Against this funnel of the ear the sonorous waves strike, and its different parts are most admirably contrived to reflect them all into the meatus auditorius: if it would not occupy too much time, it might be shown, that all these curves and spirals are contrived in the best manner possible, and with a most perfect knowledge of the geometry of sounds, to reflect the sonorous pulses accurately, and in the greatest possible quantity, into the ear.
This external part of the ear is differently formed in different animals; and admirably suited to their various situations and habits. In man it is close to the head, but so formed as to collect the various pulses with great accuracy; in other animals it is more simple, where less accuracy is required, but it is, in general, much larger, having the appearance of an oblong funnel; and this gives them a greater delicacy of hearing, which was necessary for them.
In animals which are defenceless and timid, and which are constantly obliged to seek their safety in flight, the opening of this funnel is placed behind, that they may better hear the noises behind them. This is particularly instanced in the hare. Beasts of prey have this opening before, that they may more easily discover their prey; as the lion and tiger. Those that feed on birds have the opening directed upwards, as the fox; and it is inclined downwards in animals, such as the weasel, which seek their prey on the earth.
To this external part of the ear, which I have described, is connected the meatus auditorius, or passage to the internal ear, which is somewhat of a compressed cylindrical figure, lessening as it bends inwards: a considerable part of it is bony, and it is bent towards the middle. Across this passage, at its inner extremity, is stretched a thin membrane, called membrana tympani. Upon the surface of this membrane, the sonorous waves, which have been directed inwards by the external ear, strike, and cause it to vibrate like the membrane of a drum. This membrane is stretched over a cavity in the bone, called the os petrosum, which cavity is called the tympanum, or drum of the ear, which is of a rounded figure, divided in its middle by a promontory, and continued backwards to the cells of the mastoid bone. Besides this continuation of the tympanum into the mastoid cells, it has a free communication with the mouth, by means of a tube I shall soon describe.
Within this cavity of the tympanum are placed four small bones, which facilitate the hearing: the first is the malleus or hammer, so called from its shape: the upper part of its round head rests upon the concavity of the tympanum, from whence the handle is extended down, along the membrane of the tympanum; this bone has several muscles, which move it in different directions, and cause it to stretch or brace the membrana tympani, when we wish to hear with accuracy.
Connected with the malleus is another small bone, called the incus, or anvil, which is connected with another, called the stapes, or stirrup, from its shape. These two bones are connected by a small oval shaped bone, called os orbiculare, placed between them: the whole forming a little chain of bones.
The stapes, or stirrup, has its end of an oval shape, which fits a small hole called fenestra ovalis, in that part of the ear called the labyrinth, or innermost chamber of the ear.
The labyrinth consists of three parts; first, the vestibule, which is a round cavity in a hard part of the os petrosum; secondly, the semicircular canals, so called from their shape, which however is not exactly semicircular; thirdly, the cochlea, which is a beautifully convoluted canal, like the shell of a snail. This part has a round cavity called fenestra rotunda, which is covered with a thin elastic membrane, and looks into the tympanum.
The vestibule, semicircular canals, and cochlea, the whole of which is called the labyrinth, form one cavity, which is filled with a very limpid fluid resembling water, and the whole lined with a fine delicate membrane, upon which the auditory nerve is expanded, like the retina upon the vitreous humor of the eye. This beautiful apparatus was only lately discovered by an Italian physician, Scarpa. The auditory nerve is a portion of the seventh pair, which is called the portio mollis or soft portion.
There is one part of the ear still to be described, namely, the Eustachian tube, so called from Eustachius, the anatomist, who first described it. This tube opens by a wide elliptical aperture into the tympanum behind the membrane; the other end, which gradually grows wider, opens into the cavity of the mouth. By this canal the inspired air enters the tympanum to be changed and renewed, it likewise serves some important purpose in hearing, with the nature of which we are yet unacquainted. It is certain that we can hear through this passage, for if a watch be put into the mouth, and the ears stopped, its ticking may be distinctly heard; and in several instances of deafness, this tube has been found completely blocked up.
The waves, which have been described as propagated in the air, in all directions from the sounding body, enter the external cartilaginous part of the ear, which, as has before been observed, is admirably fitted for collecting and condensing them. As soon as these pulses excite tremors in the membrane of the tympanum, its muscles stretch and brace it, whence it becomes more powerfully affected by these impulses. It is on this account that we hear sounds more distinctly when we attend to them, the membrane being then stretched.
A tremulous motion, being excited in this membrane, is communicated to the malleus annexed to it, which communicates it to the incus, by which it is propagated through the os orbiculare to the stapes, which imparts this tremulous motion through the foramen ovale to the fluid contained in the labyrinth. This tremor is impressed by the waves excited in this fluid, on every part of the auditory nerve in the labyrinth. The use of the foramen rotundum, or round hole, before described, is probably the same as that of the hole in the side of a drum; it allows the fluid in the labyrinth to be compressed, otherwise it could not vibrate.
If the organization is sound, and tremors are communicated to the auditory nerve, they are in some way or other conveyed to the mind, but in what manner we cannot tell. Nature has hid the machinery by which she connects material and immaterial things entirely from our view, and if we try to investigate them, we are soon bewildered in the regions of hypothesis.
Tremors may however be communicated to the auditory nerve in a different manner from what I have described. If a watch be put between the teeth, and the ear stopped, tremors will be communicated to the teeth, by them to the bones of the upper jaw, and by these to the auditory nerve. In this way a person born deaf, and having no power of hearing through the medium of the air, may become sensible of the pleasures of music.
That sound may be propagated by vibrations, independent of pulses of the air, is evident from the experiment with the string and poker.
There is, strictly speaking, no such thing existing as sound; it being only a sensation of the mind, caused by tremors of the air, or vibrations of the sounding body.
In order to understand more clearly how pulses, or waves are caused by the vibration of bodies, and the manner in which vibrating bodies are affected, I shall just enumerate some of the properties of pendulums, which however I shall not stop to demonstrate here, as that would consume much time.
When two pendulums vibrate which are exactly of the same length, their vibrations are performed in equal times; if they set out together to describe equal arcs, they will agree together in their motions, and the vibrations will be performed in equal times.
But if one of these pendulums be four times as long as the other, the vibrations of the longer will be twice as slow as those of the shorter; the number of vibrations being as the square roots of their lengths.
A pendulum is fixed to one point, but a musical string is extended between two points, and in its vibrations may be compared to a double pendulum vibrating in a very small arc, hence we see how strings of different lengths may agree in their motions after the manner of pendulums; but we must observe that it is not necessary to quadruple the length of a musical string, in order to make the time of vibration twice as long; it will be sufficient merely to double it. We know that from whatever height a pendulum falls on one side, to the same height will it rise on the other. In the same manner will an elastic string continue to vibrate from one side to the other for some time, till its motion be destroyed by the resistance of the air, and friction about its fixed points, and each of its small vibrations, like those of a pendulum, will, for the same reason, be performed in times exactly equal to each other.
Thus we gain from the analogy between a pendulum and a musical string, a more adequate conception of a subject which was never understood till this analogy was discovered. It explains to us why every musical string preserves the same pitch from the beginning to the end of its vibration; or as long as it can be distinguished by the ear; and why the pitch remains still unvaried whether the sound is loud or soft, and all this because the vibrations of the same pendulum whether they are longer or shorter, when compared among themselves, are found to be all performed in equal times till the pendulum be at rest, the difference of the space, which is moved over, compensating for the slowness of the motion till its decay.
To illustrate this subject still further, suppose we have a piece of catgut stretched between two pins; I lay hold of it in the middle and pull it sideways; I let it go, and you will observe that it first straightens itself or returns to its original position. This depends on the elasticity of its particles, which tend to reunite when they have been separated by an external force, just in the same way that the particles of a piece of caoutchouc or Indian rubber attract each other when pulled asunder; and this force not only enables the string to restore itself to its former situation, but will carry it nearly to an equal distance on the other side, just in the same manner as a ball falling down an inclined plane will rise nearly to the same height up another, or a pendulum will rise nearly to the height from which it fell.
In this way will a string move backwards and forwards, till friction and the resistance of the air have destroyed the velocity which it acquired by the force of elasticity.
It is obvious that when a string is thus let fly from the finger, whatever be its own motion, such will also be the motion of the particles of the air which fly before it: the air will be driven forwards, and by that means condensed. When this condensed air expands itself, it will expand not only towards the string, but as its elasticity acts in all directions, it will also expand itself forwards and condense the air that is beyond it, this last condensed air, by its expansion, will produce the same effect on the air that lies still further forwards, and thus the motion produced in the air, by the vibration of the elastic string, is constantly carried forwards and conveyed to the ear.
It will be proper however to observe, that these pulses are sometimes produced without any such vibration of the sounding body, as we find it in musical strings and bells. In these cases we have to discover by what cause these condensations or pulses may be produced without any apparent vibrations in what is considered as the sounding body. We have two or three instances of this kind; one in wind instruments, such as the flute or organ pipe; another in the discharge of a gun.
In an organ, or flute, the air, which is driven through the pipe, strikes against the edge of the lips of the instrument in its passage, and by being accumulated there, is condensed, and this condensation produces waves or pulses in the air.
When a gun is discharged, a great quantity of air is produced, by the firing of the gunpowder, which being violently propelled from the piece, condenses the air that encompasses the space where the expansion happens; for whatever is driven out from the space where the expansion is made will be forcibly driven into the space all around it. This condensation forms the first pulse, and as this, by its elasticity, expands again, pulses of the same sort will be produced and propagated forwards.
There is likewise another curious instance of the production of sound, when a tube is held over a stream of inflamed hydrogen gas issuing out of a capillary tube in a bottle.
Sounding bodies propagate their motions on all sides, directly forwards, by successive condensations and rarefactions, so that sound is driven in all directions, backwards and forwards, upwards and downwards, and on every side; the pulses go on succeeding each other like circles in disturbed water.
Sounds differ from each other both with respect to their tone and intensity: in respect to their tone, they are distinguished into grave and acute: in respect to their intensity, they are distinguished into loud and low, or strong and weak. The tone of a sound depends on the velocity with which the vibrations are performed, for the greater the number of vibrations in a given time, the more acute will be the tone, and on the contrary, the smaller the number, the more grave it will be. The tone of a sound is not altered by the distance of the ear from the sounding body; but the intensity or strength of any sound depends on the force with which the waves of the air strike the ear; and this force is different at different distances; so that a sound which is very loud when we are near the body that produces it, will be weaker if we are further from it, though its tone will suffer no alteration; and the distance may be so great that we cannot hear it at all. It has been demonstrated, that the intensity of sound at different distances from the sounding body is inversely as the square of the distance.
Sound moves with the same velocity at all distances from the sounding body, otherwise it would not produce the same tone at all distances. Sounds of different tones likewise move with the same velocity. This is evident from a peal of bells being heard in the same order in which they are rung, whether we are near, or at a distance.
It is likewise found that sounds of the same tone but of different intensities are propagated with the same velocity. A low sound cannot indeed be heard so far as a loud one; but sounds, whether low or loud, will be conveyed in an equal time to any equal distance at which they can both be heard. The report of a cannon does not move faster, or pass over a given space sooner, than the sound of a musical string.
The principal cause of the decay of sound is the want of perfect elasticity in the air: whence it happens that every subsequent particle has not the entire motion of the preceding particle communicated to it, as is the case with equal and perfectly elastic bodies; consequently the further the motion is propagated, the more will the velocity with which the particles move be diminished; the condensation of the air will be diminished also, and consequently its effect on the ear. That the want of perfect elasticity in the air is the principal cause of the decay of sound, appears from this, that sounds are perceived more distinctly when the north and easterly winds prevail, at which time the air is dry and dense, as appears from the hygrometer and barometer; and, of course, the air in this state must be more elastic, for the vapours diffused through the atmosphere, unless dilated by intense heat, diminish the spring of the air.
That sound is not propagated to all distances instantaneously, but requires a sensible time for its passage from one place to another, is evident from the discharge of a gun at a distance; for the report is not heard till some time after the flash is seen. Light moves much more swiftly than sound; it comes from the sun in eight minutes, which is at the rate of 74,420 leagues in a second; so that the velocity of light may be considered as instantaneous, at any distance on the earth; and, as sound takes up a considerable time in its passage, the interval between the flash and the report of the gun shows the space it passes over in a given time, which is found to be 1142 feet in a second; so that if three seconds elapse between the time when we see the flash and hear the report of the gun, it must be distant 1142 yards.
From experiments that have been made at different times, by various philosophers, we may collect the following results. First, That the mean velocity of sound is a mile in about 4 3/4 seconds, or 1142 feet in a second of time. Secondly, That all sounds, whether they be weak or strong, have the same velocity. Thirdly, That sound moves over equal spaces in equal times, from the beginning to the end.
The tone of a musical string, or a bell, appears continuous. This depends upon a law of sensation, formerly mentioned, namely, that impressions made upon any of the organs of sense do not immediately vanish, but remain some time; and we hear sound continuous from these vibrations, for the same reason that we hear it continuous when we draw a stick quickly along a rail, or a quill along the teeth of a comb; the vibrations succeed each other so quickly that we hear the succeeding before the effect of the preceding is worn off; though it must be evident that the impression produced by each pulse or wave of the air is perfectly distinct and insulated.
The act of combining sounds in such a manner as to be agreeable to the ear, is called music. This art is usually divided into melody and harmony. An agreeable succession of sounds is called melody; but when two or more sounds are produced together, and afford an agreeable sensation, the effect is called harmony. When two sounds are produced together, and afford pleasure to the sense of hearing, the effect is called a concord; but when the sensation produced is harsh or disagreeable, it is called a discord. These different effects seem to depend upon the coincidence of the vibrations of the two strings, and consequently on the coincidence of the pulses which they excite in the air. When the strings are equally stretched, and of the same length and thickness, their vibrations will always coincide, and they produce a sound so similar to each other, that it is called unison, which is the most perfect concord. When one string is only half the length of the other, the vibrations coincide at every second vibration of the shorter string: this produces a compound sound, which is more agreeable to the ear than any other, except the unison; this note, when compared with the tone produced by the longer string, is called the octave to it, because the interval between the two notes is so divided by musicians that from one to the other they reckon eight different tones.
If the strings be of the length, two and three, the coincidence of the pulses will happen less frequently, viz. at every third vibration of the shorter string, and the concord will be less perfect. This forms what is called a fifth. The less frequent the coincidence of the vibrations, the less perfect will be the concord, or the less pleasure will it afford to the mind; till the vibrations coincide so seldom, that the sound produced by both strings at once is harsh and disagreeable, and is called a discord.
The effects of music upon the mind, the power by which it moves the heart, touches the passions, and excites sometimes the highest pleasure, and sometimes the deepest melancholy, depend upon melody. By a simple melody the ignorant are affected as well as those skilled in music. The pleasures arising from harmony or a combination of sounds are acquired rather than natural. Its pleasures are the result of experience and knowledge in music; music affords a source of innocent and inexhaustible pleasure, but its effects are different on different persons: some are enthusiastically fond of it, while others hear the sweetest airs with a listlessness bordering upon indifference. This has been supposed to depend on a musical ear, which is not given by nature to all. The cause of this difference is by no means evident. It does not depend on the delicacy of the sense of hearing, for there are some persons half deaf, who have the greatest relish for music; while others who have a very acute sense of hearing have no relish for music. In some instances I think a musical ear has been acquired where it did not seem originally to exist.
The force of sound is increased by the reflection of many bodies, particularly such as are hard or elastic, which receive the waves or pulses of the air and reflect them back again; these reflected pulses, striking the ear along with the original, strengthen the original sound. Hence it is, that the voice of a speaker is louder, and more distinctly heard, in a room than in the open air. I said that these reflected sounds entered the ear at the same time with the original: this however is not strictly the case, for they must enter the ear after the original, because the sound has a greater space to move over: but they enter the ear so quickly after the original that our sense cannot distinguish the difference. If however the reflecting body should be placed at such a distance, that the reflected sound should enter the ear some considerable or sensible time after the original, an echo or distinct sound would be heard.
It appears from experiment that the ear of an experienced musician can only distinguish such sounds as follow each other at the rate of nine or ten in a second, or any lower rate; and therefore that we may have a distinct perception of the direct and reflected sound, there should at least be an interval of 1/9 of a second; but in this time sound passes over one hundred and twenty seven feet, and consequently, unless the space between the sounding body and the reflecting surface, added to that between the reflecting surface and the ear, be greater than one hundred and twenty seven feet, no echo will be heard, because the reflected sound will enter the ear so soon after the original, that the difference cannot be distinguished; and therefore it will only serve to augment the original sound.
From what has been said, it is evident, in order that a person may hear the echo of his own voice, that he should stand at least sixty three, or sixty four feet from the reflecting obstacle, so that the sound may have time to move over at least one hundred and twenty seven feet before it come to his ear, otherwise he could not distinguish it from the original sound.
But though the first reflected pulses may produce no echo, both on account of their being too few in number, and too rapid in their return to the ear; yet it must be evident that the reflecting surface may be so formed, that the pulses, which come to the ear after two or more reflections, may, after having passed over one hundred and twenty seven feet or more, arrive at the ear in sufficient numbers to produce an echo, though the distance of the reflecting surface from the ear be less than the limit of echoes. This is instanced by the echoes that we hear in several caves or caverns.
The sense of hearing is more apt to be vitiated or diseased than any of the other senses, which indeed is not surprising, when we consider that its organ is complex, consisting of many minute parts, which are apt to be deranged.
It sometimes becomes too acute, and this may arise either from too great an irritability of the whole nervous system, which often occurs in hysteria, also in phrenitis, and some fevers; or from an inflamed state of the ear itself.
The sense of hearing becomes diminished, and often entirely abolished; and this may arise from various causes, such as an original defect in the external ear, or the meatus auditorius, or both; the meatus auditorius is often blocked up with wax or other substances, which being removed, the hearing becomes perfect. Deafness may likewise arise from a rigidity of the membrane of the tympanum, from its being erodedor ruptured, or from an obstruction of the Eustachian tube. It may likewise arise from a paralysis or torpor of the auditory nerve, or from some diseased state of the labyrinth, or from a vitiated state of the brain and nerves. There is a kind of nervous deafness which comes on suddenly, and often leaves the patient as suddenly.
There are various instances, however, in which the membane of the tympanum has been lacerated or destroyed, without a total loss of the sense of hearing, or indeed any great diminution of it. A consideration of these circumstances induced Mr. Astley Cooper to think of perforating it, in cases of deafness arising from a permanent obstruction of the Eustachian tube, and he has often performed this operation with great success. Of this he has given an account in the last part of the Philosophical Transactions. This operation ought however only to be performed in case of the closure of the Eustachian tube. Cases of this kind may be distinguished by the followingcriteria. If a person on blowing the nose violently, feel a swelling in the ear, from the membrane of the tympanum being forced outwards, the tube is open; and though the tube be closed, if the beating of a watch placed between the teeth, or pressed against the side of the head, cannot be heard, the operation cannot relieve, as the sensibility of the auditory nerve must have been destroyed. In a closed Eustachian tube, there is no noise in the head, like that accompanying nervous deafness.
There is one species of deafness, which occurs very frequently, and happens generally to old persons, though sometimes to the delicate and irritable in the earlier periods of life. Anxiety and distress of mind have been known to produce it. Its approach is generally gradual, the patient hears better at one time than at another; a cloudy day, a warm room, agitated spirits, or the operation of fear, will produce a considerable diminution in the powers of the organ. In the open air the hearing is better than in a confined situation; in a noisy, than in a quiet society; in a coach when it is in motion, than when it is still. A pulsation is often felt in the ear; a noise resembling sometimes the roaring of the sea, and at others the ringing of distant bells is heard. This deafness generally begins with a diminished secretion of the wax of the ear, which the patient attributes to cold. It may be cured, particularly at its commencement, by the application of such stimulants as are capable of exciting a discharge from the ceruminous glands; for which purpose thev should be introduced into the meatus auditorius.
In some cases of this kind, where the auditory nerve has been in some degree torpid, or rather perhaps where there has been a kind of paralysis, or want of action, in the muscles which brace the membrane of the tympanum, and keep the chain of bones in their proper state; a person has not been able to hear, except during a considerable noise. Willis mentions the case of a person who could only hear when a drum was beaten near her; and we are told of a woman who could not hear a word except when the sound of a drum was near, in which case she could hear perfectly well. When she married, her husband hired a drummer for his servant. In instances of this kind the noise probably excites the action of the torpid muscles, which then put the apparatus in a proper condition to hear.
In order to understand properly the theory of vision, it will be necessary to premise an anatomical description of the eye: but I shall content myself with as short a one as will suffice to explain the effects it produces on the rays of light, so as to produce the distinct vision of an object.
The shape of the eye is nearly spherical; it is composed of several coats or tunics, one within another; and is filled with transparent humours of different densities.
The proper coats of the eye are reckoned five in number; viz. the sclerotica, cornea, choroides, iris or uvea, and the retina.
After the tunica conjunctiva, or adnata, (a membrane, which, having lined the eyelids in the manner of a cuticle, surrounds the anterior part of the globe) is removed, we perceive a white, firm, membrane, called the sclerotica, which takes its rise from that part of the globe where the optic nerve enters, and surrounds the whole eye, except a little in the fore part; which fore part has a membrane, immediately to be described, called the cornea. The tunica sclerotica, viewed through the conjunctiva, forms what is called the white of the eye. Some anatomists have supposed that this coat is a continuation of the dura mater, which surrounds the optic nerve; but later observations have shown this opinion to be ill founded. The tunica sclerotica consists of two layers, which are with difficulty separated.
The next coat is the cornea, so called from its resemblance to transparent horn; it arises where the sclerotic coat ends, and forms the fore part of the eye. The cornea is a segment of a lesser sphere than the rest of the eye, and consequently makes it more prominent on the fore part: it is transparent, and firmly connected by its edges to the sclerotica.
Immediately adherent to the sclerotica, within, is the choroides, which takes its rise from that part of the eye where the optic nerve enters, and accompanies the sclerotica to the place where it is joined to the cornea; here it is very closely connected to the sclerotica, where it forms that annulus, called ligamentum ciliare; then leaving the sclerotic coat, it is turned inwards, and surrounds the crystalline lens; but as this circle, where it embraces the crystalline, is much narrower than where the membrane leaves the sclerotic coat, it becomes beautifully corrugated, which folds or corrugations have been, by the more ancient anatomists, improperly called ciliary processes.
To the same part of the choroid coat, where the ciliary ligament begins, is fixed a moveable and curious membrane, called the iris; this membrane has a perforation in the middle, called the pupil, for the admission of the rays of light. The iris is composed of two kinds of fibres: those of the one sort tend, like the radii of a circle, towards its centre, and the others form a number of concentric circles round the same centre. The pupil is of no constant magnitude, for when a very luminous object is viewed, the circular fibres of the iris contract, and diminish its orifice; and, on the contrary, when objects are dark and obscure, those fibres relax, and suffer the pupil to enlarge, in order to admit a greater quantity of light into the eye: it is thought that the radial fibres also assist in enlarging the pupil. The iris is variously coloured in different persons, but according to no certain rule; though in general, they who have light hair, and a fair complexion, have the iris blue or grey; and, on the contrary, they whose hair and complexion are dark, have the iris of a deep brown; but whether this difference in colour occasions any difference in the sense, is not yet discovered. In the human eye the whole choroid coat, and even the interior surface of the iris or uvea, is lined with a black mucus; this mucus, or as it is called, pigmentum, is darkest in young persons, and becomes more light coloured as we advance in years. In many animals, but more particularly those which catch their prey in the night, this pigmentum is of a bright colour: its use will appear afterwards.
The last, and innermost coat of the eye, is the retina, it differs much from the above mentioned coats, being very delicate and tender. It is nothing but an expansion of the medullary part of the optic nerve, which is inserted into each eye, nearer the nose, and a little higher, than the axis. This coat has been thought by many to end where the choroides, going inwards, towards the axis of the eye, forms the ciliary ligament; Dr. Monro thinks that it is not continued so far, and we cannot see with what advantage it could have been continued to the ciliary ligament, since none of the rays of light, passing through the pupil, could fall upon that part of it. In the middle of the optic nerve is found the branch of an artery, from the internal carotid, which is diffused and ramified in a beautiful manner along the retina. From this artery, a small branch goes through the middle of the vitreous humour, and giving off branches on every side, expands itself upon the capsule of the crystalline lens.
We shall now consider the humours of the eye, which are three in number, the aqueous, the crystalline, and the vitreous; all transparent, and in general colourless; but of different densities.
The aqueous humour, so called from its resemblance to water, fills up all the space between the cornea and the crystalline humour. It is partly before and partly behind the uvea, and is divided by that membrane into two parts, which are called the chambers of the aqueous humour; which chambers communicate with each other by means of the pupil.
The next humour is the crystalline; it is situated between the aqueous and vitreous humours, and is connected to the choroid coat by the ciliary ligament: it is not the least of all the humours, as has been generally supposed, the aqueous and it being of equal weights; but its substance is more firm and solid than that of the other humours: its figure is that of a double convex lens; but the fore part next the pupil is not so convex as its other side, which is contiguous to the vitreous humour; the diameter of the sphere, of which its anterior segment is a part, being in general about seven or eight lines, whereas the diameter of the sphere, of which its posterior segment forms a portion, is commonly only about five or six lines. It is covered with a fine transparent capsule, which is called arachnoides. This humour is situated exactly behind the pupil, but not in the centre of the eye, as was supposed by Vesalius, being a good deal nearer its forepart. The convexity of its posterior surface is received into an equal concavity of the vitreous humour. It is not of an equal density throughout, but is much more hard and dense towards its centre than externally, the reason of which will appear hereafter. Till we arrive at about our thirtieth year, this humour continues perfectly transparent, and colourless; about that time it generally has a little tinge of yellow, and this colour increases with age.
The third humour of the eye, is the vitreous; it is the largest of all the humours, filling up the whole of that part of the eye which lies behind the crystalline humour. It is thicker than the aqueous, but thinner than the crystalline humour; on its back part is spread the retina, and in the middle of its fore part is a small cavity, in which the whole posterior surface of the crystalline lens lies; this humour is also enclosed in a very fine capsule, called tunica vitrea; this capsule at the edge of the crystalline humour is divided into two membranes, of which the one is continued over the whole anterior surface of the vitreous humour, and lines that cavity into which the back part of the crystalline is received; the other passes over the crystalline humour, and covers all its fore part, by which means these two humours are closely connected together. The weights of the aqueous, crystalline, and vitreous humours in a human eye, are, according to the accurate Petit, at a medium, to each other, as 1, 1, and 25.
It was thought necessary to premise this general description of the structure of the eye, in order that what we are going to add in the remaining part of this Lecture may be the more easily comprehended. A more distinct idea will perhaps be had from a contemplation of the following figure, which represents the section of an eye by a vertical plane passing through its centre.
NOO represents the optic nerve.The outmost line ALLB represents the sclerotic coat, and thepart ACB the transparent cornea.The line ALLB, immediately within the former, represents thechoroides; the part APB is the iris or uvea, in which the hole at Pis the pupil.The line FOOG is the retina.The cavity ACBEMDA is the aqueous humour.DE is the crystalline lens or humour.The space DFOOGE, lying behind the crystalline, represents thevitreous humour.BE and AD is the ligamentum ciliare.
Nature and Properties of Light.
After this short description of the human eye, I shall next proceed to take notice of some of the properties of light; but shall confine myself to such as are absolutely necessary for explaining the phenomena of vision, as far as that can be done from optical principles.
1. It is, I believe, generally at present agreed, that light consists of exceedingly small particles of matter, projected with great velocity in all directions from the luminous or radiant body. This hypothesis, to which no solid objection has yet been made, appears to be more simple than any other; and is so consistent with all the phenomena yet observed, that we have great reason to think it true: however, as it is not absolutely and directly demonstrated, it may have been wrong in optical writers to have given this hypothesis (for it can only be called a hypothesis) as a definition of light.
2. The space through which light passes is, by opticians, called a medium, and it is observed, that, when light passes through a medium, either absolutely void, or containing matter of an uniform density, and of the same kind, it always proceeds in straight lines.
3. Those rays of light which come directly from a luminous body to the eye, only give us a perception of light; but when they fall upon other bodies, and are from them reflected to the eye, they give us an idea or perception of those bodies.
4. When a ray of light passes out of one medium into another of different density, it is bent out of its course, and is said to be refracted. We must, however, except those rays which fall in a direction perpendicular to the surface of the refracting medium; as the refractive force acts in the same direction in which those rays move, they will not be turned out of their course, but proceed in the same direction they had before they entered the refracting medium. When a ray passes out of a rarer into a denser medium, it will be refracted, or bent towards a line which is perpendicular to the surface which separates the media at the point where it falls; but when it passes out of a denser into a rarer medium, it will be bent from the perpendicular.
5. Whenever the rays, which come from all the points of any object, meet again in so many points, after they have been made to converge by refraction, there they will form the picture of the object, distinct, and of the same colours, but inverted. This is beautifully demonstrated by a common optical instrument, the camera obscura. If a double convex lens, be placed in the hole of a window shutter in a dark room, and a sheet of white paper be placed at a certain distance behind the lens; a beautiful, but inverted picture of the external objects will be formed: but if the paper be held nearer, or more remote than this distance, so that the rays from each point shall not meet at the paper, but betwixt it and the lens, or beyond the paper, the picture will be indistinct and confused.
Of the Manner in which Vision is performed.
From the just mentioned properties of light, and the description we have given of the eye, it will not be difficult to explain the theory of vision, so far as it depends upon optical principles. For the eye may, with great propriety, be compared to a camera obscura; the rays which flow from external objects, and enter the eye, painting an inverted picture of those objects on the retina: if you carefully dissect from the bottom of an eye, newly taken out of the head of an animal, a small portion of the tunica sclerotica and choroides, and place this eye in a hole made in the window shutter of a dark chamber, so that the bottom of the eye may be towards you; the pictures or images of external objects will be painted on the retina in lively colours, but inverted.
In order to see how the several parts of the eye contribute to produce this effect, let us follow the rays proceeding from a luminous point, and see what will happen to them from the beforementioned properties of light.
Since the rays of light flow from every visible point of a body in every direction, some of them, issuing from this point, will fall upon the cornea, and, entering a medium of greater density, will be refracted towards the perpendicular, and as they fall upon a convex spherical surface, nearly in a parallel state, the pupil being so extremely small, it is evident, from the principles of optics, that they will be made to converge: those which fall very obliquely will either be reflected, or falling upon the uvea, or pigmentum nigrum, which covers the ciliary ligaments, will be suffocated, and prevented from entering the internal parts of the eye: those which fall more directly, as was before said, become converging, in which state they fall upon the anterior surface of the crystalline humour, which, having a greater refracting power than the aqueous humour, and its surface being convex, will cause them to converge still more, in which state they will fall upon the posterior surface of the crystalline, or anterior surface of the vitreous humour; which having a less refractive power than the crystalline, they will be refracted from the perpendicular; but, as they fall upon a concave surface, it is evident, from the principles of optics, that they will be made to converge still more: in which state they will go on to the retina, and if the eye is well formed, the refraction of these several humours will be just sufficient to bring them to a point or focus on the retina.
The same thing will happen to rays flowing from every other visible point of the object: the rays which flow from every point will be collected into a corresponding point on the retina, and, consequently, will paint the image of that object inverted; the rays coming from the superior part of any object, being collected on the inferior part of the retina, and vice versa, as is manifest from the principles of optics.
If the rays are accurately, or very nearly, collected into a focus on the retina, distinct vision will be produced; but if they be made to converge to a point before or beyond the retina, the object will be seen indistinctly; this is proved by holding a convex or concave glass before the eye of a good sighted person: in the former case, the rays will be made to converge to a point before they arrive at the retina, and in the latter, to a point beyond it. In these cases, it is plain that the rays which flow from a point in the object, will not form a point, but a circular spot, upon the retina, and these various circles intermixing with other, will render the image very indistinct. This is well illustrated by the camera obscura, where if you hold the paper nearer or more remote than the focal distance of the lens, the picture will be indistinct.
So far then, in the theory of vision, are we led by the principles of optics, and we can with certainty, by their assistance, affirm, that if the eye is sound, and the image of an object distinctly painted upon the retina, it will be seen distinctly, erect, and of its proper colours: so far we can proceed on safe and sure grounds, but if we venture further, we shall find ourselves bewildered in the regions of hypothesis and fancy. The machinery by which nature connects the material and immaterial world is hidden from our view; in most cases we must be satisfied with knowing that there are such connexions, and that these connexions invariably follow each other, without our being able to discover the chain that goes between them. It is to such connexions that we give the name of laws of nature; and when we say that one thing produces another by a law of nature, this signifies no more, than that one thing, which is called the cause, is constantly and invariably followed by another, which we call the effect, and that we know not how they are connected. But there seems a natural propensity in the mind of man, to endeavour to account for every phenomenon that falls under his view, which has given rise to a number of absurd and romantic conjectures in almost every branch of science. From this source has risen the vibration of the fibres of the optic nerve, or the undulation of a subtile ether, or animal spirits, by which attempts have been made to explain the theory of vision; but all of them are absurd and hypothetical.
Kepler was the first who had any distinct notion of the formation of the pictures of objects on the bottom of the eye; this discovery he published about the year 1600. Joannes Baptista Porta had indeed got some rude notion of it prior to the time of Kepler, but as he knew nothing of the refraction made by the humours of the eye, his doctrine was lame and defective, for he imagines that the images are painted on the surface of the crystalline humour.
The disputes concerning the theory of vision had very much divided the ancient philosophers; some of them imagining that vision was caused by the reception of rays into the eye; while a great many others thought it more agreeable to nature, that certain emanations, which they called visual rays, should flow from the eye to the object.
We shall now inquire more particularly how each part of the eye is peculiarly fitted to produce distinct vision. Though the eye is composed of different humours, yet one might have been sufficient to collect the rays into a focus, and form the picture of an object upon the retina. By the experiments of the accurate Dr. Robertson, it appears that there is less difference in the density, as well as in the refracting power of the humours, than has been generally thought: by weighing them in a hydrostatic balance, he found that the specific gravities of the aqueous and vitreous humours were very nearly equal, each being nearly equal to that of water: and that the specific gravity of the crystalline did not exceed the specific gravity of the other humours in a greater proportion than that of about 11 to 10. Hence it would seem to follow, that the crystalline is not of such great use in bringing the rays together, and thereby forming the pictures of objects on the retina, as has been commonly thought by optical writers; for though in shape it resembles a double convex lens, and is, on that account, fitted to make the rays converge; yet, be cause it is situated between two humours nearly of the same refractive power with itself, it will alter the direction of the light but a little. From this, the reason is evident why the sight continues after the operation for the cataract, in which the crystalline is depressed, or extracted, and why a glass of small convexity is sufficient to supply the little refraction wanting, occasioned by the loss of this humour. But without doubt, several important purposes are effected by this construction of the eye; which could not have been attained if it had been composed of one humour only. Some of those purposes seem sufficiently evident to us; for instance, by placing the aqueous humor before the crystalline, and partly before the pupil, and making the cornea convex, a greater quantity of light is made to enter the eye than could otherwise have done without enlarging the size of the pupil; the light will also enter in a less diverging state than it could have done if the pupil had been enlarged, and consequently be more accurately collected to a focus on the retina; for a perfect eye can only collect such rays to a focus on that membrane, as pass through the pupil nearly in a state of parallelism.
Another, and perhaps a principal advantage derived from the different humours in the eye, is, probably, to prevent that confusion arising from colour, which is the consequence of the different degrees of refrangibility of the rays of light. From the experiments of Mr. Dollond, it appears, though contrary to the opinion of Newton, and most other optical writers, that different kinds of matter differ extremely with respect to the divergency of colour produced by equal refractions; so that a lens may be contrived, composed of media of different dispersing powers, which will form the image of any object free of colour; this discovery Mr. Dollond has applied to the improvement of telescopes, with great success. It is by no means improbable, that nature has, for the same purpose, placed the crystalline lens betwen two media of different densities, and, probably, different dispersing powers, so that an achromatic image, free from the prismatic colours, will be formed on the retina. Indeed we find a conjecture of this kind, so long since as Dr. David Gregory's time, he says, in speaking of the imperfection of telescopes, "Quod si ob difficultates physicas, in speculis idoneis torno elaborandis, et poliendis, etiamnum lentibus uti oporteat, fortassis media diversae densitatis ad lentem objectivam componendam adhibere utile foret, ut a natura factum observamus in oculo, ubi crystallinus humor (fere ejusdem cum vitro virtutis ad radios lucis refringendos) aqueo et vitreo (aquae quoad refractionem hand absimilibus) conjungitur, ad imaginem quam distincte fieri poterit, a natura nihil frustra moliente, in oculi fundo depingendam."
In describing the eye, I observed, that the crystalline humour was not every where of the same consistence, being much more hard and dense towards its centre, than externally: in the human eye, it is soft on the edges, and gradually increases in density as it approaches the centre: the reason of this construction is evident, at least we know of one use which it will serve; for, from the principles of optics, it is plain that the rays which fall at a distance from the axis of the crystalline, by reason of their greater obliquity, if the humour were of the same density in all its parts, would be more refracted than those which fall near its axis, so that they would meet at different distances behind the crystalline humour; those which pass towards its extremity, nearer, and those near its axis, at a greater distance, and could not be united at the same point on the retina, which would render vision indistinct; though the indistinctness arising from this cause, is only about the 1/5449 part of that which arises from the different refrangibility of the rays of light, as Sir Isaac Newton has demonstrated. Nature has, however, contrived a remedy for this also, by making the crystalline humour more dense and solid near its centre, that the rays of light which fall near its axis, may have their refraction increased, so as to meet at the same point with those which fall at a distance from its axis.
Of the manner in which the Eye conforms itself in order to see distinctly at different Distances.
It has been much disputed in what manner the eye conforms itself to see distinctly at different distances; for it is evident, that, without some change, the rays which flow from objects at different distances, could not be collected into a focus at the same point, and, consequently, though the eye might see distinctly at one distance, it could not at another.
This subject has given rise to a variety of opinions, but few of them are satisfactory; and though several of them might explain the phenomena of vision, at different distances, yet it is by no means proved that those supposed changes do take place in the eye. I shall content myself with just mentioning the principal opinions on this subject, without engaging in a controversy, which has for a long time employed the ingenuity of philosophers to little purpose.
Some are of opinion, that the whole globe of the eye changes its figure; becoming more oblong when objects are near, and more flat when they are removed to a greater distance; and this change in the figure of the eye is differently explained by different authors; some maintain that it is rendered oblong by the joint contraction of the two oblique muscles: others think that the four straight muscles acting together, compress the sides of the globe, and by this compression, reduce it to an oblong figure, when objects are near; and that, by its natural elasticity, it recovers its former figure when these muscles cease to act. Others again think that when these four straight muscles act together, they render the eye flat by pulling it inwards, and pressing the bottom of it against the fat; and that it is reduced to its former figure, either by the joint contraction of the two oblique muscles, or by the inherent elasticity of its parts, which exerts itself when the muscles cease to act.
That, if such a change should take place in the eye, it would produce distinct vision, will be readily granted; but that such a one does not take place, at least in any of these ways, is, in my opinion, very certain. Dr. Porterfield thinks that the crystalline lens has a motion by means of the ligamentum ciliare, by which the distance between it and the retina is increased or diminished, according to the different distances of objects. The ligamentum ciliare, he says, is an organ, the structure and disposition of which excellently qualify it for changing the situation of the crystalline, and removing it to a greater distance from the retina, when objects are too near for us; for that, when it contracts, it will not only draw the crystalline forwards, but will also compress the vitreous humour, lying behind it, so that it must press upon the crystalline, and push it from the retina. Although this hypothesis will, in a great measure, account for distinct vision at different distances, yet it could only be of use where the rays enter the eye with a certain degree of divergency, while, however we are sure, that in looking at very distant objects which are at different distances from us, the eye undergoes a change. But a sufficient objection to Dr. Porterfield's hypothesis is, that it is by no means proved that the crystalline lens can be moved in the manner he supposes, or that the ligamentum ciliare is possessed of muscular fibres; on the contrary some eminent anatomists deny that they are.
We shall now take a view of the opinion of M. de la Hire, who considered this subject, as well as almost every other relating to vision, with the closest attention; he maintains, that, in order to view objects distinctly at different distances, there is no alteration but in the size of the pupil, which is well known to contract and dilate itself according to the quantity of light flowing from the object we look at, being most contracted in the strongest light, and most dilated when the light is weakest; and consequently will contract when an object is held near the eye, and dilate as it is removed, because in the first case the quantity of light entering the eye is much greater than in the last. That this contraction of the pupil will have the effect of rendering vision distinct, especially when objects are within the furthest limits of distinct vision, will plainly appear, if we consider the cause of indistinct vision. Dr. Jurin has shown, that objects may be seen with sufficient distinctness, though the pencils of rays issuing from the points of them do not unite precisely in another point on the retina, but instead thereof, if they form a circle which does not exceed a certain magnitude, distinct vision will be produced; the circle formed by these rays on the retina he calls the circle of dissipation. The pupil will, by contracting, not only diminish the circles of dissipation, and thereby help to produce distinct vision, but will also prevent so great a quantity of light from falling near the circumferences of those circles; and Dr. Jurin has shown, that, if the light on the outer side of the circles of dissipation is diminished, the remainder will scarce affect the sense. In both these ways, the contraction of the pupil has a tendency to diminish the circles of dissipation, and, consequently, to produce distinct vision. This is likewise confirmed by experiment, for when an object is placed so near, that the pupil cannot be so much contracted as is necessary for distinct vision, the same end may be obtained by means of an artificial pupil: for, if a small hole is made in a card, a very near object may be viewed through it with the greatest ease and distinctness. Also, if a person have his back turned towards a window, and hold a book so near his eyes as not to be able to read, if he turn his face to the light, he will find, that he will be able to read it very distinctly; which is owing to the contraction of the pupil by means of the light.
M. Le Roi, a member of the Royal Academy of Montpelier, has attempted to defend the opinion of M. de la Hire, and, indeed, it seems, of all others, the best supported by facts; but perhaps it may not account so well for vision at great distances. It is likewise rendered more probable by viewing the pictures of external objects, formed in a dark chamber, by rays coming through a hole in the window shutter; those pictures will be rendered distinct, by dilating, or contracting the aperture, without the assistance of a lens, accordingly as the object is more or less distant; those who have had the crystalline lens depressed, or extracted, by means of one glass can see objects pretty distinctly at different distances. These, and several other arguments that might be brought, tend to prove that the eye accommodates itself to view objects distinctly at different distances, chiefly by means of the motion of the pupil; and though this does not explain the phenomenon so satisfactorily as we could wish, yet it is certain, that it has a share in it; we are however certain, that, in whatever manner it may be produced, the eye has a power of accommodating itself to view objects distinctly enough at several different distances.
Concerning the Seat of Vision.
No subject has been more canvassed than that concerning what is improperly called the seat of vision. In early times, the crystalline lens was thought to be best qualified for this office; but this substance, though situated in the middle of the eye, which Baptista Porta thought to be the proper centre of observation, had universally given place to the better founded pretensions of the retina: and, from the time of Kepler, few ventured to dispute its claim to that office, till M. Mariotte was led, from some curious circumstances, to think that vision was not performed by the retina, but by the choroid coat. Having often observed in the dissections of men, as well as of brutes, that the optic nerve is not inserted exactly opposite to the pupil, that is, in the place where the picture of the objects upon which we look directly, is made: and that in man it is somewhat higher, and on the side towards the nose, he had the curiosity to examine the reason of this structure, by throwing the image of an object on this part of the eye. In order to do this, he fastened on a dark wall, about the height of his eyes, a small round paper, to serve for a fixed point of sight; and he fastened such another paper on the right hand, at the distance of about two feet, but rather lower than the former, so that light issuing from it, might strike the optic nerve of his right eye, while the left was kept shut. He then placed himself over against the former paper, and drew back by degrees, keeping his right eye fixed, and very steady upon it, and when he had retired about ten feet, he found that the second paper entirely disappeared. This, he says, could not be imputed to the oblique position of the second paper, with respect to his eye, because he could see more remote objects on the same side. This experiment he repeated by varying the distances of the paper and his eye. He also made it with his left eye, while the right eye was kept shut, the second paper being fastened on the left side of the point of sight; so that by the situation of the parts of the eye, it could not be doubted that this defect of vision is in the place where the optic nerve enters, where only the choroides isdeficient.
From this he concludes, that the defect of vision is owing to the want of the choroid coat, and, consequently, that this coat is the proper organ of vision. A variety of other arguments in favour of the choroides occurred to him, particularly he observed that the retina is transparent, which he thought could only enable it to transmit the rays further, and he could not persuade himself that any substance could be considered as being the termination of the pencils, and the proper seat of vision, at which the rays are not stopped in their progress.
Mr. Pequet, in answer to Mariotte's observation, says, that the retina is very imperfectly transparent, resembling oiled paper, or horn: and, besides, that its whiteness demonstrates that it is sufficiently opaque for stopping the rays of light as much as is necessary for vision: whereas, if vision be performed by means of those rays which are transmitted through such a substance as the retina, it must be very indistinct.
Notwithstanding the plausibility of this opinion of M. Mariotte, and the number of celebrated men who joined him in it, I must confess, that none of their arguments, though very ingenious, have been able to make me a convert to that opinion.
If we argue from the analogy of the other senses, in all of which the nerves form the proper seat of sensation, we shall be induced to give judgment in favour of the retina. And this argument from analogy is much strengthened, by considering that the retina is a large nervous apparatus, immediately exposed to the impressions of light; whereas the choroides receives but a slender supply of nerves, and seems no more fitted for the organ of vision than any other part of the body. But facts are not wanting which make still more in favour of the retina. It appears from observations made upon the sea calf and porcupine, that these animals have their optic nerves inserted in the axis of the eye, directly opposite the pupil, which renders it very improbable that the defect in sight, where the optic nerves enter, can be owing to the want of the choroides in that place; for were this true, then in those creatures which have the optic nerves inserted in the axis of the eye, and which by consequence do directly receive on the extremity of the nerve the pictures of objects, all objects would become invisible to which their eyes are turned, because the choroides is wanting in that place where the image falls; but this is contrary to experience.
M. Le Cat, though he strenuously supports Mariotte's opinion, takes notice of a circumstance, which, if he had properly considered it, might have led him to a contrary conclusion: from a beautiful experiment he obtains data, which enable him with considerable accuracy to determine the size of the insensible spot in his eye, which he finds to be about 1/30 or 1/40 of an inch in diameter, and consequently only about 1/5 or 1/6 of the diameter of the optic nerve, that nerve being about 1/6 of an inch in diameter. I find that in my eye likewise, the diameter of the insensible spot is about 1/40 of an inch, or something less. Whence it is evident that vision exists where the choroid coat is not present, and consequently that the choroid coat is not the organ of vision.
It is probably owing to the hardness and callosity of the retina where the nerve enters, that we have this defect of sight, as it has not yet acquired that softness and delicacy which is necessary for receiving such slight impressions as those of the rays of light, and this conjecture is rendered still more probable by an observation of M. Pequet, who tells us, that a bright and luminous object, such as a candle, does not absolutely disappear, but one may see its light, though faint. This not only shows that the defect of sight is not owing to a want of the choroides, but also that the retina is not altogether insensible where the nerve enters. These circumstances, in my opinion, render it certain, that the retina, and not the choroid coat, is the organ of vision.
Of our seeing Objects erect by inverted Images.
Another question concerning vision, which has very much perplexed philosophers, is this; how comes it that we see objects erect, when it is well known that their images or pictures on the retina are inverted? The sagacious Kepler, who first made this discovery, was the first that endeavoured to explain the cause of it.
The reason he gives for our seeing objects erect, is this, that as the rays from different points of an object cross each other before they fall on the retina, we conclude that the impulse we feel upon the lower part of the retina comes from above; and that the impulse we feel from the higher part, comes from below. Des Cartes afterwards gave the same solution of this phenomenon, and illustrated it by the judgment we form of the position of objects which we feel with our arms crossed, or with two sticks that cross each other. But this solution is by no means satisfactory: first, because it supposes our seeing objects erect to be a deduction from reason, drawn from certain premises, whereas it seems to be an immediate perception; and secondly, because all the premises from which this conclusion is supposed to be drawn, are absolutely unknown to far the greater part of mankind, and yet they all see objects erect.
Bishop Berkeley, who justly rejects this solution, gives another, founded on his own principles, in which he is followed by Dr. Smith. This ingenious writer thinks that the ideas of sight are altogether unlike those of touch; and since the notions we have of an object by these different senses, have no similitude, we can learn only by experience how one sense will be affected, by what, in a certain manner, affects the other. Thus, finding from experience, that an object in an erect position, affects the eye in one manner, and that the same object in an inverted position, affects it in another, we learn to judge, by the manner in which the eye is affected, whether the object is erect or inverted. But it is evident that Bishop Berkeley proceeds upon a capital mistake, in supposing that there is no resemblance between the extension, figure, and position, which we see, and that which we perceive by touch. It may be further observed, that Bishop Berkeley's system, with regard to material things, must have made him see this question, in a very different light from that in which it appears to those who do not adopt his system.
In order to give a satisfactory answer to this question, we must first examine some of the laws of nature, which take place in vision; for by these the phenomena of vision must be regulated.
It is now, I believe, pretty well established, as a law of nature, that we see every point of an object in the direction of a right line, which passes from the picture of that point on the retina, through the centre of the eye. This beautiful law is proved by a very copious induction of facts; the facts upon which it is founded are taken from some curious experiments of Scheiner, in his Fundamenta Optices. They are confirmed by Dr. Porterfield, and well illustrated by Dr. Reid. The seeing objects erect by inverted images is a necessary consequence of this law of nature: for from thence it is evident that the point of the object whose picture is lowest on the retina, must be seen in the highest direction from the eye; and that the picture which is on the right side of the retina, must be seen on the left.
Of seeing Objects single with two Eyes.
That we should have two pictures of an object, and yet see it single, has long been looked upon as a curious circumstance by philosophers: and of consequence, many attempts have been made to account for it, few of which, however, are satisfactory.
As it would take up too much time to give a view of all the opinions on this subject, I shall pass over the opinions of Galen, Gassendus, Baptista Porta, Rohault, and others, which do not deserve a serious refutation; and shall content myself with making a few observations on the hypothesis of Bishop Berkeley.
But it seems the most proper way of proceeding, first of all to consider the phenomena of single and double vision, in order, if possible, to discover some general principle to which they lead, and of which they are necessary consequences; and, for the sake of perspicuity, we shall premise the following definition.
When a small object is seen single with both eyes, those points on the two retinas on which the pictures of the object fall, may be called corresponding points: and when the object is seen double, we shall call such points, non-corresponding points.
Now we find that in sound and perfect eyes, when the axes of both are directed to one point, an object placed in that point is seen single; and in this case, the two pictures which show the object single, are painted on the centres of the retinas. Hence, the centres of the two retinas correspond.
Other objects at the same distance from the eyes, as that to which their axes are directed, do also appear single: and in this case, it is evident to those who understand the principles of optics, that the pictures of an object to which the eyes are not directed, but which is at the same distance as that to which they are directed, fall both on the same side of the centre, that is, both to the right, or both to the left, and both at the same distance from the centre. Hence it is plain, that points in the retina, which are similarly situated with respect to the centres, are corresponding points.
An object which is much nearer, or much more distant from the eyes, than that to which their axes are directed, appears double. In this case, it will easily appear, that the pictures of the object which is seen double, do not fall upon points which are similarly situated. From these facts, we are led to the following conclusion, viz. that the points of the two retinas, which are similarly situated with respect to the centres, correspond with each other, and that the points which are dissimilarly situated, do not correspond. The truth of this general conclusion is founded upon a a very full induction, which is all the evidence we can have for a fact of this nature.
The next thing that seems to merit our attention, is, to inquire, whether this correspondence between certain points of the two retinas which is necessary to single vision, is the effect of custom, or an original property of the human eyes.
We have a strong argument in favour of its being an original property, from the habit we get of directing our eyes accurately to an object; we get this habit by finding it necessary for perfect and distinct vision; because thereby, the two images of the object falling upon corresponding points, the eyes assist each other in vision, and the object is seen better by both eyes together, than by one: but when the eyes are not accurately directed, the two images of the object fall upon points which do not correspond, whereby the sight of the one eye disturbs that of the other. Hence it is not unreasonable to conclude, that this correspondence between certain points of the retina is prior to the habits we acquire in vision: and, consequently, natural and original.
We have all acquired the habit of directing our eyes in one particular manner, which causes single vision; now if the Author of Nature had ordained that we should see objects single, only when our eyes are thus directed, there is an obvious reason why all mankind should agree in the habit of directing them in this manner; but, if single vision were the effect of custom, any other habit of directing the eyes would have answered the purpose; we therefore, on this supposition, can give no reason why this particular habit should be so universal.
Bishop Berkeley maintains a contrary opinion, and thinks that our seeing objects single with both eyes, as well as our seeing them erect, by inverted images, depends upon custom. In this he is followed by Dr. Smith, who observes, that the question, why we see objects single with both eyes, is of the same nature with this, why we hear sounds single with both ears; and that the same answer will serve for both; whence he concludes, that as the second of these phenomena is the effect of custom, so also is the first. But I think, that the questions are not so much of the same sort, as that the same answer will serve for both; and, moreover, that our hearing single with both ears is not the effect of custom. No person will doubt that things which are produced by custom, may be undone by disuse, or by a contrary custom. On the other hand, it is a strong argument, that an effect is not owing to custom, but to the constitution of nature, when a contrary custom, long continued, is found neither to change nor weaken it. Now it appears, that from the time we are able to observe the phenomena of single and double vision, custom makes no change in them, every thing which at first appeared double, appearing so still in the same circumstances. Dr. Smith has adduced some facts in favour of his opinion, which, though curious, seem by no means decisive. But in the famous case of the young man couched by Mr. Cheselden, after having had cataracts in both his eyes till his thirteenth year, it appears that he saw objects single from the time he began to see with both eyes. And the three young gentlemen mentioned by Dr. Reid, who had squinted, as far as he could learn, from infancy, as soon as they learned to direct both eyes to an object, saw it single.
In these cases it is evident that the centres of the retina corresponded originally, for Mr. Cheselden's young man had never seen at all before he was couched, and the other three had never been accustomed to direct the axes of both eyes to the same point. These facts render it probable, that this correspondence is not the effect of custom, but of fixed and immutable laws of nature.
With regard to the cause of this correspondence, many theories have been proposed, but as none of them can be looked on in any other light than as probable conjectures, I think it would be to little purpose to notice them. That of the illustrious Newton is the most ingenious of any, and though it has more the appearance of truth than any other, that great man has proposed it under the modest form of a query.