignificant as to render its power of attraction imperceptible.

And now we may proceed to explain the subject of this chapter.

Up to the year 1846, when Leverrier made his great discovery, it was believed that Uranus was the most distant planet revolving around the sun. Uranus itself was discovered by Sir John Herschel in England in the year 1781. As this planet takes eighty-four years to go round the sun, its complete revolution had not yet been observed in 1846; in spite of this, however, the course of Uranus was calculated and known very precisely, because the attractiveforce of the sun was known; and all the disturbances that might influence the planet were taken into account.

But notwithstanding all nicety of calculations, the real course of Uranus would not at all agree with the one computed. At that time already, long before Leverrier's discovery, the idea arose that beyond Uranus, in a region where the human eye could, in spite of all telescopes, discover nothing, there must probably exist a planet which changed the course of Uranus. Bessel, a great astronomer, who unfortunately for science died too soon, was already on the point of finding out by computation the unknown disturber. But he died, shortly before Leverrier's discovery. As early even as 1840, Maedler, in the city of Dorpat, in Russia, wrote a fine article on this as yet unseen disturber.

Leverrier, however, began the task and finished it. He computed with an acuteness that was admired by all men of science. He investigated whereabout in the heavens that intruder must be situated, so as to be able to trouble Uranus to such an extent; how fast this disturber itself must move in its orbit, and how large must be its mass.

We live to see the triumph of Leverrier's being able to discover with hismentaleye, by means of computation only, a planet at a distance of millions of miles from him.

Therefore let us say: Honor science! Honor the men that cultivate it! And all honor to the human intellect which sees farther than the human eye!

SOMETHING ABOUT THE WEATHER.

We presume that in a state of unusual bad weather there are many persons, who find occasion to reflect on the nature of weather in general.

A few years ago, we had "green Christmas and white Easter," and spring was of course far behind when Pentecost arrived. We had still cold and rainy days, while the nights were frosty; and, if one might judge from appearances, it seemed that nature had made a mistake, and had not known of our being then in the month of June, which, with us, is usually a delightful month.

The sun alone was right. He rose on the 9th of June of that year precisely at 4 o'clock 30 minutes, as was prescribed to him by the calendar; and set at 7 o'clock 30 minutes, precisely according to orders. At that time the sun was hastening towards summer, he lengthened the days and shortened the nights; but he alone is not capable of governing the weather, and our friends the astronomers, although they are able to calculate the sun's course with more precision than the engineer can the locomotive's, are themselves greatly embarrassed when asked, "What kind of weather shall we have the day after to-morrow?"

It is unpardonable that some of our almanacs, especially those for the farmer, contain prophecies about the weather. We cannot be too indignant against the foolish superstition which this abuse tends to foster. And what is worse, really shameful, is, that those who print such things do not believe in them themselves, but consider them a necessitysanctioned by age and custom, and offer it as such to the credulity of the public.

The subject of this article on the knowledge of weather, is a science, a great branch of the natural sciences; but it is a branch just developing, and therefore has, up to the present time, not yet brought forth any fruit.

It is very likely that at some future day we shall be able to indicate in advance the weather of any given place. But for the present this is impossible; and if from time to time men arise and announce that they can calculate and determine in advance the state of the weather in any given place—pretending to consult the planets, etc.—we take it for granted that they are as unreliable as the weather-prophets of the almanacs.

We said above that the weather might possibly be determined a few days ahead; science is at present almost far enough advanced for it. But there are needed for that purpose grand institutions, which must first be called into life.

If for the proper observation of the weather, stations were erected throughout the extent of our country, at a distance of about seventy miles from each other, and if these stations were connected by a telegraph-wire, managed by a scientific reliable observer; then we might, in the middle portion of our country, be able to determine in advance the state of the weather, though for a short time only.

For the changeableness of the weather depends on the nature and motion of the air, and on the amount of moisture, and the direction of the winds. It is mostly occasioned by currents of air which pass over the earth, producing, wherever they meet, here cold, there heat—here rain, there hail or snow.

Along a part of the coast of the United States electric telegraphs have been established. Vessels receive, at aconsiderable distance, the news of a storm approaching, together with its velocity and direction. The electric telegraph being quicker than the wind, the vessels receive the news in time to take their directions. Before the storm reaches them, they have been enabled to take precautionary measures for its reception.

This is a great step forward in our new science. But not before the time when such stations shall be established everywhere throughout the land, will meteorology manifest its real importance. For it has, like every other science, firmly established rules, which can easily be calculated and verified; while, on the other hand, allowances must be made for changeable conditions which tend to disturb the rules.

We will now endeavor to introduce to our readers these established rules, and explain the changeable conditions to which we refer.

OF THE WEATHER IN SUMMER AND WINTER.

As we have stated above, there exist fixed rules about the weather; these rules are simple and easy to compute. But our computations are often disturbed by a great many circumstances beyond our reach, so much that we are governed more by exceptions than rules.

These latter are based on the position of our earth with regard to the sun. They are, therefore, easy to determine, for astronomy is a science resting on firm pillars; and although nothing in the universe is so far from us as the stars, yet there is nothing in the world so certain as our knowledge of the courses of the constellations and their distances. Many of our readers may be surprised, perhaps, to hear that we know more accurately the distance from the earth to the sun than the distance from New York to Cincinnati. Indeed, astronomical knowledge is the most reliable in the world. No merchant is able to measure a piece of cloth without being mistaken, to say the least, as much as 1/300 part; while the uncertainty with respect to distances of bodies in the solar system amounts to a great deal less than 1/300 part.

Our earth turns on its axis once in every twenty-four hours, and goes also round the sun once a year. But the earth's axis is inclined towards the earth's orbit—orbit is the circle which a celestial body describes in its revolution around another—in such a manner as to cause the earth, in its orbit round the sun, to be illuminated for six months on one side, and for six months on the other side of theearth. Hence it happens, that at the north pole there is continual day during six months in the year, after which follows uninterrupted winter for the next six months; in the same way the day on the south pole lasts six months, and the night following the same length of time. In the middle between both poles, however, in the regions around the equator, the day has throughout the year twelve hours; the night, of course, the same; while in the countries between the equator and the poles, the length of day and night is, through the whole year, constantly varying.

We, in the United States, inhabit the northern hemisphere; when, therefore, the time comes that the north pole has day for six months, we in North America, being situated about half-way between the equator and north pole, enjoy long days and short nights. The inhabitants of those countries, however, situated on the southern hemisphere, have at that time short days and long nights. But when the time comes that there is six months' night on the north pole and six months' day on the south pole, then will the inhabitants of the southern hemisphere have long days, and we long nights.

Intimately connected with the length of day and night are our seasons, especially summer and winter; for together with the sun's light heat is also called forth. During our long days, therefore, it is very warm with us, for the sun's rays heat the soil. During our short days we experience cold, because the warming light of the sun does not reach our earth directly. For this reason the northern hemisphere enjoys summer while the southern has winter; andvice versâ, when we have mid-winter, people in the other hemisphere are in the midst of summer. When we are snowed up at Christmas, and seek joy and elevation by the cheerful fireside in the brightly-lighted room, we may, perhaps, think of our friends and relatives who have emigrated to Australia, and the question may occur to us, how thingsmay be with them this cold weather, and how they are enjoying the holidays?

Now, would not the uninformed be surprised, if a letter were to arrive from Australia, written at Christmas, telling how the writer enjoyed Christmas in his vine-arbor, where he had sought shelter from the terrible heat of the day, and that he had but late at night gone to his room, and he could scarcely sleep then on account of the heat, and the longing for his former home in the United States, where he could always enjoy cool weather at Christmas.

The uninformed will now learn that Australia lies in the southern hemisphere, while we are in the northern, and that there they live in midst of summer, while we are buried in snow. Nor will he now be surprised when he reads, that it snowed in Australia in the month of August, and that his friend or relative there reposed by the fireside, and read the letter from home by the light of the lamp, at the same hour that we here were taking an afternoon walk in the summer shade.

The heat of summer, however, does not altogether depend upon the length of the day; nor does the cold of winter upon its shortness; but principally on this, that during summer-time the sun at noon stands directly over head; that therefore his vertical rays are enabled to pierce the soil with intense heat; while in winter-time the sun at noon stands nearer to the horizon; his rays fall on the earth obliquely, therefore heating the soil with but feeble power.

We shall presently see that this position of the sun exercises great influence upon the weather.

THE CURRENTS OF AIR AND THE WEATHER.

In order to fully understand the conditions of the atmosphere, one must carefully notice the following:

Though the sun produces summer and winter, and although his beams call forth heat, and the absence of heat causes intense cold on the surface of the globe, yet the sun alone does not make what we call "Weather."

If the sun's influence alone were prevalent, there would be no change at all during our seasons; once cold or warm, it would invariably continue to be so, according to the time of the year. The sun, however, produces certain movements in the air; currents of air or winds pour from cold countries into warm ones, andvice versâfrom warm ones into cold ones. It is this that makes our sky be cloudy or clear; that produces rain and sunshine, snow and hail, refreshing coolness in summer and warmth sometimes in midwinter, as also chilly nights in summer and thaw in winter. In other words, it is more properly the motion of the air, the wind, that produces what we callweather; that is, that changeableness from heat to cold, from dryness to moisture, all of which may be comprised in one name, weather.

But whence does the wind arise? It is caused by the influence of the sun's heat upon the air.

The whole earth is enveloped with a misty cover called "air." This air has the peculiar quality of expanding when it becomes heated. If you put a bladder that is filled with air and tied up, into the pipe of a heated stove,the air inside will expand so much as to burst the bladder with a loud report. The warm expanded air is lighter than the cold air, and always ascends in the atmosphere.

Lofty rooms are therefore difficult to heat because the warm air ascends towards the ceiling. In every room it is much cooler near the floor than near the top of the room. This accounts for the singular fact that in winter our feet, though warmly clad in stockings and shoes or boots, feel cold more often than our hands, which are entirely uncovered. If you ascend a ladder in a tolerably cold room, you are surprised at finding it much warmer above than below in the room. The flies take advantage of this in autumn, when they are seen to promenade on the ceiling, because there it is warm as in summer, while near the floor it is cold; owing to the circumstance that warm air, being lighter than cold, ascends.

Precisely the same takes place on the earth. In the hot zone near the equator the sun heats the air continually; hence the air there ascends. But from both the northern and southern hemispheres, cold air is constantly pouring towards the equator in order to fill the vacuum thus produced. This cold air is now heated also and rises, while other cold air rushes in after. By this continued motion of the air towards the equator, however, a vacuum is created also at both poles of the earth; and the heated air of the equator, after having ascended, flows towards these two vacuums. Thus arise the currents in the air; currents which continue the whole year, and cause the cold air to move from the poles to the equator along the surface of the earth; while higher in the atmosphere the heated air flows from the equator back to the poles.

Therefore the air is said to circulate below from the poles to the equator, but above to go back from the equator to the poles.

He who is in the habit of noticing phenomena ofnature, may often have observed something of the kind when opening the window of a room filled with smoke. The smoke escapes above, while below it seems to come back into the room again.

But this is an illusion which has its origin in the fact, that above the warm air of the room goes out of the window, and, of course, takes the smoke with it; below at the window, however, cold air pours in from without, driving the smoke that is below back into the room. The attentive observer may also see how the two currents of air above and below move in contrary directions; while in the middle part they repel each other, and form a kind of eddy which may be clearly perceived by the motion of the smoke.

What takes place on our earth is nothing different from this, and we shall presently see the great influence this has upon our weather.

THE FIRM RULES OF METEOROLOGY.

The air which is continually rising in the hot zones and circulating towards the poles and back again to the equator, is the prime source of the wind. This latter modifies the temperature of the atmosphere; for the cold air from the poles of the earth, in coming to the equator, cools the torrid zone; again, the hot air going from there to the poles heats the colder regions. This accounts for the fact that very often it is not so cold in cold countries as it really would be, were it not for this circulation of the air; and that in hot countries we never find the degree of heat that there would be if the air were continually at rest.

According to what has been said, however, but two different winds would exist on the earth, and these two moving in fixed directions; one sweeping over the earth from the poles to the equator, with us called "North wind," and one from the equator to the icy regions, with us the "South wind."

But we must add here something which considerably modifies this, viz., the revolution of the globe. The earth, it is well known, revolves round its axis from west to east once in twenty-four hours; the atmosphere performs this revolution also.

But since that part of the atmosphere nearest to the equator must move with greater velocity than the part nearer the poles, it may with a little thinking be easily understood, that the air which goes on the surface of the earth from the poles to the equator, passes over ground whichmoves faster east than the air itself; while, on the contrary, the air coming from the hot zone starts in an eastern direction with the velocity it had on the equator; but, as it is moving on, it passes over that part of the earth which rotates with less velocity.

This gives rise to what are called thetrade-winds, so very important to navigation. In our hemisphere the trade-winds come in the lower strata of the air from the northeast; while in the upper strata they move towards northeast, they come from the southwest. On the other hemisphere the trade-winds in the lower strata of the air move in a northwesterly direction; in the upper they move in a southeasterly direction.

From this arise our rules respecting the weather.

The idea that many persons have that wind and weather are two things entirely different, is wrong. Weather is nothing else but a condition of the atmosphere. A cold winter, cold spring, cold summer, and cold autumn, do not mean, as some believe, that the earth, or that part of it on which they live, is colder than usual; for if we dig a hole in the ground, it will be found that neither cold nor warm weather has any influence upon the temperature below the surface of the earth. At the small depth of thirty inches below the surface, no difference can be found between the heat of the day and the cold of the night. In a well sixty feet deep no difference is perceivable between the hottest summer and the coldest winter-day, for below the surface of the earth the differences of temperature do not exist. What we call Weather is but a state of the atmosphere, and depends solely upon the wind.

It has been stated already that there are fixed rules of weather, or, which is the same thing, that there are laws governing the motion of the winds; but we have added also, that there are a great many causes which disturbthese rules, and therefore make any calculations in advance a sheer impossibility.

We have seen that these rules are called forth, 1st, by the course of the sun; 2d, by the circulation of the air from the poles to the equator and back again; and 3d, by the revolution of the earth, causing the trade-winds.

All these various items have been calculated correctly; and, owing to this, we have now a firm basis in meteorology. But in the next article, we shall see what obstacles are put in the way of this new science by other things; and the allowances to be made for these disturbances cannot be easily computed.

AIR AND WATER IN THEIR RELATIONS TO WEATHER.

Let us now examine the causes which disturb the regular currents of air, and which render the otherwise computable winds incomputable, thus producing the great irregularities of the weather.

The main cause lies in this, that neither the air nor the earth is everywhere in the same condition.

Every housewife that but once in her life hung up clothes to dry, knows full well that air absorbs moisture when passing over, or through, wet objects. If she wishes to dry her clothes very quickly, she will hang them up where there is much wind. And she is perfectly right in maintaining that the wind dries clothes better than the quiet sunshine.

Whence does this come?

From this: dry air, when coming in contact with wet objects, absorbs the moisture, and by this dries the object somewhat. If there be no wind, the moistened air will remain around the wet object, and the drying goes on very slowly. But so soon as a little wind arises, the moist air is moved away, new dry air constantly takes its place, and coming into contact with the wet article, effects in a very short time the desired result.

Hence, it is not heat alone that causes the clothes to dry; for in winter-time, though it is so cold that the clothes on the line freeze to stiffness, they dry nevertheless, if it be very windy. It is the wind which dries them by allowing fresh air to pass through them continually. For thesame reason our housewives open doors and windows after a room has been scoured, so that by a thorough draft of air, the floor may dry quickly; a large fire in the stove or fireplace could not effect it so readily.

From all this we may learn that the air absorbs particles of water. It will now be evident to every one, why water in a tumbler, standing uncovered at the open window for a few days, constantly decreases, until it finally disappears entirely and the tumbler is dry. Where has the water gone? The air drank it off, little by little, until at last the tumbler was emptied.

"But," you will exclaim, "what does the air do with all the water it drinks? The air goes over the whole ocean; over lakes, rivers, brooks, and springs; over woods and fields, and everywhere it takes in particles of water. What becomes of them?"

After being absorbed, the particles of water unite and form clouds; then they fall down in the form of fog, rain, snow, or hail.

Many persons, even highly educated ones, have false ideas about these phenomena of the atmosphere.

Some think a cloud is a kind of bag that contains the rain which is let fall by the cloud. This is entirely false. The clouds are nothing but fogs in the upper regions of the atmosphere; fog itself is nothing but a cloud immediately over ground.

It is easy to obtain a correct idea of the formation of fog and rain; one need but observe for one's self.

He who has ever blown upon his hands in winter-time in order to warm them, will have observed that his hands become moist from his breath. If a window-pane is breathed upon, it is covered by a thin coat of water. What is the cause of this? It arises from the fact that the air we exhale contains water-particles from our blood. We do not see them when it is warm, because they are airy themselves;everybody knows that they become visible so soon as the air turns cool; or that they appear like fog when one is in a cold room in winter; that they form drops when you breathe upon cold objects; that they freeze and become snow; nay, that in severe cold weather, after a long walk outdoors, they even cling to one's moustache like icicles.

This may illustrate, that these particles of water are invisible in the warm air, but that when the air is colder they appear as fog; when still colder, as drops of rain; and in very cold weather they turn to snow, while in severe cold they freeze and form ice.

FOG, CLOUDS, RAIN, AND SNOW.

The air imbibes particles of water from all parts of the earth; and thus charged with water it is the same and operates the same as our breath.

So soon as a stratum of air that contains water-particles, meets with a colder stratum, these airy particles of water immediately flow together to form fog. But fog, as has been said, is nothing but a cloud. He who has travelled in mountainous countries, has often noticed this. From the valley it often appears that the top of a high mountain is wrapped in clouds; and his curiosity may be excited to ascend the mountain in order to examine these clouds. But when he arrives there, he sees nothing whatever either before or behind him but fog, which most assuredly he has often seen before without so much trouble. The ignorant person who believes that a cloud is something else than fog, and who fancies that the clouds which he saw from below have disappeared during his ascent, leaving but a mist behind, will be no little amazed when he has arrived at the foot of the mountain again, to see the cloud above as before, and to perceive that he actually walked among the clouds.

Hence it is understood now, that the particles of water in the air form fog, or, which is the same, clouds, so soon as they come into a colder stratum. But the cloud is not rain as yet; the change into rain will depend upon circumstances that may be easily guessed. If a warmer and dryer stratum passes over the one containing the newlyformed clouds, then this warmer stratum will absorb the water-particles of the other. The moist air fares like the wet clothes we spoke of; the warm dry air absorbs its particles of water. But if a colder stratum of air approaches the stratum containing clouds, then the water-particles of the latter are condensed; the cloud becomes small drops of water; these drops are too heavy to be supported in the air, and they fall down asrain.

During its descent, the drop of rain is steadily increased by the water-particles of the air through which it passes. Thus it happens, that rain often arrives at the earth in the form of large drops of water, while when yet in the air and beginning to fall, it consisted of tiny drops. It is well known that the rain-drops on the roof are smaller than those that fall on the street. The difference is so great, that on the roof of the royal castle in Berlin, Prussia, there falls four and a half inches less rain during the year than on the square before the building.

Our readers may now imagine, without difficulty, how in a similar way, snow is formed. If a stratum of air saturated with moisture meets a very cold one, the fog begins to freeze, and becomes specks of snow. They, too, increase while falling, and on arriving upon the earth they are large flakes.

On the occasion of a lecture about the formation of snow in the atmosphere, Professor Dove once told an anecdote, which is as interesting as it is instructive. A musician in St. Petersburg gave a concert in a large hall, where the fashionable world had assembled in great numbers. It was an icy cold night, such as is almost unknown with us; but in the overcrowded hall there was such excessive heat as only Russians can endure. Soon, however, it became too intense even for them. The hall was densely crowded; the throng was alarming; several ladies fainted. An effort was made to open a window, but without success—thewindow was frozen fast. A gallant officer devised means; he broke the window in. And what happened?It commenced to snow in the concert room!How did this come? The vapor exhaled by the multitude of persons in the hall had collected above, where the air was hottest. The sudden entrance of the icy air through the broken window changed the particles of water into snow. Thus it was this time not heaven, but the upper space of an unventilated concert-hall, that sent down snow.

In a similar way hail is formed in the atmosphere; this we shall consider at more length hereafter. At present we must turn our attention to the influence of these phenomena upon cold and heat; for it is a known fact, that rain and evaporation are not only engendered by cold and heat, but,vice versâ, that rain and evaporation, in their turn, engender cold and heat in the air.

HOW HEAT IN THE AIR BECOMES LATENT, AND HOW IT GETS FREE AGAIN.

In the preceding chapter it was shown how warm air produces evaporation, and how cold air causes rain and snow. In this chapter we desire to demonstrate how the reverse may take place, viz., the engendering of cold and heat by evaporation and rain.

Although what we wish to prove in the following is firmly established, yet it is not easy to make it understood. For this reason many educated men, who have read much about "free and latent heat," have mistaken ideas about it.

In order that what we shall explain may be in the reach of every one, we must again choose our examples from life itself, and request our readers to come to our aid with their thoughts.

Every one knows how water is boiled. It is placed over the fire, the heat of which communicates itself to the water and heats it more and more. Now, where does the heat of the fire go? It is taken up by the water; thus to speak, the water absorbs the heat. This explains why a cooking-stove on which a dinner is cooked, does not get near as warm as it would, if the same quantity of fuel had been used without any cooking on the stove. For a portion of the heat being absorbed by the meat, it cannot heat the stove; hence the stove fails to receive the amount of heat that is used in cooking the meat.

What will be the effect of taking boiling water from thestove and placing it in the room somewhere? Where will the heat of the water go then?

We all know that in this case the water cools down by degrees. The water gives out its heat. Now, it is evident that while on the fire, the water had absorbed heat; and that it gave out that heat on being put in a colder place.

But what will become of the water if it is allowed to continue to absorb heat? What becomes of a pot of water, if, on beginning to boil, it is not taken off the fire? Does such water continue to absorb heat?

Observation shows that this is not the case. Put a thermometer into boiling water; it will immediately rise to 212 degrees; let it remain there ever so long, it will not rise a degree higher. But during that time there was a brisk fire; it is evident, therefore, that heat was continually passing into the water. Where, then, is this heat? It has not remained in the water, or else the thermometer would have continued to rise. It must be, then, that it has passed away with the burning hot steam which has been constantly rising and floating about in the room. Moreover, it is well known that water, when allowed to continue to boil, decreases in quantity. Our housewives call this "boiling down." In truth, however, the water boilsup; for, if you notice carefully, a part of the water, while boiling, is changed into steam, which may be seen rising from the pot and ascending in the air. The question naturally arises now, where is the heat that the boiling water has been continually absorbing? It has not remained in the water, or the thermometer would have continued to rise. The answer is now evident: the heat has risen with the steam, and with it floats about in the air; or, in other words, the heat has been absorbed by the steam; or, which is the same, the heat has become latent in the steam. Therefore we are correct in saying,it takes heat to changewater into steam. We know now where the heat has gone; it has become latent in the steam.

The next question might be: Can this latent heat become free again? Certainly it can; and many a good housewife has convinced herself of it very often, though perhaps she did not philosophize about it. When touching unawares the spout of the tea-kettle with her hand she felt as though her hand was wet, and scalded besides. Whence did this come? The hand was wetted by the steam, which, on coming in contact with the hand, changed to water again, but in the same moment, also, the steam gave up its heat to the hand by scalding it. Steam, therefore, when changing into water, gives its latent heat up again; or, the latent heat becomes free.

This phenomenon, which may be witnessed in every kitchen, happens in nature on a larger scale; by what powerful effects it is accompanied, we propose to show in the next chapter.


Back to IndexNext