The Project Gutenberg eBook ofRadioisotopes and Life Processes (Revised)This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online atwww.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.Title: Radioisotopes and Life Processes (Revised)Author: Walter E. KisieleskiRenato BasergaRelease date: June 30, 2015 [eBook #49334]Most recently updated: October 24, 2024Language: EnglishCredits: Produced by Stephen Hutcheson, Dave Morgan and the OnlineDistributed Proofreading Team at http://www.pgdp.net*** START OF THE PROJECT GUTENBERG EBOOK RADIOISOTOPES AND LIFE PROCESSES (REVISED) ***
This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online atwww.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.
Title: Radioisotopes and Life Processes (Revised)Author: Walter E. KisieleskiRenato BasergaRelease date: June 30, 2015 [eBook #49334]Most recently updated: October 24, 2024Language: EnglishCredits: Produced by Stephen Hutcheson, Dave Morgan and the OnlineDistributed Proofreading Team at http://www.pgdp.net
Title: Radioisotopes and Life Processes (Revised)
Author: Walter E. KisieleskiRenato Baserga
Author: Walter E. Kisieleski
Renato Baserga
Release date: June 30, 2015 [eBook #49334]Most recently updated: October 24, 2024
Language: English
Credits: Produced by Stephen Hutcheson, Dave Morgan and the OnlineDistributed Proofreading Team at http://www.pgdp.net
*** START OF THE PROJECT GUTENBERG EBOOK RADIOISOTOPES AND LIFE PROCESSES (REVISED) ***
The Understanding the Atom Series
Nuclear energy is playing a vital role in the life of every man, woman, and child in the United States today. In the years ahead it will affect increasingly all the peoples of the earth. It is essential that all Americans gain an understanding of this vital force if they are to discharge thoughtfully their responsibilities as citizens and if they are to realize fully the myriad benefits that nuclear energy offers them.
The United States Atomic Energy Commission provides this booklet to help you achieve such understanding.
Edward J. Brunenkant
Edward J. Brunenkant, DirectorDivision of Technical Information
UNITED STATES ATOMIC ENERGY COMMISSION
by Walter E. Kisieleski andRenato Baserga
United States Atomic Energy CommissionDivision of Technical InformationLibrary of Congress Catalog Card Number: 66-619081966; 1967(Rev.)
The cover design portrays the inter-relationships suggested by the title of this booklet: On a trefoil symbolizing radiation are superimposed a dividing cell, a plant, an animal, and a double helix of a molecule of deoxyribonucleic acid, a material unique in and fundamental to all living things.
WALTER E. KISIELESKIis an Associate Scientist in the Division of Biology and Medicine of the Argonne National Laboratory. He was formerly associate professor of chemistry at Loyola University in Chicago. His undergraduate studies were at James Millikin University in Decatur, Illinois, and his graduate studies were at the University of Chicago. He received an Honorary Doctor of Science degree from James Millikin University in 1962. In 1958 he was a delegate to the Second Atoms for Peace Conference in Geneva, Switzerland. He was visiting lecturer in the department of biochemistry at the University of Oslo in Norway in 1963. Dr. Kisieleski is shown operating an automatic windowless strip counter that scans paper chromatograms and thus locates labeled substances.
WALTER E. KISIELESKIis an Associate Scientist in the Division of Biology and Medicine of the Argonne National Laboratory. He was formerly associate professor of chemistry at Loyola University in Chicago. His undergraduate studies were at James Millikin University in Decatur, Illinois, and his graduate studies were at the University of Chicago. He received an Honorary Doctor of Science degree from James Millikin University in 1962. In 1958 he was a delegate to the Second Atoms for Peace Conference in Geneva, Switzerland. He was visiting lecturer in the department of biochemistry at the University of Oslo in Norway in 1963. Dr. Kisieleski is shown operating an automatic windowless strip counter that scans paper chromatograms and thus locates labeled substances.
RENATO BASERGAwas born in Milan, Italy, and received a medical degree from the University of Milan in 1949. He is presently research professor of pathology at the Fels Research Institute at Temple University Medical School in Philadelphia, and associate editor of the journal,Cancer Research. Formerly he was associate professor of pathology at Northwestern Medical School in Chicago, where he was the recipient of a Research Career Development Award from the National Institutes of Health.
RENATO BASERGAwas born in Milan, Italy, and received a medical degree from the University of Milan in 1949. He is presently research professor of pathology at the Fels Research Institute at Temple University Medical School in Philadelphia, and associate editor of the journal,Cancer Research. Formerly he was associate professor of pathology at Northwestern Medical School in Chicago, where he was the recipient of a Research Career Development Award from the National Institutes of Health.
By WALTER E. KISIELESKIand RENATO BASERGA
Here and elsewhere we shall not obtain the best insight into things until we actually see them growing from the beginning.Aristotle
Here and elsewhere we shall not obtain the best insight into things until we actually see them growing from the beginning.
Aristotle
The nature of life has excited the interest of human beings from the earliest times. Although it is still not known what life is, the characteristics that set living things apart from lifeless matter are well known. One feature common to all living things, from one-celled creatures to complex animals like man, is that they are all composed of microscopic units known as cells.
The cell is the smallest portion of any organism that exhibits the properties we associate with living material. In spite of the immense variety of sizes, shapes, and structures of living things, they all have this in common: They are composed of cells, and living cells contain similar components that operate in similar ways. One might say that life is a single process and that all living things operate on a single plan.
The past few years have been a time of rapid progress in our understanding of the mechanisms that control the function of living systems. This progress has been made possible by the development of new experimental techniques and by the perfection of instruments that detect what happens in the tiny world of molecules. Prominent among the methods that have contributed to the explosive growthin our understanding of biology is the use of radioactive isotopes as laboratory tools.
In this booklet we shall attempt to give an account, in chemical terms, of the materials from which living matter is made and of some of the chemical reactions that underlie the manifestations and the maintenance of life. To accomplish this, we have chosen to describe three types of molecules that have become the basis of modern biology: deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and proteins. We will show how radioactive isotopes can be used to pry into the innermost secrets of these substances. Before we can understand the function of these precious molecules, however, it will be necessary to review the structure of a cell and the physical nature of radioactive isotopes.
We have seen that all organisms are composed of essentially like parts, namely cells; that these cells are formed and grow in accordance with essentially the same laws; hence that these processes must everywhere result from the operation of the same forces.Theodor Schwann
We have seen that all organisms are composed of essentially like parts, namely cells; that these cells are formed and grow in accordance with essentially the same laws; hence that these processes must everywhere result from the operation of the same forces.
Theodor Schwann
The cell theory, based on the concept that higher organisms consist of smaller units called cells, was formulated in 1838 by two German biologists, Mathias-Jacob Schleiden, a botanist, and Theodor Schwann, an anatomist. The theory had far-reaching effect upon the study of biological phenomena. It suggested that living things had a common basis of organization. Appreciation of its full significance, however, had to await more precise knowledge of the structure and activities of cells.
Some organisms,[1]for instance, amoebae, consist of a single cell each and are therefore called unicellular organisms. Higher animals are multicellular, containing aggregations of cells grouped into tissues and organs. Aman, for instance, consists of millions of many different cells performing a variety of different functions. Cells of higher animals differ vastly from one another in size, shape, and function; they are specialized cells.
Figure 1One of the earliest photographs of cells taken with a microscope. This photomicrograph shows cells in the blood of a pigeon. It was made by J. J. Woodward, U. S. Army surgeon, in 1871. Woodward had made the first cell micrograph (a graphic reproduction of the image of an object formed by a microscope) in 1866.
Figure 1One of the earliest photographs of cells taken with a microscope. This photomicrograph shows cells in the blood of a pigeon. It was made by J. J. Woodward, U. S. Army surgeon, in 1871. Woodward had made the first cell micrograph (a graphic reproduction of the image of an object formed by a microscope) in 1866.
There is a remarkable similarity, moreover, in the molecular composition and metabolism[2]of all living things. This similarity has been taken to mean that life could have originated only once in the past and had a specific chemical composition on which its metabolic processes depended. This structure and metabolism were handed down to subsequent living things by reproduction, and all variations thereafter resulted from occasional mutation, or changes in the nature of the heredity-transmitting units. One of the most extraordinary of all the attributes of life is its ordered complexity, both in function and structure.
It is agreed among biologists that the functional manifestations of life include movement, respiration, growth, irritability (reaction to environmental changes), and reproduction and that these phenomena are therefore possessed by all cells. The first four of these can be grouped under a single word: metabolism. We can therefore say that living things have two common properties: metabolism and reproduction. Therefore, when we say we are studying life processes, we actually are studying the metabolism and reproduction of cells. Since metabolism is the sum ofthe biochemical reactions taking place in a living organism, it properly belongs to the field of investigation of biochemists. Cell reproduction is the concern of both biochemists and morphologists[3]since it can be studied by either biochemical or morphological techniques.
Figure 2Generalized diagram of a cell, showing the organelles, or “little organs”, of its internal structure. The organelles that are labeled are important for this booklet.
Figure 2Generalized diagram of a cell, showing the organelles, or “little organs”, of its internal structure. The organelles that are labeled are important for this booklet.
The basic structure of a cell is shown inFigure 2. Each cell consists of a dense inner structure called the nucleus, which is surrounded by a less dense mass of cytoplasm. The nucleus is separated from the cytoplasm by a double envelope, called the nuclear membrane, which is peppered with perforations. The cytoplasm contains a network of membranes, which form the boundaries of countless canalsand vesicles (or pouches), and is laden with small bodies called ribosomes. This membranous network is called the endoplasmic reticulum and is distinct from the mitochondria, which are membranous organelles (little organs) structurally independent of other components of the cytoplasm. The outer coat of the cell is called the cell membrane, or plasma membrane, and forms the cell boundary.
Figure 3Electron micrograph of a primary spermatocyte cell of a grasshopper, showing the nucleus (N), endoplasmic reticulum (ER), mitochondrion (M), chromatin (C), nuclear membrane or nuclear envelope (NE), cell membrane (CM), and intercellular space (I). The magnification is about 25,000 times the actual size.
Figure 3Electron micrograph of a primary spermatocyte cell of a grasshopper, showing the nucleus (N), endoplasmic reticulum (ER), mitochondrion (M), chromatin (C), nuclear membrane or nuclear envelope (NE), cell membrane (CM), and intercellular space (I). The magnification is about 25,000 times the actual size.
The nucleus, which in many cells is the largest and most central body, is of special importance. It contains a number of threadlike bodies, or chromosomes, that are the carriers of the cell’s heredity-controlling system. These contain granules of a material called chromatin, which is rich in a nucleic acid, DNA (deoxyribonucleic acid). The chromosomes usually are not readily seen in the nucleus except when the cell, along with its nucleus, is dividing. When the nucleus is not dividing, a spherical body, the nucleolus, can be seen. (In some nuclei there may be more than one.) When the nucleus is dividing, the nucleolus disappears.
Not all cells possess all these structures. For instance, the red cells of the blood do not have a nucleus, and in other cells the endoplasmic reticulum is at a minimum. The diagram (Figure 2) is valid for a great majority of the cells of higher organisms.
The cell structures shown inFigure 3are visible with an electron microscope. They contain the chemical components of the cell. The chief classes of these constituents are the carbohydrates (sugars), the lipids (fats), the proteins, and the nucleic acids. However, a cell also contains water (about 70% of the cell weight is due to water) and several other organic and inorganic compounds, such as vitamins and minerals.
Carbohydrates serve mostly as foodstuff within the cell. They can be stored in several related forms. Further, they may serve a number of functions outside the cell, especially as structural units. In this way structure and function are correlated.
Lipids in the cell occur in a great variety of types: alcohols, fats, steroids, phospholipids, and aldehydes. They are found in all fractions of the cell. Their most important functions seem to be to form membranes and to give these membranes specific permeability. They are also important as stores of chemical energy, mostly in the form of neutral fats.
Figure 4Scientists using an electron microscope (left) and an optical microscope (right) in fundamental biochemical research. Both instruments are important tools in studies of life processes.
Figure 4Scientists using an electron microscope (left) and an optical microscope (right) in fundamental biochemical research. Both instruments are important tools in studies of life processes.
The proteins occur in many cell structures and are of many kinds: Enzymes, the catalysts for the cell’s metabolic processes, are proteins, for instance. The nucleic acids are DNA and RNA (ribonucleic acid), which function together to manufacture the cell’s proteins. Since a large share of the remaining pages will be devoted to a discussion of proteins and nucleic acids, at this point we need only emphasize that these two types of materials are interrelated in their function and that both are essential.
It is not very fruitful to discuss whether proteins or nucleic acids are more important. That question is something like the one about the chicken and the egg. We cannot think of one without thinking of the other. Although our insight into the mutual dependence of these two materials has greatly increased in recent years and although we know the relation between them is a fundamental factor in such events as reproduction, mutation, and differentiation (or specialization) of cells, our understanding of their interplay is far from complete. Real understanding of the relation between them would give us insight into the essence of growth—both normal and abnormal—or, indeed, one could almost say, into the complexity of life itself.
Figure 5Photomicrograph of Paramecia, one-celled animals, magnified 1100 times. Many of the same structures that appear inFigure 3can be seen here. This photo was taken with an “interference” microscope designed to permit continuous variation of contrast in the subject under study.
Figure 5Photomicrograph of Paramecia, one-celled animals, magnified 1100 times. Many of the same structures that appear inFigure 3can be seen here. This photo was taken with an “interference” microscope designed to permit continuous variation of contrast in the subject under study.
Practically all the DNA of most cells is concentrated in the nucleus. RNA, on the other hand, is distributed throughout the cell. Some RNA is present in the nucleus, but most of it is associated with minute particles in the cytoplasm known as microsomes, some of which are especially rich in RNA and are accordingly named ribosomes. These are much smaller particles than the mitochondria.
Figure 6Stages of the mitotic cycle in a hypothetical cell with four chromosomes.
Figure 6Stages of the mitotic cycle in a hypothetical cell with four chromosomes.
One of the most remarkable characteristics of cells is their ability to grow and divide. New cells come from preexisting cells. When a cell reaches a certain stage in its life, it divides into two parts. These parts, after another period of growth, can in turn divide. In this way plants and animals grow to their normal size and injured tissues are repaired. Cell division occurs when some of the contents of the cell have been doubled by replication, or copying (to be discussed later). The division of a cell results in two roughly equal new parts, the daughter cells. The process of cell division is known as mitosis and is diagrammed inFigure 6.
Mitosis is a continuous process; the following stages of the process are designated only for convenience. Duringinterphasethe cell is busy metabolizing, synthesizing new cellular materials, and preparing for self-duplication by synthesizing new chromosomes. Inprophasethe chromosomes, each now composed of two identical strands called chromatids, shorten by coiling, and the nucleolus and nuclear membrane disappear. Duringmetaphasethe chromosomes line up in one plane near the cell equator. Atanaphasethe sister chromatids of each chromosome separate, and each part moves toward the ends, or poles, of the cell. Duringtelophasethe chromosomes uncoil and return to invisibility; a new nucleus, nucleolus, and nuclear membrane are reconstituted at each end, and division of the cell body occurs between the new nuclei, forming the two new cells. Each daughter cell thereby receives a fullset of chromosomes, and, since the genes are in the chromosomes, each daughter cell has the same genetic complement.
Figure 7Photomicrograph of cells of the Trillium plant, which has five chromosomes, in anaphase. Note the duplicate sets of chromosomes moving to opposite poles of the cell.
Figure 7Photomicrograph of cells of the Trillium plant, which has five chromosomes, in anaphase. Note the duplicate sets of chromosomes moving to opposite poles of the cell.
All life processes use up energy and therefore require fuel. The mitochondria have a central role in the reactions by which the energy of sugars is supplied for cellular activity. The importance of this vital activity is obvious. In this booklet, however, we are concerned with the processes, involving nucleic acids and proteins, that can be described as making up “the gene-action system”. The gene-action system is the series of biochemical events that regulate and directalllife processes by “transcription” of the genetic “information” contained in molecules of DNA.
Man ... has found ways to amplify his senses ... and, with a variety of instruments and techniques, has added kinds of perception that were missing from his original endowment.Glenn T. Seaborg
Man ... has found ways to amplify his senses ... and, with a variety of instruments and techniques, has added kinds of perception that were missing from his original endowment.
Glenn T. Seaborg
Practically everyone nowadays is to some extent familiar with the atomic structure of matter. Atomic energy, nuclear reactors, and radioisotopes are terms in everyday usage. However, to appreciate how radioisotopes can be applied to the study of life processes, we must have at least a working knowledge of their properties, their preparation, and their limitations. It is therefore appropriate to examine them in detail so that the succeeding chapters will be more easily understood.
According to present-day theory, an atom consists of a nucleus[4]that is made up of protons and neutrons[5]and is surrounded by electrons. In each atom there is an equal number of protons (positively charged) in the nucleus and electrons (negatively charged) moving concentrically around the nucleus; since neutrons have no electrical charge and since protons and electrons cancel each other’s charges, the whole atom is electrically neutral, or uncharged. Each atom is identified by an atomic number and an atomic weight. The atomic number of an element (for example, carbon, nitrogen, oxygen) is determined by the number of protons, or positive charges, carried by the nucleus (or by the number of electrons surrounding the nucleus, which is the same). The atomic weight is the weight of an atom as compared with that of the atom of carbon, which is taken as a standard. The weight, or mass, of an atom is duechiefly to its protons and neutrons because the mass of its electrons is negligible.
Atoms of the same element, that is, atoms with the same number of protons and electrons, may vary slightly in mass because of having different numbers of neutrons. Since the chemical behavior of an element depends upon its electrons’ electrical charges, extra neutrons (which do not have an electrical charge) may affect the mass of an atom without disturbing its chemical properties. Atoms having the same atomic number but different atomic weights are called isotopes. For example, as shown inFigure 8, the isotope ¹H, or ordinary hydrogen, consists of a nucleus containing a proton (charge: +1; mass: 1) around which revolves an electron (charge: -1; mass: negligible); ²H, known as deuterium, contains an additional nuclear particle, a neutron (charge: 0; mass: 1); ³H, or tritium, contains two neutrons. Since the chemical behavior of an element depends upon the number of its electrons, these three atoms, although differing in weight, behave identically in chemical reactions. For convenience, the atomic weight is written as a superscript to the left of the element’s symbol. For instance ¹⁴C is the isotope of carbon with an atomic weight of 14 (ordinary carbon is the isotope with an atomic weight of 12, and it is written ¹²C).
Figure 8Isotopes of hydrogen.
Figure 8Isotopes of hydrogen.
Practically all elements have more than one isotope. There are two general classes of isotopes, stable andradioactive. Stable isotopes have no distinguishing characteristic other than their mass; radioactive isotopes not only differ from their brothers in mass but also are characterized by unstable nuclei. When the nucleus of an atom is unstable, because of an unbalanced number of protons and neutrons, a redistribution occurs sooner or later, and the atom decomposes spontaneously and emits one of several kinds of radiations. Because of their common mode of action and effects on living organisms, these different kinds of radiations are known collectively as ionizing radiations.
All radioactive elements emit one or more of three types of penetrating (ionizing) rays.Alpha raysor particles are double-charged helium nuclei, ⁴He (atomic number: 2; mass: 4). They are emitted by many heavy radioactive elements, such as radium, uranium, and plutonium.Beta raysor particles can be either positive or negative. Negative beta particles are high-speed electrons and are emitted by many radioactive elements. Positive beta particles are positively charged electrons (positrons), have only a transitory existence, and are less common.Gamma raysare electromagnetic radiations, a term that also describes radiowaves, infrared rays, visible light, ultraviolet light, and X rays. Gamma rays are usually emitted after the emission of alpha or beta particles. In our studies of life processes, we are interested only in the radioactive isotopes that emit gamma rays or beta particles.
Radioactive isotopes occur as minor constituents in many natural materials, from which they can be concentrated by fractionation procedures. In a very limited number of cases, more significant amounts of a radioactive isotope, for example, radium or radioactive lead, can be found in nature. Most radioactive isotopes in use today, however, are prepared artificially by nuclear reactions. When a high-energy particle, such as a proton, a deuteron, an alpha particle, or a neutron, collides with an atom, a reaction takes place, leading to the formation of a new, unstable compound—a man-made radioactive isotope.
The great usefulness of radioactive isotopes, as we shall see later, is that they can be detected and identified by proper instruments. Biochemists have long recognized the desirability of “tagging” or “labeling” a molecule to permit tracing or keeping track of the “label” and consequently of the molecule as it moves through a reaction or process. Since the radiations emitted by radioactive isotopes can be detected and measured, we can readily follow a molecule tagged with a radioactive atom.
Figure 9A laboratory technologist preparing dissolved biological materials as part of a study of the uptake of radioactive substances in living organisms. Note the radiation-detection instrument at right.
Figure 9A laboratory technologist preparing dissolved biological materials as part of a study of the uptake of radioactive substances in living organisms. Note the radiation-detection instrument at right.
The earliest biochemical studies employing radioactive isotopes go back to 1924, when George de Hevesy used natural radioactive lead to investigate a biological process. It was only after World War II, however, when artificially made radioactive isotopes were readily available, that the technique of using isotopic tracers became popular.
In our investigations of life processes, we are especially interested in three radioactive isotopes: ³H, the hydrogen atom of mass 3; ¹⁴C, the atom of carbon with atomic weight 14; and ³²P, the atom of phosphorus with atomic weight 32. These radioactive isotopes are important because the corresponding stable isotopes of hydrogen, carbon, and phosphorus are present in practically all cellular components that are important in maintaining life. With the three radioactive isotopes, therefore, we can tag or label the molecules that participate in life processes.
Figure 10A visiting scientist at an AEC laboratory uses radioactive tritium (³H) to study the effect of radiation on bean chromosomes. The famous scientist, George de Hevesy, also used beans in conducting the first biological studies ever made with radioisotopes.
Figure 10A visiting scientist at an AEC laboratory uses radioactive tritium (³H) to study the effect of radiation on bean chromosomes. The famous scientist, George de Hevesy, also used beans in conducting the first biological studies ever made with radioisotopes.
Hydrogen-3 is a weak beta emitter; that is, it emits beta particles with a very low energy (0.018 Mev[6]) and therefore with a very short range. Carbon-14 is also a weak beta emitter (0.154 Mev), although the beta particles emitted by ¹⁴C have a higher energy and therefore a longer range than those emitted by ³H. The beta particles emitted by phosphorus-32 are quite energetic (1.69 Mev) and have a longer range.
To biologists, then, the essential feature in the use of radioactive isotopes is the possibility of preparing “labeled” samples of any organic molecule involved in biological processes. With labeled samples it is possible to distinguish the behavior and keep track of the course of molecules involved in a particular biological function.
In this capacity the isotope may be likened to a dynamic and revolutionary type of “atomic microscope”, which can actually be incorporated into a living process or a specific cell. Just as a real microscope permits examination of the structural details of cells, isotopes permit examination of the chemicalactivitiesof molecules, atoms, and ions as they react within cells. (Neither optical nor electron microscopes are powerful enough for us to see anything as small as a molecule clearly.)
Here, surely, is the prime substance of life itself.Isaac Asimov
Here, surely, is the prime substance of life itself.
Isaac Asimov
The many characteristic features of each living species, its complex architecture, its particular behavior patterns, the ingenious modifications of structure and function that enable it to compete and survive—all these must pass, figuratively speaking, through the eye of an ultramicroscopic needle before they are brought together as a new, individual organism. The thread that passes through the eye of this needle is a strand of the filamentous molecule, deoxyribonucleic acid (DNA). Let us now outline the research that led to these conclusions.
One of the fundamental laws of modern biology—which states that the DNA content of somatic cells is constant for any given species—was first set forth in a research report of 1948. This finding means that in any given species, such as a mouse or a man, all cells except the germinal cells contain the same amount of DNA. Germinal cells, that is, the sperm cells of the male semen and the female egg, contain exactly half the amount of DNA of the somatic cells. This must be the case, since DNA is the hereditary material, and each individual’s heredity is shaped half by his father and half by his mother. One ten-trillionth of an ounce of DNA from a father and one ten-trillionth of an ounce of DNA from the mother together contain all the specifications to produce a new human being.
A large amount of DNA must be manufactured by an individual organism as it develops from a fertilized egg (one single cell) to an adult containing several million cells. For instance, a mouse cell contains about 7 picograms of DNA (one picogram is one millionth of a microgram,or one millionth of one millionth of a gram). A whole mouse contains in its body approximately 25 milligrams (25 thousandths of a gram) of DNA, and all this DNA was synthesized by the cells as the mouse grew to adulthood. Since the amount of DNA per cell remains constant and since each cell divides into two cells, it is apparent that each new cell receives the amount of DNA characteristic of that species.
Once we realize that a cell that is making new DNA (as most cells do) must divide to keep the amount of DNA per cell constant, it follows that a cell that is making DNA is one that is soon destined to divide. If we can now mark newly made DNA with a radioactive isotope, we can actually mark and thus identify cells that are preparing to divide. The task can be divided into two parts: (1) to label the newly made DNA and (2) to detect the newly made, labeled DNA.
Figure 11is a diagram showing the essential structure of the large DNA molecule. According to the Watson-Crick model,[7]the molecule consists of two strands of smaller molecules twisted around each other to form a double helix. Each strand consists of a sequence of the smaller molecules linked linearly to each other. These smaller molecules are called nucleotides, and each consists of three still smaller molecules, a sugar (deoxyribose), phosphoric acid, and a nitrogen base. Each nucleotide and its nearest neighbor are linked together (between the sugar of one and the phosphoric acid of the neighbor). This leaves the nitrogen base free to attach itself, through hydrogen bonding, to another nitrogen base in the opposite strand of the helix.
In the DNA of higher organisms, there are only four types of nitrogen bases: adenine, guanine, thymine, and cytosine. Adenine in either strand of the helix pairs only with thymine in the opposite strand, and vice versa, and guanine pairs only with cytosine, and vice versa, so thateach strand is complementary in structure to the other strand (seeFigure 12). The full structure resembles a long twisted ladder, with the sugar and phosphate molecules of the nucleotides forming the uprights and the linked nitrogen bases forming the rungs. Each upright strand is essentially a mirror image of the other, although the two ends of any one rung are dissimilar.
Figure 11Diagrammatic structure of the DNA molecule as proposed by the Watson-Crick model.
Figure 11Diagrammatic structure of the DNA molecule as proposed by the Watson-Crick model.
When DNA is replicated, or copied, as the organism grows, the two nucleotide strands separate from each other by disjoining the rungs at the point where the bases meet, and each strand then makes a new and similarly complementary strand. The result is two double-stranded DNA molecules, each of which is identical to the parent molecule and contains the same genetic material. When the cell divides, each of the two daughter cells gets one of the new double strands; each new cell thus always has the same amount of DNA and the same genetic material as the parent cell.
(All that has been said so far about DNA replication depends upon an assumption that the DNA molecule is insome way untwisted to allow separation of two helical strands, but there is no compelling reason to believe that such an untwisting does indeed take place, nor do we know, if the untwisting does take place, how it is accomplished. Much that has been said in the last few paragraphs is therefore purely speculative. It is, however, based on sound observation and is a more logical explanation than others that have been advanced.)
Figure 12The pairing of the nucleotide bases that make up DNA.
Figure 12The pairing of the nucleotide bases that make up DNA.
Figure 13The DNA molecule and how it replicates. (a) The constituent submolecules. (b) Assembly of subunits in complete DNA molecule. (c) “Unzipping” of the double nucleotide strand. (d) and (e) The forming of a new strand by each individual strand. (f) DNA molecule in twisted double-strand configuration.Adapted fromViruses and the Nature of Life, Wendell M. Stanley and Evans C. Valens, E. P. Dutton & Co., Inc., 1961, with permission.
Figure 13The DNA molecule and how it replicates. (a) The constituent submolecules. (b) Assembly of subunits in complete DNA molecule. (c) “Unzipping” of the double nucleotide strand. (d) and (e) The forming of a new strand by each individual strand. (f) DNA molecule in twisted double-strand configuration.
Adapted fromViruses and the Nature of Life, Wendell M. Stanley and Evans C. Valens, E. P. Dutton & Co., Inc., 1961, with permission.
Of the four bases in DNA, three are also found in the other nucleic acid, RNA; but the fourth, thymine, is found only in DNA. Therefore, if thymine could be labeled and introduced into a number of cells, including a cell in which DNA is being formed, we would specifically label the newly synthesized DNA, since neither the old DNA nor the RNA would make use of the thymine. We could in this way mark cells preparing to divide. (Actually, thymine itself is not taken up in mammalian cells, but its nucleoside is. A nucleoside is the base plus the sugar, or, in other words, the nucleotide minus the phosphoric acid.) The nucleoside of thymine is called thymidine, and we say that thymidine is a specific component of DNA and can be used, both in laboratory studies and in living organisms, for labeling DNA.
Thymidine labeled with radioactive compounds is available as ¹⁴C-thymidine (thymidine with a stable carbon atom replaced by a radioactive carbon atom) and as ³H-thymidine (thymidine in which a stable hydrogen atom has been replaced by tritium). Thus, when cells actively making DNA are exposed to radioactive thymidine, they incorporate it, and the DNA becomes radioactive.
We have thus found a way to complete the first part of the task, the labeling of new DNA. We still must find out how to distinguish labeled DNA among the many components of the cell. We might do it with a system based on measuring the amount of radioactivity incorporated into the DNA of cells exposed to radioactive thymidine, as an approximation of the frequency of cell division in the group of cells. However, a better method for studying cells synthesizing DNA, and thus preparing to divide, is the use of high-resolution autoradiography.
Autoradiography is based on the same principle as photography. Just as photons of light impinging on a photographic emulsion produce an image, so do beta particles (or alpha particles) emitted by decomposing radioactive atoms. A photographic emulsion is a suspension ofcrystals of a silver halide (usually silver bromide) embedded in gelatin. When crystals of silver bromide are struck by beta particles, the silver atoms are ionized and form a latent image, so called because it is invisible to our eyes. After the emulsion is developed and fixed, each little aggregate of reduced silver atoms becomes a visible black speck on the emulsion. The distribution and combination of the specks make up the photographic image (seeFigure 14). In ordinary photography such an image is a negative, which has to be converted into the positive photograph by printing. In autoradiography we are satisfied to look at the negative image since the clusters of developed silver atoms, appearing under a light microscope as black dots, supply all the information we need.
Figure 14Schematic diagram of a radioautograph.
Figure 14Schematic diagram of a radioautograph.
The distinction of having made the first autoradiograph belongs to the French physicist, Antoine Henri Becquerel; and to another Frenchman, A. Lacassagne, goes the credit for having introduced this technique into biological studies. Lacassagne used autoradiography to study distribution of radioactive polonium in animal organs. After World War II, when radioactive isotopes were first available in appreciable quantities, autoradiography was further perfected through the efforts of such scientists as C. P. Leblond in Canada, S. R. Pelc in England, and P. R. Fitzgerald in the United States.
Today autoradiography is sufficiently precise to locate radioactively labeled substances in individual cells and even in chromosomes and other structures within the cell. Two conditions must be met to achieve this high resolution: (1) The radiation from the radioactive element in the cellsmust be of very short range. (2) The cells must remain in close contact with the photographic emulsion throughout the various experimental manipulations. When these conditions are met, the black dots will appear in the emulsion directly above the cell or cell part from which the radiation came (seeFigure 14).
Shortness of range is satisfied by use of tritium, since its beta particles travel only about 1 micron (one thousandth of a millimeter) and the diameters of mammalian cells range from 15 to 40 or more microns. A mammalian-cell nucleus is at least 7 to 8 microns in diameter.
Figure 15Cells being prepared for autoradiography. (a) Cells being coated with a photographic emulsion. (b) Coated cells being exposed to produce a latent image.
Figure 15Cells being prepared for autoradiography. (a) Cells being coated with a photographic emulsion. (b) Coated cells being exposed to produce a latent image.
The condition of close contact between cells and emulsion is achieved by the technique of dip-coating autoradiography. In this process the glass slide on which the cells are carried is dipped into a melted photographic emulsion (seeFigure 15a), a thin film of which clings to the slide. After it has been dried, the slide is placed in a lighttight box and kept in a refrigerator for the desired period of exposure, usually several days or weeks. During this period disintegrating radioactive atoms within the cells continue to emit beta particles, which, in turn, produce a latent image in the overlying emulsion. After the exposure iscomplete, the slide is developed and fixed like a photographic plate, and a stain is applied which penetrates the emulsion so that the outlines of the cells and their internal structures can be seen. The fixing process removes all silver bromide that has not been ionized so that the emulsion is reduced to a thin, transparent film of gelatin covering the stained cells and containing only the clusters of silver grains that were struck by the beta particles.
Figure 16Radioautographs of tumor cells. Above, tumor cells and blood cells. Below, magnification of tumor cells.
Figure 16Radioautographs of tumor cells. Above, tumor cells and blood cells. Below, magnification of tumor cells.
When the finished autoradiograph is examined under the microscope, it will look like the radioautographs of tumor cells inFigure 16. In the upper micrograph the tumor cells are the larger ones and the smaller ones are blood cells. The dense structures in the center of the tumor cells are nuclei. The cells were exposed to tritium-labeled thymidine, and those synthesizing DNA at the time of exposure took up the thymidine and became radioactive. They can be identified by the black dots overlying the nuclei; the dots are the aggregates of silver grains struck by the beta particles.