Fig. 3.
Fig. 3.
In the first place you must draw a couple of lines MN and M′N′, eight inches long, and just far enough apart to fit the edge of your three-cornered shadow-piece. You will remember I told you to make that one-half inch thick, so your two lines will also be one-half inch apart. Now draw the two lines NO and N′O′ squarewith MN and M′N′, and make the distances NO and N′O′ just five inches each. The lines OK, O′K′, and the other lines forming the outer border of the dial, are then drawn just as shown, OK and O′K′ being just eight inches long, the same as MN and M′N′. The lower lines in the figure, which are not very important, are to complete the squares. You must mark the lines NO and N′O′ with the figures VI, these being the lines reached by the shadow at six o'clock in the morning and evening. The points where the VII, VIII, and other hour-lines cut the lines OK, O′K′, MK, and M′K′ can be found from the table onpage 78.
In using the table you will notice that the line IX falls sometimes on one side of the corner K, and sometimes on the other. Thus for Albany the line passes seven and seven-sixteenth inches from O, while for Charleston it passes four and three-eighth inches from M. For Baltimore it passes exactly through the corner K.
Table Showing How to Mark the Hour-lines.
Place.Distance from O to the line markedDistance from M to the line markedVII.VIII.IX.IX.X.XI.Inches.Inches.Inches.Inches.Inches.Inches.Albany1 15-164 3-167 7-163 1-161 7-16Baltimore2 1-84 11-1682 7-81 7-16Boston24 5-167 7-163 1-161 7-16Buffalo1 15-164 3-167 7-163 1-161 7-16Charleston2 7-165 3-84 3-82 1-21 1-8Chicago24 5-167 7-163 1-161 7-16Cincinnati2 1-84 11-1682 7-81 7-16Cleveland24 5-167 7-16—3 1-161 7-16Denver2 1-84 1-27 11-162 7-81 7-16Detroit24 5-167 7-163 1-161 7-16Indianapolis2 1-84 11-1682 7-81 7-16Kansas City2 1-44 11-1682 7-81 5-16Louisville2 1-44 11-1682 7-81 5-16Milwaukee1 15-164 3-167 7-163 1-161 7-16New Orleans2 11-165 3-44 1-162 5-161 1-8New York24 5-167 11-163 1-161 7-16Omaha24 5-167 11-163 1-161 7-16Philadelphia2 1-84 1-27 11-162 7-81 7-16Pittsburg24 5-167 11-163 1-161 7-16Portland, Me1 15-164 3-167 1-83 3-161 1-2Richmond2 1-44 11-1682 7-81 5-16Rochester1 15-164 3-167 7-163 1-161 7-16San Diego2 7-165 3-84 3-82 1-21 1-8San Francisco2 1-44 11-1682 7-81 5-16Savannah2 9-165 9-164 1-42 1-21 1-8St. Louis2 1-44 11-1682 7-81 5-16St. Paul1 15-164 1-167 1-83 3-161 1-2Seattle1 13-163 15-166 5-83 3-81 1-2Washington, D. C.2 1-84 11-1682 7-81 7-16
The distance for the line marked V from O′ is just the same as the distance from O to VII. Similarly, IV corresponds to VIII, III to IX, II to X, and I to XI. The number XII is marked at MM′ as shown. If you desire to add lines (not shown in Fig. 3 to avoid confusion) for hours earlier than six in the morning, it is merely necessary to mark off a distance on the line KO, below the point O, and equal to the distance from O to VII. This will give the point where the5A.M.shadow line drawn from N cuts the line KO. A corresponding line for 7P.M.can be drawn from N′ on the other side of the figure.
After you have marked out the dial very carefully, you must fasten the three-cornered shadow-piece to it in such a way that the whole instrument will look likeFig. 1. The edgeac(Fig. 2) goes on NM (Fig. 3). The pointa(Fig. 2) must come exactly on N (Fig. 3); and as the lines NM (Fig. 3) and N′M′ (Fig. 3) have been made just the right distance apart to fit the thickness of the three-cornered pieceabc(Fig. 2), everything will go together just right. The pointc(Fig. 2) will not quite reach to M (Fig. 3), but will be on the line NM (Fig. 3) at a distance of three inches from M. The two pieces of wood will be fastened together with three screws going through the bottom-board ABCD (Figs. 1 and 3) and into the edgeac(Fig. 2) of the three-cornered piece. The whole instrument will then look something likeFig. 1.
After you have got your sun-dial put together, you need only set it in the sun in a level place, on a piazza or window-sill, and turn it rounduntil it tells the right time by the shadow. You can get your local time from a watch near enough for setting up the dial. Once the dial is set right you can screw it down or mark its position, and it will continue to give correct solar time every day in the year.
If you wish to adjust the dial very closely, you must go out some fine day and note the error of the dial by a watch at about ten in the morning, and at noon, and again at about two in the afternoon. If the error is the same each time, the dial is rightly set. If not, you must try, by turning the dial slightly, to get it so placed that your three errors will be nearly the same. When you have got them as nearly alike as you can, the dial will be sufficiently near right. The solar or dial time may, however, differ somewhat from ordinary watch time, but the difference will never be great enough to matter, when we remember that sun-dials are only rough timekeepers after all, and useful principally for amusement.
FOOTNOTE:[A]This chapter is especially intended for boys and girls and others who like to make things with carpenters' tools.
[A]This chapter is especially intended for boys and girls and others who like to make things with carpenters' tools.
[A]This chapter is especially intended for boys and girls and others who like to make things with carpenters' tools.
New highways of science have been monumented now and again by the masterful efforts of genius, working single-handed; but more often it is slow-moving time that ripens discovery, and, at the proper moment, opens some new path to men whose intellectual power is but willingness to learn. So the annals of astronomical photography do not recount the achievements of extraordinary genius. It would have been strange, indeed, if the discovery of photography had not been followed by its application to astronomy.
The whole range of chemical science contains no experiment of greater inherent interest than the development of a photographic plate. Let but the smallest ray of light fall upon its strangely sensitive surface, and some subtle invisible change takes place. It is then merely necessary to plunge the plate into a properly prepared chemical bath, and the gradual process ofdeveloping the picture begins. Slowly, very slowly, the colorless surface darkens wherever light has touched it. Let us imagine that the exposure has been made with an ordinary lens and camera, and that it is a landscape seeming to grow beneath the experimenter's eyes. At first only the most conspicuous objects make their appearance. But gradually the process extends, until finally every tiny detail is reproduced with marvellous fidelity to the original. The photographic plate, when developed in this way, is called a "negative." For in Nature luminous points, or sources of light, are bright, while the developing negative turns dark wherever light has acted. Thus the negative, while true to Nature, reproduces everything in a reversed way; bright things are dark, and shadows appear light. For ordinary purposes, therefore, the negative has to be replaced by a new photograph made by copying it again photographically. In this way it is again reversed, giving us a picture corresponding correctly to the facts as seen. Such a copy from a negative is what is ordinarily called a photograph; technically, it is known as a "positive."
One of the remarkable things about the sensitive plate is its complete indifference to the distance from which the light comes. It is ready to yield obediently to the ray of some distant star that may have journeyed, as it were, from the very vanishing point of space, or to the bright glow of an electric light upon the photographer's table. This quality makes its use especially advantageous in astronomy, since we can gain knowledge of remote stars only by a study of the light they send us. In such study the photographic plate possesses a supreme advantage over the human eye. If the conditions of weather and atmosphere are favorable, an observer looking through an ordinary telescope will see nearly as much at the first glance as he will ever see. Attentive and continued study will enable him to fix details upon his memory, and to record them by means of drawings and diagrams. Occasional moments of especially undisturbed atmospheric conditions will allow him to glimpse faint objects seldom visible. But on the whole, telescopic astronomers add little to their harvest by continued husbandry in thesame field of stars. Photography is different. The effect of light upon the sensitive surface of the plate is strictly cumulative. If a given star can bring about a certain result when it has been allowed to act upon the plate for one minute, then in two or three minutes it will accomplish much more. Perhaps a single minute's exposure would have produced a mark scarcely perceptible upon the developed negative. In that case, three or four minutes would give us a perfectly well defined black image of the star.
Star-Field in Constellation Monoceros.Photographed by Barnard, February 1, 1894.Exposure, three hours.
Star-Field in Constellation Monoceros.Photographed by Barnard, February 1, 1894.Exposure, three hours.
Thus, by lengthening the exposure we can make the fainter stars impress themselves upon the plate. If their light is not able to produce the desired effect in minutes, we can let its action accumulate for hours. In this manner it becomes possible and easy to photograph objects so faint that they have never been seen, even with our most powerful telescopes. This achievement ranks high among those which make astronomy appeal so strongly to the imagination. Scientific men are not given to fancies; nor should they be. But the first long-exposure photograph must have been an exciting thing.After coming from the observatory, the chemical development was, of course, made in a dark room, so that no additional light might harm the plate until the process was complete. Carrying it out then into the light, that early experimenter cannot but have felt a thrill of triumph; for his hand held a true picture of dim stars to the eye unlighted, lifted into view as if by magic.
Plates have been thus exposed as long as twenty-five hours, and the manner of doing it is very interesting. Of course, it is impossible to carry on the work continuously for so long a period, since the beginning of daylight would surely ruin the photograph. In fact, the astronomer must stop before even the faintest streak of dawn begins to redden the eastern sky. Moreover, making astronomical negatives requires excessively close attention, and this it is impossible to give continuously during more than a few hours. But the exposure of a single plate can be extended over several nights without difficulty. It is merely necessary to close the plate-holder with a "light-tight" cover when the first night's work is finished. To begin further exposure ofthe same plate on another night, we simply aim the photographic telescope at precisely the same point of the sky as before. The light-tight plate-holder being again opened, the exposure can go on as if there had been no interruption.
Astronomers have invented a most ingenious device for making sure that the telescope's aim can be brought back again to the same point with great exactness. This is a very important matter; for the slightest disturbance of the plate before the second or subsequent portions of the exposure would ruin everything. Instead of a very complete single picture, we should have two partial ones mixed up together in inextricable confusion.
To prevent this, photographic telescopes are made double, not altogether unlike an opera-glass. One of the tubes is arranged for photography proper, while the other is fitted with lenses suitable for an ordinary visual telescope. The two tubes are made parallel. Thus the astronomer, by looking through the visual glass, can watch objects in the heavens even while they are being photographed. The visual half of the instrument is provided with a pair of very fine cross-wires movable at will in the field of view. These can be made to bisect some little star exactly, before beginning the first night's work. Afterward, everything about the instrument having been left unchanged, the astronomer can always assure himself of coming back to precisely the same point of the sky, by so adjusting the instrument that the same little star is again bisected.
It must not be supposed, however, that the entire instrument remains unmoved, even during the whole of a single night's exposure. For in that case, the apparent motion of the stars as they rise or set in the sky would speedily carry them out of the telescope's field of view. Consequently, this motion has to be counteracted by shifting the telescope so as to follow the stars. This can be accomplished accurately and automatically by means of clock-work mechanism. Such contrivances have already been applied in the past to visual telescopes, because even then they facilitated the observer's work. They save him the trouble of turning his instrument every few minutes, and allow him to give his undivided attention to the actual business of observation.
For photographic purposes the telescope needs to "follow" the stars far more accurately than in the older kind of observing with the eye. Nor is it possible to make a clock that will drive the instrument satisfactorily and quite automatically. But by means of the second or visual telescope, astronomers can always ascertain whether the clock is working correctly at any given moment. It requires only a glance at the little star bisected by the cross-wires, and, if there has been the slightest imperfection in the following by clock-work, the star will no longer be cut exactly by the wires.
The astronomer can at once correct any error by putting in operation a very ingenious mechanical device sometimes called a "mouse-control." He need only touch an electric button, and a signal is sent into the clock-work. Instantly there is a shifting of the mechanism. For one of the regular driving wheels is substituted, temporarily, another having anextra tooth. This makes the clock run a little faster so long as the electric current passes. In a similar way, by means of another button, the clock can bemade to run slower temporarily. Thus by watching the cross-wires continuously, and manipulating his two electric buttons, the photographic astronomer can compel his telescope to follow exactly the object under observation, and he can make certain of obtaining a perfect negative.
These long-exposure plates are intended especially for what may be called descriptive astronomy. With them, as we have seen, advantage is taken of cumulative light-effects on the sensitive plate, and the telescope's light-gathering and space-penetrating powers are vastly increased. We are enabled to carry our researches far beyond the confines of the old visible universe. Extremely faint objects can be recorded, even down to their minutest details, with a fidelity unknown to older visual methods. But at present we intend to consider principally applications of photography in the astronomy of measurement, rather than the descriptive branch of our subject. Instead of describing pictures made simply to see what certain objects look like in the sky, we shall consider negatives intended forprecise measurement, with all that the word precision implies in celestial science.
Taking up first the photography of stars, we must begin by mentioning the work of Rutherfurd at New York. More than thirty years ago he had so far perfected methods of stellar photography that he was able to secure excellent pictures of stars as faint as the ninth magnitude. In those days the modern process of dry-plate photography had not been invented. To-day, plates exposed in the photographic telescope are made of glass covered with a perfectly dry film of sensitized gelatine. But in the old wet-plate process the sensitive film was first wetted with a chemical solution; and this solution could not be allowed to dry during the exposure. Consequently, Rutherfurd was limited to exposures a few minutes in length, while nowadays, as we have said, their duration can be prolonged at will.
When we add to this the fact that the old plates were far less sensitive to light than those now available, it is easy to see what were the difficulties in the way of photographing faint stars in Rutherfurd's time. Nor did he possess themodern ingenious device of a combined visual and photographic instrument. He had no electric controlling apparatus. In fact, the younger generation of astronomers can form no adequate idea of the patience and personal skill Rutherfurd must have had at his command. For he certainly did produce negatives that are but little inferior to the best that can be made to-day. His only limitation was that he could not obtain images of stars much below the ninth magnitude.
To understand just what is meant here by the ninth magnitude, it is necessary to go back in imagination to the time of Hipparchus, the father of sidereal astronomy. (Seepage 39.) He adopted the convenient plan of dividing all the stars visible to the naked eye (of course, he had no telescope) into six classes, according to their brilliancy. The faintest visible stars were put in the sixth class, and all the others were assigned somewhat arbitrarily to one or the other of the brighter classes.
Modern astronomers have devised a more scientific system, which has been made to conformvery nearly to that of Hipparchus, just as it has come down to us through the ages. We have adopted a certain arbitrary degree of luminosity as the standard "first-magnitude"; compared with sunlight, this may be represented roughly by a fraction of which the numerator is 1, and the denominator about eighty thousand millions. The standard second-magnitude star is one whose light, compared with a first-magnitude, may be represented approximately by the fraction ⅖. The third magnitude, in turn, may be compared with the second by the same fraction ⅖; and so the classification is extended to magnitudes below those visible to the unaided eye. Each magnitude compares with the one above it, as the light of two candles would compare with the light of five.
Rutherfurd did not stop with mere photographs. He realized very clearly the obvious truth that by making a picture of the sky we simply change the scene of our operations. Upon the photograph we can measure that which we might have studied directly in the heavens; but so long as they remain unmeasured, celestialpictures have a potential value only. Locked within them may lie hidden some secret of our universe. But it will not come forth unsought. Patient effort must precede discovery, in photography, as elsewhere in science. There is no royal road. Rutherfurd devised an elaborate measuring-machine in which his photographs could be examined under the microscope with the most minute exactness. With this machine he measured a large number of his pictures; and it has been shown quite recently that the results obtained from them are comparable in accuracy with those coming from the most highly accredited methods of direct eye-observation.
And photographs are far superior in ease of manipulation. Convenient day-observing under the microscope in a comfortable astronomical laboratory is substituted for all the discomforts of a midnight vigil under the stars. The work of measurement can proceed in all weathers, whereas formerly it was limited strictly to perfectly clear nights. Lastly, the negatives form a permanent record, to which we can always return to correct errors or re-examine doubtful points.
Rutherfurd's stellar work extended down to about 1877, and included especially parallax determinations and the photography of star-clusters. Each of these subjects is receiving close attention from later investigators, and, therefore, merits brief mention here. Stellar parallax is in one sense but another name for stellar distance. Its measurement has been one of the important problems of astronomy for centuries, ever since men recognized that the Copernican theory of our universe requires the determination of stellar distances for its complete demonstration.
If the earth is swinging around the sun once a year in a mighty path or orbit, there must be changes of its position in space comparable in size with the orbit itself. And the stars ought to shift their apparent places on the sky to correspond with these changes in the terrestrial observer's position. The phenomenon is analogous to what occurs when we look out of a room, first through one window, and then through another. Any object on the opposite side of the street will be seen in a changed direction, on account of the observer's having shifted his position from onewindow to the other. If the object seemed to be due north when seen from the first window, it will, perhaps, appear a little east of north from the other. But this change of direction will be comparatively small, if the object under observation is very far away, in comparison with the distance between the two windows.
This is what occurs with the stars. The earth's orbit, vast as it is, shrinks into almost absolute insignificance when compared with the profound distances by which we are sundered from even the nearest fixed stars. Consequently, the shifting of their positions is also very small—so small as to be near the extreme limit separating that which is measurable from that which is beyond human ken.
Photography lends itself most readily to a study of this matter. Suppose a certain star is suspected of "having a parallax." In other words, we have reason to believe it near enough to admit of a successful measurement of distance. Perhaps it is a very bright star; and, other things being equal, it is probably fair to assume that brightness signifies nearness. And astronomers have certain other indications of proximity that guide them in the selection of proper objects for investigation, though such evidence, of course, never takes the place of actual measurement.
The star under examination is sure to have near it on the sky a number of stars so very small that we may safely take them to be immeasurably far away. The parallax star is among them, but not of them. We see it projected upon the background of the heavens, though it may in reality be quite near us, astronomically speaking. If this is really so, and the star, therefore, subject to the slight parallactic shifting already mentioned, we can detect it by noting the suspected star's position among the surrounding small stars. For these, being immeasurably remote, will remain unchanged, within the limits of our powers of observation, and thus serve as points of reference for marking the apparent shifting of the brighter star we are actually considering.
We have merely to photograph the region at various seasons of the year. Careful examination of the photographs under the microscope will then enable us to measure the slightest displacement of the parallax star. From these measures, by a process of calculation, astronomers can then obtain the star's distance. It will not become known in miles; we shall only ascertain how many times the distance between the earth and sun would have to be laid down like a measuring-rod, in order to cover the space separating us from the star: and the subsequent evaluation of this distance "earth to sun" in miles is another important problem in whose solution photography promises to be most useful.
The above method of measuring stellar distance is, of course, subject to whatever slight uncertainty arises from the assumption that the small stars used for comparison are themselves beyond the possibility of parallactic shifting. But astronomy possesses no better method. Moreover, the number of small stars used in this way is, of course, much larger in photography than it ever can be in visual work. In the former process, all surrounding stars can be photographed at once; in the latter each star must be measured separately, and daylight soon intervenes to impose a limit on numbers. Usually only two canbe used; so that here photography has a most important advantage. It minimizes the chance of our parallax being rendered erroneous, by the stars of comparison not being really infinitely remote. This might happen, perhaps, in the case of one or two; but with an average result from a large number we know it to be practically impossible.
Cluster work is not altogether unlike "parallax hunting" in its preliminary stage of securing the photographic observations. The object is to obtain an absolutely faithful picture of a star group, just as it exists in the sky. We have every reason to suppose that a very large number of stars condensed into one small spot upon the heavens means something more than chance aggregation. The Pleiades group (page 10) contains thousands of massive stars, doubtless held together by the force of their mutual gravitational attraction. If this be true, there must be complex orbital motion in the cluster; and, as time goes on, we should actually see the separate components change their relative positions, as it were, before our eyes. The details of suchmotion upon the great scale of cosmic space offer one of the many problems that make astronomy the grandest of human sciences.
We have said that time must pass before we can see these things; there may be centuries of waiting. But one way exists to hurry on the perfection of our knowledge; we must increase the precision of observations. Motions that would need the growth of centuries to become visible to the older astronomical appliances, might yield in a few decades to more delicate observational processes. Here photography is most promising. Having once obtained a surpassingly accurate picture of a star-cluster, we can subject it easily to precise microscopic measurement. The same operations repeated at a later date will enable us to compare the two series of measures, and thus ascertain the motions that may have occurred in the interval. The Rutherfurd photographs furnish a veritable mine of information in researches of this kind; for they antedate all other celestial photographs of precision by at least a quarter-century, and bring just so much nearer the time when definiteknowledge shall replace information based on reasoning from probabilities.
Rutherfurd's methods showed the advantages of photography as applied to individual star-clusters. It required only the attention of some astronomer disposing of large observational facilities, and accustomed to operations upon a great scale, to apply similar methods throughout the whole heavens. In the year 1882 a bright comet was very conspicuous in the southern heavens. It was extensively observed from the southern hemisphere, and especially at the British Royal Observatory at the Cape of Good Hope.
Gill, director of that institution, conceived the idea that this comet might be bright enough to photograph. At that time, comet photography had been attempted but little, if at all, and it was by no means sure that the experiment would be successful. Nor was Gill well acquainted with the work of Rutherfurd; for the best results of that astronomer had lain dormant many years. He was one of those men with whom personal modesty amounts to a fault. Loath to put himself forward in any way, and disliking to rushinto print, Rutherfurd had given but little publicity to his work. This peculiarity has, doubtless, delayed his just reputation; but he will lose nothing in the end from a brief postponement. Gill must, however, be credited with more penetration than would be his due if Rutherfurd had made it possible for others to know that he had anticipated many of the newer ideas.
However this may be, the comet was photographed with the help of a local portrait photographer named Allis. When Gill and Allis fastened a simple portrait camera belonging to the latter upon the tube of one of the Cape telescopes, and pointed it at the great comet, they little thought the experiment would lead to one of the greatest astronomical works ever attempted by men. Yet this was destined to occur. The negative they obtained showed an excellent picture of the comet; but what was more important for the future of sidereal astronomy, it was also quite thickly dotted with little black points corresponding to stars. The extraordinary ease with which the whole heavens could be thus charted photographically wasbrought home to Gill as never before. It was this comet picture that interested him in the application of photography to star-charting; and without his interest the now famous astro-photographic catalogue of the heavens would probably never have been made.
After considerable preliminary correspondence, a congress of astronomers was finally called to meet at Paris in 1887. Representatives of the principal observatories and civilized governments were present. They decided that the end of the nineteenth century should see the making of a great catalogue of all the stars in the sky, upon a scale of completeness and precision surpassing anything previously attempted. It is impossible to exaggerate the importance of such a work; for upon our star-catalogues depends ultimately the entire structure of astronomical science.
The work was far too vast for the powers of any observatory alone. Therefore, the whole sky, from pole to pole, was divided into eighteen belts or zones of approximately equal area; and each of these was assigned to a single observatory to be photographed. A series of telescopeswas specially constructed, so that every part of the work should be done with the same type of instrument. As far as possible, an attempt was made to secure uniformity of methods, and particularly a uniform scale of precision. To cover the entire sky upon the plan proposed no less than 44,108 negatives are required; and most of these have now been finished. The further measurement of the pictures and the drawing up of a vast printed star-catalogue are also well under way. One of the participating observatories, that at Potsdam, Germany, has published the first volume of its part of the catalogue. It is estimated that this observatory alone will require twenty quarto volumes to contain merely the final results of its work on the catalogue. Altogether not less than two million stars will find a place in this, our latest directory of the heavens.
Such wholesale methods of attacking problems of observational astronomy are particularly characteristic of photography. The great catalogue is, perhaps, the best illustration of this tendency; but of scarcely smaller interest, though less important in reality, is the photographic method ofdealing with minor planets. We have already said (page 63) that in the space between the orbits of Mars and Jupiter several hundred small bodies are moving around the sun in ordinary planetary orbits. These bodies are called asteroids, or minor planets. The visual method of discovering unknown members of this group was painfully tedious; but photography has changed matters completely, and has added immensely to our knowledge of the asteroids.
Wolf, of Heidelberg, first made use of the new process for minor-planet discovery. His method is sufficiently ingenious to deserve brief mention again. A photograph of a suitable region of the sky was made with an exposure lasting two or three hours. Throughout all this time the instrument was manipulated so as to follow the motion of the heavens in the way we have already explained, so that each star would appear on the negative as a small, round, black dot.
But if a minor planet happened to be in the region covered by the plate, its photographic image would be very different. For the orbitalmotion of the planet about the sun would make it move a little among the stars even in the two or three hours during which the plate was exposed. This motion would be faithfully reproduced in the picture, so that the planet would appear as a short curved line rather than a well-defined dot like a star. Thus the presence of such a line-image infallibly denotes an asteroid.
Subsequent calculations are necessary to ascertain whether the object is a planet already known or a genuine new discovery. Wolf, and others using his method in recent years, have made immense additions to our catalogue of asteroids. Indeed, the matter was beginning to lose interest on account of the frequency and sameness of these discoveries, when the astronomical world was startled by the finding of the Planet of 1898. (Page 58.)
On August 27, 1898, Witt, of Berlin, discovered the small body that bears the number "433" in the list of minor planets, and has received the name Eros. Its important peculiarity consists in the exceptional position of the orbit. While all the other asteroids are fartherfrom the sun than Mars, and less distant than Jupiter, Eros can pass within the orbit of the former. At times, therefore, it will approach our earth more closely than any other permanent member of the solar system, excepting our own moon. So it is, in a sense, our nearest neighbor; and this fact alone makes it the most interesting of all the minor planets. The nineteenth century was opened by Piazzi's well-known discovery of the first of these bodies (page 59); it is, therefore, fitting that we should find the most important one at its close. We are almost certain that it will be possible to make use of Eros to solve with unprecedented accuracy the most important problem in all astronomy. This is the determination of our earth's distance from the sun. When considering stellar parallax, we have seen how our observations enable us to measure some of the stars' distances in terms of the distance "earth to sun" as a unit. It is, indeed, the fundamental unit for all astronomical measures, and its exact evaluation has always been considered the basal problem of astronomy. Astronomers know it as the problem of Solar Parallax.
We shall not here enter into the somewhat intricate details of this subject, however interesting they may be. The problem offers difficulties somewhat analogous to those confronting a surveyor who has to determine the distance of some inaccessible terrestrial point. To do this, it is necessary first to measure a "base-line," as we call it. Then the measurement of angles with a theodolite will make it possible to deduce the required distance of the inaccessible point by a process of calculation. To insure accuracy, however, as every surveyor knows, the base-line must be made long enough; and this is precisely what is impossible in the case of the solar parallax.
For we are necessarily limited to marking out our base-line on the earth; and the entire planet is too small to furnish one of really sufficient size. The best we can do is to use the distance between two observatories situated, as near as may be, on opposite sides of the earth. But even this base is wofully small. However, the smallness loses some of its harmful effect if we operate upon a planet that is comparatively nearus. We can measure such a planet's distance more accurately than any other; and this being known, the solar distance can be computed by the aid of mathematical considerations based upon Newton's law of gravitation and observational determinations of the planetary orbital elements.
Photography is by no means limited to investigations in the older departments of astronomical observation. Its powerful arm has been stretched out to grasp as well the newer instruments of spectroscopic study. Here the sensitive plate has been substituted for the human eye with even greater relative advantage. The accurate microscopic measurement of difficult lines in stellar spectra was indeed possible by older methods; but photography has made it comparatively easy; and, above all, has rendered practicable series of observations extensive enough in numbers to furnish statistical information of real value. Only in this way have we been able to determine whether the stars, in their varied and unknown orbits, are approaching us or moving farther away. Even the speed of thisapproach or recession has become measurable, and has been evaluated in the case of many individual stars. (Seepage 21.)
Solar Corona. Total Eclipse.Photographed by Campbell, January 22, 1898; Jeur, India.
Solar Corona. Total Eclipse.Photographed by Campbell, January 22, 1898; Jeur, India.
The subject of solar physics has become a veritable department of astronomy in the hands of photographic investigators. Ingenious spectro-photographic methods have been devised, whereby we have secured pictures of the sun from which we have learned much that must have remained forever unknown to older methods.
Especially useful has photography proved itself in the observation of total solar eclipses. It is only when the sun's bright disk is completely obscured by the interposed moon that we can see the faintly luminous structure of the solar corona, that great appendage of our sun, whose exact nature is still unexplained. Only during the few minutes of total eclipse in each century can we look upon it; and keen is the interest of astronomers when those few minutes occur. But it is found that eye observations made in hurried excitement have comparatively little value. Half a dozen persons might make drawings of the corona during the same eclipse, yet theywould differ so much from one another as to leave the true outline very much in doubt. But with photography we can obtain a really correct picture whose details can be studied and discussed subsequently at leisure.
If we were asked to sum up in one word what photography has accomplished, we should say that observational astronomy has been revolutionized. There is to-day scarcely an instrument of precision in which the sensitive plate has not been substituted for the human eye; scarcely an inquiry possible to the older method which cannot now be undertaken upon a grander scale. Novel investigations formerly not even possible are now entirely practicable by photography; and the end is not yet. Valuable as are the achievements already consummated, photography is richest in its promise for the future. Astronomy has been called the "perfect science"; it is safe to predict that the next generation will wonder that the knowledge we have to-day should ever have received so proud a title.
The question is often asked, "What is the practical use of astronomy?" We know, of course, that men would profit greatly from a study of that science, even if it could not be turned to any immediate bread-and-butter use; for astronomy is essentially the science of big things, and it makes men bigger to fix their minds on problems that deal with vast distances and seemingly endless periods of time. No one can look upon the quietly shining stars without being impressed by the thought of how they burned—then as now—before he himself was born, and so shall continue after he has passed away—aye, even after his latest descendants shall have vanished from the earth. Of all the sciences, astronomy is at once the most beautiful poetically, and yet the one offering the grandest and most difficult problems to the intellect. A study of these problems hasever been a labor of love to the greatest minds; their solution has been counted justly among man's loftiest achievements.
And yet of all the difficult and abstruse sciences, astronomy is, perhaps, the one that comes into the ordinary practical daily life of the people more definitely and frequently than any other. There exist at least three things we owe to astronomy that must be regarded as quite indispensable, from a purely practical point of view. In the first place, let us consider the maps in a work on geography. How many people ever think to ask how these maps are made? It is true that the ordinary processes of the surveyor would enable us to draw a map showing the outlines of a part of the earth's surface. Even the locations of towns and rivers might be marked in this way. But one of the most important things of all could not be added without the aid of astronomical observations. The latitude and longitude lines, which are essential to show the relation of the map to the rest of the earth, we owe to astronomy. The longitude lines, particularly, as we shall see farther on, play a most important part in the subject of time.
The second indispensable application of astronomy to ordinary business affairs relates to the subject of navigation. How do ships find their way across the ocean? There are no permanent marks on the sea, as there are on the land, by which the navigator can guide his course. Nevertheless, seamen know their path over the trackless ocean with a certainty as unerring as would be possible on shore; and it is all done by the help of astronomy. The navigator's observations of the sun are astronomical observations; the tables he uses in calculating his observations—the tables that tell him just where he is and in what direction he must go—are astronomical tables. Indeed, it is not too much to say that without astronomy there could be no safe ocean navigation.
But the third application of astronomy is of still greater importance in our daily life—the furnishing of correct time standards for all sorts of purposes. It is to this practical use of astronomical science that we would direct particular attention. Few persons ever think of the complicated machinery that must be put in motion in order to set a clock. A man forgets some evening to wind his watch at the accustomed hour. The next morning he finds it run down. It must be re-set. Most people simply go to the nearest clock, or ask some friend for the time, so as to start the watch correctly. More careful persons, perhaps, visit the jeweller's and take the time from his "regulator." But the regulator itself needs to be regulated. After all, it is nothing more than any other clock, except that greater care has been taken in the mechanical construction and arrangement of its various parts. Yet it is but a machine built by human hands, and, like all human works, it is necessarily imperfect. No matter how well it has been constructed, it will not run with perfectly rigid accuracy. Every day there will be a variation from the true time by a small amount, and in the course of days or weeks the accumulation of these successive small amounts will lead to a total of quite appreciable size.
Just as the ordinary citizen looks to the jeweller's regulator to correct his watch, so the jeweller applies to the astronomer for the correction of his regulator. Ever since the dawn of astronomy, in the earliest ages of which we have any record, theprincipal duty of the astronomer has been the furnishing of accurate time to the people. We shall not here enter into a detailed account, however interesting it would be, of the gradual development by which the very perfect system at present in use has been reached; but shall content ourselves with a description of the methods now employed in nearly all the civilized countries of the world.
In the first place, every observatory is, of course, provided with what is known as an astronomical clock. This instrument, from the astronomer's point of view, is something very different from the ordinary popular idea. To the average person an astronomical clock is a complicated and elaborate affair, giving the date, day of the week, phases of the moon, and other miscellaneous information. But in reality the astronomer wants none of these things. His one and only requirement is that the clock shall keep as near uniform time as may be possible to a machine constructed by human hands. No expense is spared in making the standard clock for an observatory. Real artists in mechanical construction—men who have attained a world-wide celebrity for delicate skillin fashioning the parts of a clock—such are the astronomer's clock-makers.
To increase precision of motion in the train of wheels, it is necessary that the mechanism be as simple as possible. For this reason all complications of date, etc., are left out. We have even abandoned the usual convenient plan of having the hour and minute hands mounted at the same centre; for this kind of mounting makes necessary a slightly more intricate form of wheelwork. The astronomer's clock usually has the centres of the second hand, minute hand, and hour hand in a straight line, and equally distant from each other. Each hand has its own dial; all drawn, of course, upon the same clock-face.
Even after such a clock has been made as accurately as possible, it will, nevertheless, not give the very best performance unless it is taken care of properly. It is necessary to mount it very firmly indeed. It should not be fastened to an ordinary wall, but a strong pier of masonry or brick must be built for it on a very solid foundation. Moreover, this pier is best placed underground in a cellar, so that the temperature of theclock can be kept nearly uniform all the year round; for we find that clocks do not run quite the same in hot weather as they do in cold. Makers have, indeed, tried to guard against this effect of temperature, by ingenious mechanical contrivances. But these are never quite perfect in their action, and it is best not to test them too severely by exposing the clock to sharp changes of heat and cold.
Another thing affecting the going of fine clocks, strange as it may seem, is the variation of barometric pressure. There is a slight but noticeable difference in their running when the barometer is high and when it is low. To prevent this, some of our best clocks have been enclosed in air-tight cases, so that outside barometric changes may not be felt in the least by the clock itself.
But even after all this has been accomplished, and the astronomer is in possession of a clock that may be called a masterpiece of mechanical construction, he is not any better off than was the jeweller with his regulator. After all, even the astronomical clock needs to be set, and its errormust be determined from time to time. A final appeal must then be had to astronomical observations. The clock must be set by the stars and sun. For this purpose the astronomer uses an instrument called a "transit." This is simply a telescope of moderate size, possibly five or six feet long, and firmly attached to an axis at right angles to the tube of the telescope.
This axis is supported horizontally in such a way that it points as nearly as may be exactly east and west. The telescope itself being square with the axis, always points in a north-and-south direction. It is possible to rotate the telescope about its axis so as to reach all parts of the sky that are directly north or south of the observatory. In the field of view of the telescope certain very fine threads are mounted so as to form a little cross. As the telescope is rotated this cross traces out, as it were, a great circle on the sky; and this great circle is called the astronomical meridian.
Now we are in possession of certain star-tables, computed from the combined observations of astronomers in the last 150 years. These tablestell us the exact moment of time when any star is on the meridian. To discover, therefore, whether our clock is right on any given night, it is merely necessary to watch a star with the telescope, and note the exact instant by the clock when it reaches the little cross in the field of view. Knowing from the astronomical tables the time when the star ought to have been on the meridian, and having observed the clock time when it is actually there, the difference is, of course, the error of the clock. The result can be checked by observations of other stars, and the slight personal errors of observation can be rendered harmless by taking the mean from several stars. By an hour's work on a fine night it is possible to fix the clock error quite easily within the one-twentieth part of a second.
We have not space to enter into the interesting details of the methods by which the astronomical transit is accurately set in the right position, and how any slight residual error in its setting can be eliminated from our results by certain processes of computation. It must suffice to say that practically all time determinations inthe observatory depend substantially upon the procedure outlined above.
The observatory clock having been once set right by observations of the sky, its error can be re-determined every few days quite easily. Thus even the small irregularities of its nearly perfect mechanism can be prevented from accumulating until they might reach a harmful magnitude. But we obtain in this way only a correct standard of time within the observatory itself. How can this be made available for the general public? The problem is quite simple with the aid of the electric telegraph. We shall give a brief account of the methods now in use in New York City, and these may be taken as essentially representative of those employed elsewhere.
Every day, at noon precisely, an electric signal is sent out by the United States Naval Observatory in Washington. The signal is regulated by the standard clock of the observatory, of course taking account of star observations made on the next preceding fine night. This signal is received in the central New York office of the telegraph company, where it is used to keep correcta very fine clock, which may be called the time standard of the telegraph company. This clock, in turn, has automatic electric connections, by means of which it is made to send out signals over what are called "time wires" that go all over the city. Jewellers, and others who desire correct time, can arrange to have a small electric sounder in their offices connected with the time wires. Thus the ticks of the telegraph company's standard clock are repeated automatically in the jeweller's shop, and used for controlling the exactness of his regulator. This, in brief, is the method by which the astronomer's careful determination of correct time is transferred and distributed to the people at large.
Having thus outlined the manner of obtaining and distributing correct time, we shall now consider the question of time differences between different places on the earth. This is a matter which many persons find most perplexing, and yet it is essentially quite simple in principle. Travellers, of course, are well acquainted with the fact that their watches often need to be reset when they arrive at their destination. Yet few ever stop to ask the cause.
Let us consider for a moment our method of measuring time. We go by the sun. If we leave out of account some small irregularities of the sun's motion that are of no consequence for our present purpose, we may lay down this fundamental principle: When the sun reaches its highest position in the sky it is twelve o'clock or noon.
The sun, as everyone knows, rises each morning in the east, slowly goes up higher and higher in the sky, and at last begins to descend again toward the west. But it is clear that as the sun travels from east to west, it must pass over the eastern one of any two cities sooner than the western one. When it reaches its greatest height over a western city it has, therefore, already passed its greatest height over an eastern one. In other words, when it is noon, or twelve o'clock, in the western city, it is already after noon in the eastern city. This is the simple and evident cause of time differences in different parts of the country. Of any two places the eastern one always has later time than the western. When we consider the matter in this way there is not the slightest difficulty in understanding how time differences arise.They will, of course, be greatest for places that are very far apart in an east-and-west direction. And this brings us again to the subject of longitude, which, as we have already said, plays an important part in all questions relating to time; for longitude is used to measure the distance in an east-and-west direction between different parts of the earth.
If we consider the earth as a large ball we can imagine a series of great circles drawn on its surface and passing directly from the North Pole to the South Pole. Such a circle could be drawn through any point on the earth. If we imagine a pair of them drawn through two cities, such as New York and London, the longitude difference of these two cities is defined as the angle at the North Pole between the two great circles in question. The size of this angle can be expressed in degrees. If we then wish to know the difference in time between New York and London in hours, we need only divide their longitude difference in degrees by the number 15. In this simple way we can get the time difference of any two places. We merely measure the longitude difference on a map, andthen divide by 15 to get the time difference. These time differences can sometimes become quite large. Indeed, for two places differing 180 degrees in longitude, the time difference will evidently be no less than twelve hours.
Most civilized nations have agreed informally to adopt some one city as the fundamental point from which all longitudes are to be counted. Up to the present we have considered only longitude differences; but when we speak of the longitude of a city we mean its longitude difference from the place chosen by common consent as the origin for measuring longitudes. The town almost universally used for this purpose is Greenwich, near London, England. Here is situated the British Royal Observatory, one of the oldest and most important institutions of its kind in the world. The great longitude circle passing through the centre of the astronomical transit at the Greenwich observatory is the fundamental longitude circle of the earth. The longitude of any other town is then simply the angle at the pole between the longitude circle through that town and the fundamental Greenwich one here described.
Longitudes are counted both eastward and westward from Greenwich. Thus New York is in 74 degrees west longitude, while Berlin is in 14 degrees east longitude. This has led to a rather curious state of affairs in those parts of the earth the longitudes of which are nearly 180 degrees east or west. There are a number of islands in that part of the world, and if we imagine for a moment one whose longitude is just 180 degrees, we shall have the following remarkable result as to its time difference from Greenwich.
We have seen that of any two places the eastern always has the later time. Now, since our imaginary island is exactly 180 degrees from Greenwich, we can consider it as being either 180 degrees east or 180 degrees west. But if we call it 180 degrees east, its time will be twelve hours later than Greenwich, and if we call it 180 degrees west, its time will be twelve hours earlier than Greenwich. Evidently there will be a difference of just twenty-four hours, or one whole day, between these two possible ways of reckoning its time. This circumstance has actually led to considerable confusion in some of the islands of thePacific Ocean. The navigators who discovered the various islands naturally gave them the date which they brought from Europe. And as some of these navigators sailed eastward, around the Cape of Good Hope, and others westward, around Cape Horn, the dates they gave to the several islands differed by just one day.
The state of affairs at the present time has been adjusted by a sort of informal agreement. An arbitrary line has been drawn on the map near the 180th longitude circle, and it has been decided that the islands on the east side of this line shall count their longitudes west from Greenwich, and those west of the line shall count longitude east from Greenwich. Thus Samoa is nearly 180 degrees west of Greenwich, while the Fiji Islands are nearly 180 degrees east. Yet the islands are very near each other, though the arbitrary line passes between them. As a result, when it is Sunday in Samoa it is Monday in the Fiji Islands. The arbitrary line described here is sometimes called the International Date-Line.
It does not pass very near the Philippine Islands, which are situated in about 120 degreeseast longitude, and, therefore, use a time about eight hours later than Greenwich. New York, being about 74 degrees west of Greenwich, is about five hours earlier in time. Consequently, as we may remark in passing, Philippine time is about thirteen hours later than New York time. Thus, five o'clock, Sunday morning, May 1st, in Manila, would correspond to four o'clock, Saturday afternoon, April 30th, in New York.
There is another kind of time which we shall explain briefly—the so-called "standard," or railroad time, which came into general use in the United States some few years ago, and has since been generally adopted throughout the world. It requires but a few moments' consideration to see that the accidental situation of the different large cities in any country will cause their local times to differ by odd numbers of hours, minutes, and seconds. Thus a great deal of inconvenience has been caused in the past. For instance, a train might leave New York at a certain hour by New York time. It would then arrive in Buffalo some hours later by New York time. But it would leave Buffalo by Buffalo time, which isquite different. Thus there would be a sort of jump in the time-table at Buffalo, and it would be a jump of an odd number of minutes.
It would be different in different cities, and very hard to remember. Indeed, as each railway usually ran its trains by the time used in the principal city along its line, it might happen that three or four different railroad times would be used in a single city where several roads met. This has all been avoided by introducing the standard time system. According to this the whole country is divided into a series of time zones, fifteen degrees wide, and so arranged that the middle line of each zone falls at a point whose longitude from Greenwich is 60, 75, 90, 105, or 120 degrees. The times at these middle lines are, therefore, earlier than Greenwich time by an even number of hours. Thus, for instance, the 75-degree line is just five even hours earlier than Greenwich time. All cities simply use the time of the nearest one of these special lines.
This does not result in doing away with time differences altogether—that would, of course, be impossible in the nature of things—but for thecomplicated odd differences in hours and minutes, we have substituted the infinitely simpler series of differences in even hours. The traveller from Chicago to New York can reset his watch by putting it just one hour later on his arrival—the minute hand is kept unchanged, and no New York timepiece need be consulted to set the watch right on arriving. There can be no doubt that this standard-time system must be considered one of the most important contributions of astronomical science to the convenience of man.
Its value has received the widest recognition, and its use has now extended to almost all civilized countries—France is the only nation of importance still remaining outside the time-zone system. In the following table we give the standard time of the various parts of the earth as compared with Greenwich, together with the date of adopting the new time system. It will be noticed that in certain cases even half-hours have been employed to separate the time-zones, instead of even hours as used in the United States.
TABLE OF THE WORLD'S TIME STANDARDS