The Project Gutenberg eBook ofPopular scientific lectures

The Project Gutenberg eBook ofPopular scientific lecturesThis ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online atwww.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.Title: Popular scientific lecturesAuthor: Ernst MachTranslator: Thomas J. McCormackRelease date: April 22, 2012 [eBook #39508]Most recently updated: January 25, 2021Language: EnglishCredits: Produced by Anna Hall, Albert László and the OnlineDistributed Proofreading Team at http://www.pgdp.net (Thisfile was produced from images generously made availableby The Internet Archive)*** START OF THE PROJECT GUTENBERG EBOOK POPULAR SCIENTIFIC LECTURES ***

This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online atwww.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.

Title: Popular scientific lecturesAuthor: Ernst MachTranslator: Thomas J. McCormackRelease date: April 22, 2012 [eBook #39508]Most recently updated: January 25, 2021Language: EnglishCredits: Produced by Anna Hall, Albert László and the OnlineDistributed Proofreading Team at http://www.pgdp.net (Thisfile was produced from images generously made availableby The Internet Archive)

Title: Popular scientific lectures

Author: Ernst MachTranslator: Thomas J. McCormack

Author: Ernst Mach

Translator: Thomas J. McCormack

Release date: April 22, 2012 [eBook #39508]Most recently updated: January 25, 2021

Language: English

Credits: Produced by Anna Hall, Albert László and the OnlineDistributed Proofreading Team at http://www.pgdp.net (Thisfile was produced from images generously made availableby The Internet Archive)

*** START OF THE PROJECT GUTENBERG EBOOK POPULAR SCIENTIFIC LECTURES ***

The Science of Mechanics.Translated from the Second German Edition by T. J. McCormack. 250 Cuts and Illustrations. 534 Pages. Half Morocco, Gilt Top. Price, $2.50.Contributions to the Analysis of the Sensations.Translated by C. M. Williams. With Notes and New Additions by the Author. 200 Pages. 36 Cuts. Price, $1.00.Popular Scientific Lectures.Translated by T. J. McCormack. Third Revised and Enlarged Edition. 411 Pages. 59 Cuts. Cloth, $1.50; Paper, 50 cents.

The Science of Mechanics.Translated from the Second German Edition by T. J. McCormack. 250 Cuts and Illustrations. 534 Pages. Half Morocco, Gilt Top. Price, $2.50.

Contributions to the Analysis of the Sensations.Translated by C. M. Williams. With Notes and New Additions by the Author. 200 Pages. 36 Cuts. Price, $1.00.

Popular Scientific Lectures.Translated by T. J. McCormack. Third Revised and Enlarged Edition. 411 Pages. 59 Cuts. Cloth, $1.50; Paper, 50 cents.

THE OPEN COURT PUBLISHING CO.,324 DEARBORN ST., CHICAGO.

POPULARSCIENTIFIC LECTURES

BYERNST MACH

FORMERLY PROFESSOR OF PHYSICS IN THE UNIVERSITY OF PRAGUE, NOW PROFESSOR OF THE HISTORY AND THEORY OF INDUCTIVE SCIENCE IN THE UNIVERSITY OF VIENNA

TRANSLATEDBYTHOMAS J. McCORMACK

THIRD EDITION, REVISED AND ENLARGED

WITH FIFTY-NINE CUTS AND DIAGRAMS

CHICAGOTHE OPEN COURT PUBLISHING COMPANY

FOR SALE BYKegan Paul, Trench, Truebner & Co., LONDON1898

COPYRIGHT

By The Open Court Publishing Co.

Pages 1-258in 1894.Pages 338-374in 1894.Pages 259-281in 1896.Pages 282-308in 1897.Pages 309-337in 1898.

Popular lectures, owing to the knowledge they presuppose, and the time they occupy, can afford only amodicumof instruction. They must select for this purpose easy subjects, and restrict themselves to the exposition of the simplest and the most essential points. Nevertheless, by an appropriate choice of the matter, thecharmand thepoetryof research can be conveyed by them. It is only necessary to set forth the attractive and the alluring features of a problem, and to show what broad domains of fact can be illuminated by the light radiating from the solution of a single and ofttimes unobtrusive point.

Furthermore, such lectures can exercise a favorable influence by showing the substantial sameness of scientific and every-day thought. The public, in this way, loses its shyness towards scientific questions, and acquires an interest in scientific work which is a great help to the inquirer. The latter, in his turn, is brought to understand that his work is a small part only of the universal process of life, and that the results of his labors must redound to the benefit not only of himself and a few of his associates, but to that of the collective whole.

I sincerely hope that these lectures, in the present excellent translation, will be productive of good in the direction indicated.

E. Mach.

Prague, December, 1894.

The present third edition of this work has been enlarged by the addition of a new lecture, "On Some Phenomena Attending the Flight of Projectiles." The additions to the second consisted of the following four lectures and articles: Professor Mach's Vienna Inaugural Lecture, "The Part Played by Accident in Invention and Discovery," the lecture on "Sensations of Orientation," recently delivered and summing up the results of an important psychological investigation, and two historical articles (see Appendix) on Acoustics and Sight.

The lectures extend over a long period, from 1864 to 1898, and differ greatly in style, contents, and purpose. They were first published in collected form in English; afterwards two German editions were called for.

As the dates of the first five lectures are not given in the footnotes they are here appended. The first lecture, "On the Forms of Liquids," was delivered in 1868 and published with that "On Symmetry" in 1872 (Prague). The second and third lectures, on acoustics, were first published in 1865 (Graz); the fourth and fifth, on optics, in 1867 (Graz). They belong to the earliest period of Professor Mach's scientific activity, and with the lectures on electrostatics and education will more than realise the hope expressed in the author's Preface.

The eighth, ninth, tenth, eleventh, and twelfth lectures are ofa more philosophical character and deal principally with the methods and nature of scientific inquiry. In the ideas summarised in them will be found one of the most important contributions to the theory of knowledge made in the last quarter of a century. Significant hints in psychological method, and exemplary specimen-researches in psychology and physics, are also presented; while in physics many ideas find their first discussion that afterwards, under other names and other authorship, became rallying-cries in this department of inquiry.

All the proofs of this translation have been read by Professor Mach himself.

T. J. McCormack.

La Salle, Ill., May, 1898.

What thinkest thou, dear Euthyphron, that the holy is, and the just, and the good? Is the holy holy because the gods love it, or are the gods holy because they love the holy? By such easy questions did the wise Socrates make the market-place of Athens unsafe and relieve presumptuous young statesmen of the burden of imaginary knowledge, by showing them how confused, unclear, and self-contradictory their ideas were.

You know the fate of the importunate questioner. So called good society avoided him on the promenade. Only the ignorant accompanied him. And finally he drank the cup of hemlock—a lot which we ofttimes wish would fall to modern critics of his stamp.

What we have learned from Socrates, however,—our inheritance from him,—is scientific criticism. Every one who busies himself with science recognises how unsettled and indefinite the notions are which he has brought with him from common life, and how, on a minute examination of things, old differences areeffaced and new ones introduced. The history of science is full of examples of this constant change, development, and clarification of ideas.

But we will not linger by this general consideration of the fluctuating character of ideas, which becomes a source of real uncomfortableness, when we reflect that it applies to almost every notion of life. Rather shall we observe by the study of a physical example how much a thing changes when it is closely examined, and how it assumes, when thus considered, increasing definiteness of form.

The majority of you think, perhaps, you know quite well the distinction between a liquid and a solid. And precisely persons who have never busied themselves with physics will consider this question one of the easiest that can be put. But the physicist knows that it is one of the most difficult. I shall mention here only the experiments of Tresca, which show that solids subjected to high pressures behave exactly as liquids do; for example, may be made to flow out in the form of jets from orifices in the bottoms of vessels. The supposed difference of kind between liquids and solids is thus shown to be a mere difference of degree.

The common inference that because the earth is oblate in form, it was originally fluid, is an error, in the light of these facts. True, a rotating sphere, a few inches in diameter will assume an oblate form only if it is very soft, for example, is composed of freshly kneaded clay or some viscous stuff. But the earth,even if it consisted of the rigidest stone, could not help being crushed by its tremendous weight, and must perforce behave as a fluid. Even our mountains could not extend beyond a certain height without crumbling. The earthmayonce have been fluid, but this by no means follows from its oblateness.

The particles of a liquid are displaced on the application of the slightest pressure; a liquid conforms exactly to the shapes of the vessels in which it is contained; it possesses no form of its own, as you have all learned in the schools. Accommodating itself in the most trifling respects to the conditions of the vessel in which it is placed, and showing, even on its surface, where one would suppose it had the freest play, nothing but a polished, smiling, expressionless countenance, it is the courtierpar excellenceof the natural bodies.

Liquids have no form of their own! No, not for the superficial observer. But persons who have observed that a raindrop is round and never angular, will not be disposed to accept this dogma so unconditionally.

It is fair to suppose that every man, even the weakest, would possess a character, if it were not too difficult in this world to keep it. So, too, we must suppose that liquids would possess forms of their own, if the pressure of the circumstances permitted it,—if they were not crushed by their own weights.

An astronomer once calculated that human beings could not exist on the sun, apart from its great heat, because they would be crushed to pieces there by theirown weight. The greater mass of this body would also make the weight of the human body there much greater. But on the moon, because here we should be much lighter, we could jump as high as the church-steeples without any difficulty, with the same muscular power which we now possess. Statues and "plaster" casts of syrup are undoubtedly things of fancy, even on the moon, but maple-syrup would flow so slowly there that we could easily build a maple-syrup man on the moon, for the fun of the thing, just as our children here build snow-men.

Accordingly, if liquids have no form of their own with us on earth, they have, perhaps, a form of their own on the moon, or on some smaller and lighter heavenly body. The problem, then, simply is to get rid of the effects of gravity; and, this done, we shall be able to find out what the peculiar forms of liquids are.

The problem was solved by Plateau of Ghent, whose method was to immerse the liquid in another of the same specific gravity.[1]He employed for his experiments oil and a mixture of alcohol and water. By Archimedes's well-known principle, the oil in this mixture loses its entire weight. It no longer sinks beneath its weight; its formative forces, be they ever so weak, are now in full play.

As a fact, we now see, to our surprise, that the oil, instead of spreading out into a layer, or lying in aformless mass, assumes the shape of a beautiful and perfect sphere, freely suspended in the mixture, as the moon is in space. We can construct in this way a sphere of oil several inches in diameter.

If, now, we affix a thin plate to a wire and insert the plate in the oil sphere, we can, by twisting the wire between our fingers, set the whole ball in rotation. Doing this, the ball assumes an oblate shape, and we can, if we are skilful enough, separate by such rotation a ring from the ball, like that which surrounds Saturn. This ring is finally rent asunder, and, breaking up into a number of smaller balls, exhibits to us a kind of model of the origin of the planetary system according to the hypothesis of Kant and Laplace.

Fig. 1.

Still more curious are the phenomena exhibited when the formative forces of the liquid are partly disturbed by putting in contact with the liquid's surface some rigid body. If we immerse, for example, the wire framework of a cube in our mass of oil, the oil will everywhere stick to the wire framework. If the quantity of oil is exactly sufficient we shall obtain an oil cube with perfectly smooth walls. If there is too much or too little oil, the walls of the cube will bulge out or cave in. In this manner wecan produce all kinds of geometrical figures of oil, for example, a three-sided pyramid, a cylinder (by bringing the oil between two wire rings), and so on. Interesting is the change of form that occurs when we gradually suck out the oil by means of a glass tube from the cube or pyramid. The wire holds the oil fast. The figure grows smaller and smaller, until it is at last quite thin. Ultimately it consists simply of a number of thin, smooth plates of oil, which extend from the edges of the cube to the centre, where they meet in a small drop. The same is true of the pyramid.

Fig. 2.

The idea now suggests itself that liquid figures as thin as this, and possessing, therefore, so slight a weight, cannot be crushed or deformed by their weight; just as a small, soft ball of clay is not affected in this respect by its weight. This being the case, we no longer need our mixture of alcohol and water for the production of figures, but can construct them in theopen air. And Plateau, in fact, found that these thin figures, or at least very similar ones, could be produced in the air, by dipping the wire nets described in a solution of soap and water and quickly drawing them out again. The experiment is not difficult. The figure is formed of itself. The preceding drawing represents to the eye the forms obtained with cubical and pyramidal nets. In the cube, thin, smooth films of soap-suds proceed from the edges to a small, quadratic film in the centre. In the pyramid, a film proceeds from each edge to the centre.

These figures are so beautiful that they hardly admit of appropriate description. Their great regularity and geometrical exactness evokes surprise from all who see them for the first time. Unfortunately, they are of only short duration. They burst, on the drying of the solution in the air, but only after exhibiting to us the most brilliant play of colors, such as is often seen in soap-bubbles. Partly their beauty of form and partly our desire to examine them more minutely induces us to conceive of methods of endowing them with permanent form. This is very simply done.[2]Instead of dipping the wire nets in solutions of soap, we dip them in pure melted colophonium (resin). When drawn out the figure at once forms and solidifies by contact with the air.

It is to be remarked that also solid fluid-figures canbe constructed in the open air, if their weight be light enough, or the wire nets of very small dimensions. If we make, for example, of very fine wire a cubical net whose sides measure about one-eighth of an inch in length, we need simply to dip this net in water to obtain a small solid cube of water. With a piece of blotting paper the superfluous water may be easily removed and the sides of the cube made smooth.

Yet another simple method may be devised for observing these figures. A drop of water on a greased glass plate will not run if it is small enough, but will be flattened by its weight, which presses it against its support. The smaller the drop the less the flattening. The smaller the drop the nearer it approaches the form of a sphere. On the other hand, a drop suspended from a stick is elongated by its weight. The undermost parts of a drop of water on a support are pressed against the support, and the upper parts are pressed against the lower parts because the latter cannot yield. But when a drop falls freely downward all its parts move equally fast; no part is impeded by another; no part presses against another. A freely falling drop, accordingly, is not affected by its weight; it acts as if it were weightless; it assumes a spherical form.

A moment's glance at the soap-film figures produced by our various wire models, reveals to us a great multiplicity of form. But great as this multiplicity is,the common features of the figures also are easily discernible.

"All forms of Nature are allied, though none is the same as the other;Thus, their common chorus points to a hidden law."

"All forms of Nature are allied, though none is the same as the other;Thus, their common chorus points to a hidden law."

This hidden law Plateau discovered. It may be expressed, somewhat prosily, as follows:

1) If several plane liquid films meet in a figure they are always three in number, and, taken in pairs, form, each with another, nearly equal angles.

2) If several liquid edges meet in a figure they are always four in number, and, taken in pairs, form, each with another, nearly equal angles.

This is a strange law, and its reason is not evident. But we might apply this criticism to almost all laws. It is not always that the motives of a law-maker are discernible in the form of the law he constructs. But our law admits of analysis into very simple elements or reasons. If we closely examine the paragraphs which state it, we shall find that their meaning is simply this, that the surface of the liquid assumes the shape of smallest area that is possible under the circumstances.

If, therefore, some extraordinarily intelligent tailor, possessing a knowledge of all the artifices of the higher mathematics, should set himself the task of so covering the wire frame of a cube with cloth that every piece of cloth should be connected with the wire and joined with the remaining cloth, and should seek to accomplish this feat with the greatest saving of material, hewould construct no other figure than that which is here formed on the wire frame in our solution of soap and water. Nature acts in the construction of liquid figures on the principle of a covetous tailor, and gives no thought in her work to the fashions. But, strange to say, in this work, the most beautiful fashions are of themselves produced.

The two paragraphs which state our law apply primarily only to soap-film figures, and are not applicable, of course, to solid oil-figures. But the principle that the superficial area of the liquid shall be the least possible under the circumstances, is applicable to all fluid figures. He who understands not only the letter but also the reason of the law will not be at a loss when confronted with cases to which the letter does not accurately apply. And this is the case with the principle of least superficial area. It is a sure guide for us even in cases in which the above-stated paragraphs are not applicable.

Our first task will now be, to show by a palpable illustration the mode of formation of liquid figures by the principle of least superficial area. The oil on the wire pyramid in our mixture of alcohol and water, being unable to leave the wire edges, clings to them, and the given mass of oil strives so to shape itself that its surface shall have the least possible area. Suppose we attempt to imitate this phenomenon. We take a wire pyramid, draw over it a stout film of rubber, and in place of the wire handle insert a small tube leadinginto the interior of the space enclosed by the rubber (Fig. 3). Through this tube we can blow in or suck out air. The quantity of air in the enclosure represents the quantity of oil. The stretched rubber film, which, clinging to the wire edges, does its utmost to contract, represents the surface of the oil endeavoring to decrease its area. By blowing in, and drawing out the air, now, we actually obtain all the oil pyramidal figures, from those bulged out to those hollowed in. Finally, when all the air is pumped or sucked out, the soap-film figure is exhibited. The rubber films strike together, assume the form of planes, and meet at four sharp edges in the centre of the pyramid.

Fig. 3.

Fig. 4.

The tendency of soap-films to assume smaller forms may be directly demonstrated by a method of Van der Mensbrugghe. If we dip a square wire frame to whicha handle is attached into a solution of soap and water, we shall obtain on the frame a beautiful, plane film of soap-suds. (Fig. 4.) On this we lay a thread having its two ends tied together. If, now, we puncture the part enclosed by the thread, we shall obtain a soap-film having a circular hole in it, whose circumference is the thread. The remainder of the film decreasing in area as much as it can, the hole assumes the largest area that it can. But the figure of largest area, with a given periphery, is the circle.

Fig. 5.

Similarly, by the principle of least superficial area, a freely suspended mass of oil assumes the shape of a sphere. The sphere is the form of least surface for a given content. This is evident. The more we put into a travelling-bag, the nearer its shape approaches the spherical form.

The connexion of the two above-mentioned paragraphs with the principle of least superficial area may be shown by a yet simpler example. Picture to yourselves four fixed pulleys,a,b,c,d, and two movableringsf,g(Fig. 5); about the pulleys and through the rings imagine a smooth cord passed, fastened at one extremity to a naile, and loaded at the other with a weighth. Now this weight always tends to sink, or, what is the same thing, always tends to make the portion of the stringe has long as possible, and consequently the remainder of the string, wound round the pulleys, as short as possible. The strings must remain connected with the pulleys, and on account of the rings also with each other. The conditions of the case, accordingly, are similar to those of the liquid figures discussed. The result also is a similar one. When, as in the right hand figure of the cut, four pairs of strings meet, a different configuration must be established. The consequence of the endeavor of the string to shorten itself is that the rings separate from each other, and that now at all points only three pairs of strings meet, every two at equal angles of one hundred and twenty degrees. As a fact, by this arrangement the greatest possible shortening of the string is attained; as can be easily proved by geometry.

This will help us to some extent to understand the creation of beautiful and complicated figures by the simple tendency of liquids to assume surfaces of least superficial area. But the question arises,Whydo liquids seek surfaces of least superficial area?

The particles of a liquid cling together. Drops brought into contact coalesce. We can say, liquid particles attract each other. If so, they seek to comeas close as they can to each other. The particles at the surface will endeavor to penetrate as far as they can into the interior. This process will not stop, cannot stop, until the surface has become as small as under the circumstances it possibly can become, until as few particles as possible remain at the surface, until as many particles as possible have penetrated into the interior, until the forces of attraction have no more work to perform.[3]

The root of the principle of least surface is to be sought, accordingly, in another and much simpler principle, which may be illustrated by some such analogy as this. We canconceiveof the natural forces of attraction and repulsion as purposes or intentions of nature. As a matter of fact, that interior pressure which we feel before an act and which we call an intention or purpose, is not, in a final analysis, so essentially different from the pressure of a stone on its support, or the pressure of a magnet on another, that it is necessarily unallowable to use for both the same term—at least for well-defined purposes.[4]It is the purpose of nature, accordingly, to bring the iron nearer the magnet, the stone nearer the centre of the earth, and so forth. If such a purpose can be realised, it is carried out. But where she cannot realise her purposes, nature does nothing. In this respect she acts exactly as a good man of business does.

It is a constant purpose of nature to bring weights lower. We can raise a weight by causing another, larger weight to sink; that is, by satisfying another, more powerful, purpose of nature. If we fancy we are making nature serve our purposes in this, it will be found, upon closer examination, that the contrary is true, and that nature has employed us to attain her purposes.

Equilibrium, rest, exists only, but then always, when nature is brought to a halt in her purposes, when the forces of nature are as fully satisfied as, under the circumstances, they can be. Thus, for example, heavy bodies are in equilibrium, when their so-called centre of gravity lies as low as it possibly can, or when as much weight as the circumstances admit of has sunk as low as it can.

The idea forcibly suggests itself that perhaps this principle also holds good in other realms. Equilibrium exists also in the state when the purposes of the parties are as fully satisfied as for the time being they can be, or, as we may say, jestingly, in the language of physics, when the social potential is a maximum.[5]

You see, our miserly mercantile principle is replete with consequences.[6]The result of sober research, it has become as fruitful for physics as the dry questions of Socrates for science generally. If the principle seems to lack in ideality, the more ideal are the fruits which it bears.

But why, tell me, should science be ashamed of such a principle? Is science[7]itself anything more than—a business? Is not its task to acquire with the least possible work, in the least possible time, with the least possible thought, the greatest possible part of eternal truth?

Whoever has roamed through a beautiful country knows that the tourist's delights increase with his progress. How pretty that wooded dell must look from yonder hill! Whither does that clear brook flow, that hides itself in yonder sedge? If I only knew how the landscape looked behind that mountain! Thus even the child thinks in his first rambles. It is also true of the natural philosopher.

The first questions are forced upon the attention of the inquirer by practical considerations; the subsequent ones are not. An irresistible attraction draws him to these; a nobler interest which far transcends the mere needs of life. Let us look at a special case.

For a long time the structure of the organ of hearing has actively engaged the attention of anatomists. A considerable number of brilliant discoveries has been brought to light by their labors, and a splendid array of facts and truths established. But with these facts a host of new enigmas has been presented.

Whilst in the theory of the organisation and functionsof the eye comparative clearness has been attained; whilst, hand in hand with this, ophthalmology has reached a degree of perfection which the preceding century could hardly have dreamed of, and by the help of the ophthalmoscope the observing physician penetrates into the profoundest recesses of the eye, the theory of the ear is still much shrouded in mysterious darkness, full of attraction for the investigator.

Look at this model of the ear. Even at that familiar part by whose extent we measure the quantity of people's intelligence, even at the external ear, the problems begin. You see here a succession of helixes or spiral windings, at times very pretty, whose significance we cannot accurately state, yet for which there must certainly be some reason.

Fig. 6.

The shell or concha of the ear,ain the annexed diagram, conducts the sound into the curved auditory passageb, which is terminated by a thin membrane, the so-called tympanic membrane,e. This membrane is set in motion by the sound, and in its turn sets in motion a series of little bones of very peculiar formation,c. At the end of all is the labyrinthd. The labyrinth consists of a group of cavities filled with a liquid, in which the innumerable fibres of the nerve of hearing are imbedded. By the vibration of the chain of bonesc, the liquid of the labyrinth is shaken, and the auditory nerve excited. Here the process of hearingbegins. So much is certain. But the details of the process are one and all unanswered questions.

To these old puzzles, the Marchese Corti, as late as 1851, added a new enigma. And, strange to say, it is this last enigma, which, perhaps, has first received its correct solution. This will be the subject of our remarks to-day.

Corti found in the cochlea, or snail-shell of the labyrinth, a large number of microscopic fibres placed side by side in geometrically graduated order. According to Kölliker their number is three thousand. They were also the subject of investigation at the hands of Max Schultze and Deiters.

A description of the details of this organ would only weary you, besides not rendering the matter much clearer. I prefer, therefore, to state briefly what in the opinion of prominent investigators like Helmholtz and Fechner is the peculiar function of Corti's fibres. The cochlea, it seems, contains a large number of elastic fibres of graduated lengths (Fig. 7), to which the branches of the auditory nerve are attached. These fibres, called the fibres, pillars, or rods of Corti, being of unequal length, must also be of unequal elasticity, and, consequently, pitched to different notes. The cochlea, therefore, is a species of pianoforte.

Fig. 7.

What, now, may be the office of this structure, which is found in no other organ of sense? May itnot be connected with some special property of the ear? It is quite probable; for the ear possesses a very similar power. You know that it is possible to follow the individual voices of a symphony. Indeed, the feat is possible even in a fugue of Bach, where it is certainly no inconsiderable achievement. The ear can pick out the single constituent tonal parts, not only of a harmony, but of the wildest clash of music imaginable. The musical ear analyses every agglomeration of tones.

The eye does not possess this ability. Who, for example, could tell from the mere sight of white, without a previous experimental knowledge of the fact, that white is composed of a mixture of other colors? Could it be, now, that these two facts, the property of the ear just mentioned, and the structure discovered by Corti, are really connected? It is very probable. The enigma is solved if we assume that every note of definite pitch has its special string in this pianoforte of Corti, and, therefore, its special branch of the auditory nerve attached to that string. But before I can make this point perfectly plain to you, I must ask you to follow me a few steps into the dry domain of physics.

Look at this pendulum. Forced from its position of equilibrium by an impulse, it begins to swing with a definite time of oscillation, dependent upon its length. Longer pendulums swing more slowly, shorter ones more quickly. We will suppose our pendulum to execute one to-and-fro movement in a second.

This pendulum, now, can be thrown into violent vibration in two ways; either by asingleheavy impulse, or by anumberof properly communicated slight impulses. For example, we impart to the pendulum, while at rest in its position of equilibrium, a very slight impulse. It will execute a very small vibration. As it passes a third time its position of equilibrium, a second having elapsed, we impart to it again a slight shock, in the same direction with the first. Again after the lapse of a second, on its fifth passage through the position of equilibrium, we strike it again in the same manner; and so continue. You see, by this process the shocks imparted augment continually the motion of the pendulum. After each slight impulse, the pendulum reaches out a little further in its swing, and finally acquires a considerable motion.[8]

But this is not the case under all circumstances. It is possible only when the impulses imparted synchronise with the swings of the pendulum. If we should communicate the second impulse at the end of half a second and in the same direction with the first impulse, its effects would counteract the motion of the pendulum. It is easily seen that our little impulses help the motion of the pendulum more and more, according as their time accords with the time of the pendulum. If we strike the pendulum in any other time than in that of its vibration, in some instances, it is true, we shall augment its vibration, but in othersagain, we shall obstruct it. Our impulses will be less effective the more the motion of our own hand departs from the motion of the pendulum.

What is true of the pendulum holds true of every vibrating body. A tuning-fork when it sounds, also vibrates. It vibrates more rapidly when its sound is higher; more slowly when it is deeper. The standardAof our musical scale is produced by about four hundred and fifty vibrations in a second.

I place by the side of each other on this table two tuning-forks, exactly alike, resting on resonant cases. I strike the first one a sharp blow, so that it emits a loud note, and immediately grasp it again with my hand to quench its note. Nevertheless, you still hear the note distinctly sounded, and by feeling it you may convince yourselves that the other fork which was not struck now vibrates.

I now attach a small bit of wax to one of the forks. It is thrown thus out of tune; its note is made a little deeper. I now repeat the same experiment with the two forks, now of unequal pitch, by striking one of them and again grasping it with my hand; but in the present case the note ceases the very instant I touch the fork.

What has happened here in these two experiments? Simply this. The vibrating fork imparts to the air and to the table four hundred and fifty shocks a second, which are carried over to the other fork. If the other fork is pitched to the same note, that is to say, if itvibrates when struck in the same time with the first, then the shocks first emitted, no matter how slight they may be, are sufficient to throw the second fork into rapid sympathetic vibration. But when the time of vibration of the two forks is slightly different, this does not take place. We may strike as many forks as we will, the fork tuned toAis perfectly indifferent to their notes; is deaf, in fact, to all except its own; and if you strike three, or four, or five, or any number whatsoever, of forks all at the same time, so as to make the shocks which come from them ever so great, theAfork will not join in with their vibrations unless another forkAis found in the collection struck. It picks out, in other words, from all the notes sounded, that which accords with it.

The same is true of all bodies which can yield notes. Tumblers resound when a piano is played, on the striking of certain notes, and so do window panes. Nor is the phenomenon without analogy in other provinces. Take a dog that answers to the name "Nero." He lies under your table. You speak of Domitian, Vespasian, and Marcus Aurelius Antoninus, you call upon all the names of the Roman Emperors that occur to you, but the dog does not stir, although a slight tremor of his ear tells you of a faint response of his consciousness. But the moment you call "Nero" he jumps joyfully towards you. The tuning-fork is like your dog. It answers to the nameA.

You smile, ladies. You shake your heads. Thesimile does not catch your fancy. But I have another, which is very near to you: and for punishment you shall hear it. You, too, are like tuning-forks. Many are the hearts that throb with ardor for you, of which you take no notice, but are cold. Yet what does it profit you! Soon the heart will come that beats in just the proper rhythm, and then your knell, too, has struck. Then your heart, too, will beat in unison, whether you will or no.

The law of sympathetic vibration, here propounded for sounding bodies, suffers some modification for bodies incompetent to yield notes. Bodies of this kind vibrate to almost every note. A high silk hat, we know, will not sound; but if you will hold your hat in your hand when attending your next concert you will not only hear the pieces played, but also feel them with your fingers. It is exactly so with men. People who are themselves able to give tone to their surroundings, bother little about the prattle of others. But the person without character tarries everywhere: in the temperance hall, and at the bar of the public-house—everywhere where a committee is formed. The high silk hat is among bells what the weakling is among men of conviction.

A sonorous body, therefore, always sounds when its special note, either alone or in company with others, is struck. We may now go a step further. What will be the behaviour of a group of sonorous bodies which in the pitch of their notes form a scale? Let us pictureto ourselves, for example (Fig. 8), a series of rods or strings pitched to the notesc d e f g.... On a musical instrument the accordc e gis struck. Every one of the rods of Fig. 8 will see if its special note is contained in the accord, and if it finds it, it will respond. The rodcwill give at once the notec, the rodethe notee, the rodgthe noteg. All the other rods will remain at rest, will not sound.


Back to IndexNext