Chapter 4

Les deux plateaux d'un condensateur PP et P'P' (fig.8) sont horizontaux et abrités dans une boîte métallique BBBB en relation avec la terre. Le corps actif A, situé dans une boîte métallique épaisse CCCC faisant corps avec le plateau P'P', agit sur l'air du condensateur au travers d'une toile métallique T; les rayons qui traversent la toile sont seuls utilisés pour la production du courant, le champ électrique s'arrêtant à la toile. On peut faire varier la distance AT du corps actif à la toile. Le champ entre les plateaux est établi au moyen d'une pile; la mesuredu courant se fait au moyen d'un électromètre et d'un quartz piézoélectrique.

Les deux plateaux d'un condensateur PP et P'P' (fig.8) sont horizontaux et abrités dans une boîte métallique BBBB en relation avec la terre. Le corps actif A, situé dans une boîte métallique épaisse CCCC faisant corps avec le plateau P'P', agit sur l'air du condensateur au travers d'une toile métallique T; les rayons qui traversent la toile sont seuls utilisés pour la production du courant, le champ électrique s'arrêtant à la toile. On peut faire varier la distance AT du corps actif à la toile. Le champ entre les plateaux est établi au moyen d'une pile; la mesuredu courant se fait au moyen d'un électromètre et d'un quartz piézoélectrique.

Fig. 8.

Fig. 8.

En plaçant en A sur le corps actif divers écrans et en modifiant la distance AT, on peut mesurer l'absorption des rayons qui font dans l'air des chemins plus ou moins grands.

En plaçant en A sur le corps actif divers écrans et en modifiant la distance AT, on peut mesurer l'absorption des rayons qui font dans l'air des chemins plus ou moins grands.

Voici les résultats obtenus avec le polonium:

Pour une certaine valeur de la distance AT (4cmet au-dessus), aucun courant ne passe: les rayons ne pénètrent pas dans le condensateur. Quand on diminue la distance AT, l'apparition des rayons dans le condensateur se fait d'une manière assez brusque, de telle sorte que, pour une petite diminution de la distance, on passe d'un courant très faible à un courant très notable; ensuite le courant s'accroît régulièrement quand on continue à rapprocher le corps radiant de la toile T.

Quand on recouvre la substance radiante d'une lame d'aluminium laminé de 1/100 de millimètre d'épaisseur, l'absorption produite par la lame est d'autant plus forte que la distance AT est plus grande.

Si l'on place sur la première lame d'aluminium une deuxième lame pareille, chaque lame absorbe une fraction du rayonnement qu'elle reçoit, et cette fraction est plus grande pour la deuxième lame que pour la première, de telle façon que c'est la deuxième lame qui semble plus absorbante.

Dans le Tableau qui suit, j'ai fait figurer: dans la première ligne, les distances en centimètres entre le polonium et la toile T; dans la deuxième ligne, la proportion de rayons pour 100 transmise par une lame d'aluminium; dans la troisième ligne, la proportion de rayons pour 100 transmise par deux lames du même aluminium.

Dans le Tableau qui suit, j'ai fait figurer: dans la première ligne, les distances en centimètres entre le polonium et la toile T; dans la deuxième ligne, la proportion de rayons pour 100 transmise par une lame d'aluminium; dans la troisième ligne, la proportion de rayons pour 100 transmise par deux lames du même aluminium.

Dans ces expériences, la distance des plateaux P et P' était de 3cm. On voit que l'interposition de la lame d'aluminium diminue l'intensité du rayonnement en plus forte proportion dans les régions éloignées que dans les régions rapprochées.

Cet effet est encore plus marqué que ne l'indiquent les nombres qui précèdent. Ainsi, la pénétration de 25 pour 100, pour la distance 0cm,5, représente la moyenne de pénétration pour tous les rayons qui dépassent cette distance, ceux extrêmes ayant une pénétration très faible. Si l'on ne recueillait que les rayons compris entre 0cm,5 et 1cm, par exemple, on aurait une pénétration plus grande encore. Et, en effet, si l'on rapproche le plateau P à une distance 0cm,5 de P', la fraction du rayonnement transmise par la lame d'aluminium (pour AT = 0cm,5) est de 47 pour 100 et, à travers deux lames, elle est de 5 pour 100 du rayonnement primitif.

J'ai fait récemment une deuxième série d'expériences avec ces mêmes échantillons de polonium dont l'activité était considérablement diminuée, l'intervalle de temps qui sépare les deux séries d'expériences étant de 3 ans.

Dans les expériences anciennes, le polonium était à l'état de sous-nitrate; dans celles récentes il était à l'état de grains métalliques, obtenus par fusion du sous-nitrate avec le cyanure de potassium.

J'ai constaté que le rayonnement du polonium avait conservé les mêmes caractères essentiels, et j'ai trouvé quelques résultats nouveaux. Voici, pour diverses valeurs de la distance AT, la fraction du rayonnement transmise par un écran formé par 4 feuilles très minces d'aluminium battu superposées:

J'ai constaté de même que la fraction du rayonnementabsorbée par un écran donné croît avec l'épaisseur de matière qui a déjà été traversée par le rayonnement, mais cela a lieu seulement à partir d'une certaine valeur de la distance AT. Quand cette distance est nulle (le polonium étant tout contre la toile, en dehors ou en dedans du condensateur), on observe que, de plusieurs écrans identiques superposés, chacun absorbe la même fraction du rayonnement qu'il reçoit, autrement dit, l'intensité du rayonnement diminue alors suivant une loi exponentielle en fonction de l'épaisseur de matière traversée, comme cela aurait lieu pour un rayonnement homogène et transmis par la lame sans changement de nature.

Voici quelques résultats numériques relatifs à ces expériences:

Pour une distance AT égale à 1cm,5, un écran en aluminium mince transmet la fraction 0,51 du rayonnement qu'il reçoit quand il agit seul, et la fraction 0,34 seulement du rayonnement qu'il reçoit quand il est précédé par un autre écran pareil à lui.

Au contraire, pour une distance AT égale à 0, ce même écran transmet dans les deux cas considérés la même fraction du rayonnement qu'il reçoit et cette fraction est égale à 0,71; elle est donc plus grande que dans le cas précédent.

Voici, pour une distance AT égale à 0 et pour une succession d'écrans très minces superposés, des nombres qui indiquent pour chaque écran le rapport du rayonnement transmis au rayonnement reçu:

Étant données les difficultés d'emploi d'écrans très minces et de la superposition d'écrans au contact, les nombres de chaque colonne peuvent être considérés comme constants; seul, le premier nombre de la colonne relative à l'aluminium indique une absorption plus forte que celle indiquée par les nombres suivants.

Les rayons α du radium se comportent comme les rayons du polonium. On peut étudier ces rayons à peu près seuls en renvoyant les rayons bien plus déviables β de côté par l'emploi d'un champ magnétique; les rayons γ semblent, en effet, peu importants par rapport aux rayons α. Toutefois, on ne peut opérer ainsi qu'à partir d'une certaine distance de la source radiante. Voici les résultats d'une expérience de ce genre. On mesurait la fraction du rayonnement transmise par une lame d'aluminium de 0mm,1 d'épaisseur; cette lame était placée toujours au même endroit, au-dessus et à petite distance de la source radiante. On observait, au moyen de l'appareil de la figure 5, le courant produit dans le condensateur pour diverses valeurs de la distance AD, en présence et en absence de la lame.

Ce sont encore les rayons qui allaient le plus loin dans l'air qui sont le plus absorbés par l'aluminium. Il y a donc une grande analogie entre la partie absorbable α du rayonnement du radium et les rayons du polonium.

Les rayons déviables β et les rayons non déviables pénétrantsγ sont, au contraire, de nature différente. Les expériences de divers physiciens, notamment de MM. Meyer et von Schweidler[69], montrent clairement que, si l'on considère l'ensemble du rayonnement du radium, le pouvoir pénétrant de ce rayonnement augmente avec l'épaisseur de matière traversée, comme cela a lieu pour les rayons de Röntgen. Dans ces expériences, les rayons α interviennent à peine, parce que ces rayons sont pratiquement supprimés par des écrans absorbants très minces. Ce qui traverse, ce sont, d'une part, les rayons β plus ou moins diffusés, d'autre part, les rayons γ, qui semblent analogues aux rayons de Röntgen.

Voici les résultats de quelques-unes de mes expériences à ce sujet:

Le radium est enfermé dans une ampoule de verre. Les rayons qui sortent de l'ampoule traversent 30cmd'air et sont reçus sur une série de plaques de verre d'épaisseur de 1mm,3 chacune; la première plaque transmet 49 pour 100 du rayonnement qu'elle reçoit, la deuxième transmet 84 pour 100 du rayonnement qu'elle reçoit, la troisième transmet 85 pour 100 du rayonnement qu'elle reçoit.

Dans une autre série d'expériences, le radium était enfermé dans une ampoule de verre placée à 10cmdu condensateur qui recevait les rayons. On plaçait sur l'ampoule une série d'écrans de plomb identiques dont chacun avait une épaisseur de 0mm,115.

Le rapport du rayonnement transmis au rayonnement reçu est donné pour chacune des lames successives par la série des nombres suivants:

Pour une série de 4 écrans en plomb dont chacun avait1mm,5 d'épaisseur, le rapport du rayonnement transmis au rayonnement reçu était donné pour les lames successives par les nombres suivants:

De ces expériences il résulte que, quand l'épaisseur de plomb traversée croît de 0mm,1 à 6mm, le pouvoir pénétrant du rayonnement va en augmentant.

J'ai constaté que, dans les conditions expérimentales indiquées, un écran de plomb de 1cm,8 d'épaisseur transmet 2 pour 100 du rayonnement qu'il reçoit; un écran de plomb de 5cm,3 d'épaisseur transmet encore 0,4 pour 100 du rayonnement qu'il reçoit. J'ai constaté également que le rayonnement transmis par une épaisseur de plomb égale à 1mm,5 comprend une forte proportion de rayons déviables (genre cathodique). Ces derniers sont donc capables de traverser non seulement de grandes distances dans l'air, mais aussi des épaisseurs notables de substances solides très absorbantes telles que le plomb.

Quand on étudie avec l'appareil de la figure 2 l'absorption exercée par une lame d'aluminium de 0mm,01 d'épaisseur sur l'ensemble du rayonnement du radium, la lame étant toujours placée à la même distance de la substance radiante, et le condensateur étant placé à une distance variable AD, les résultats obtenus sont la superposition de ce qui est dû aux trois groupes du rayonnement. Si l'on observe à grande distance, les rayons pénétrants dominent et l'absorption est faible; si l'on observe à petite distance, les rayons α dominent et l'absorption est d'autant plus faible qu'on se rapproche plus de la substance; pour une distance intermédiaire, l'absorption passe par un maximum et la pénétration par un minimum.

Toutefois, certaines expériences relatives à l'absorption mettent en évidence une certaine analogie entre les rayons α et les rayons déviables β. C'est ainsi que M. Becquerel a trouvé que l'action absorbante d'un écran solide sur les rayons β augmente avec la distance de l'écran à la source, de sorte que, si les rayons sont soumis à un champ magnétique comme dans la figure 4, un écran placé contre la source radiante laisse subsister une portion plus grande du spectre magnétique que le même écran placé sur la plaque photographique. Cette variation de l'effet absorbant de l'écran avec la distance de cet écran à la source est analogue à ce qui a lieu pour les rayons α; elle a été vérifiée par MM. Meyer et von Schweidler, qui opéraient par la méthode fluoroscopique; M. Curie et moi nous avons observé le même fait en nous servant de la méthode électrique. Les conditions de production de ce phénomène n'ont pas encore été étudiées. Cependant, quand le radium est enfermé dans un tube de verre et placé à assez grande distance d'un condensateur qui est lui-même enfermé dans une boîte d'aluminium mince, il est indifférent de placer l'écran contre la source ou contre le condensateur; le courant obtenu est alors le même dans les deux cas.

L'étude des rayons α m'avait amenée à considérer que ces rayons se comportent comme des projectiles lancés avec une certaine vitesse et qui perdent de leur force vive en franchissant des obstacles[70]. Ces rayons jouissent pourtant de la propagation rectiligne comme l'a montré M. Becquerel dans l'expérience suivante. Le polonium émettant les rayons était placé dans une cavité linéaire très étroite, creusée dans une feuille de carton. On avait ainsi une source linéaire de rayons. Un fil de cuivre de 1mm,5 de diamètre était placé parallèlement en face de la sourceà une distance de 4mm,9. Une plaque photographique était placée parallèlement à une distance de 8mm,65 au delà. Après une pose de 10 minutes, l'ombre géométrique du fil était reproduite d'une façon parfaite, avec les dimensions prévues et une pénombre très étroite de chaque côté correspondant bien à la largeur de la source. La même expérience réussit également bien en plaçant contre le fil une double feuille d'aluminium battu que les rayons sont obligés de traverser.

Il s'agit donc bien de rayons capables de donner des ombres géométriques parfaites. L'expérience avec l'aluminium montre que ces rayons ne sont pas diffusés en traversant la lame, et que cette lame n'émet pas, tout au moins en quantité importante, des rayons secondaires analogues aux rayons secondaires des rayons de Röntgen.

Les rayons α sont ceux qui semblent actifs dans la très belle expérience réalisée dans lespinthariscopede M. Crookes[71]. Cet appareil se compose essentiellement d'un grain de sel de radium maintenu à l'extrémité d'un fil métallique en face d'un écran au sulfure de zinc phosphorescent. Le grain de radium est à une très petite distance de l'écran (0mm,5, par exemple), et l'on regarde au moyen d'une loupe la face de l'écran tournée vers le radium. Dans ces conditions l'œil aperçoit sur l'écran une véritable pluie de points lumineux qui apparaissent et disparaissent continuellement. L'écran présente l'aspect d'un ciel étoilé. Les points brillants sont plus rapprochés dans les régions de l'écran voisines du radium, et dans le voisinage immédiat de celui-ci la lueur paraît continue. Le phénomène ne semble pas altéré par les courants d'air; il se produit dans le vide; un écran même très mince placé entre le radium et l'écran phosphorescent le supprime; il semble donc bien que le phénomène soitdû à l'action des rayons α les plus absorbables du radium.

On peut imaginer que l'apparition d'un des points lumineux sur l'écran phosphorescent est provoquée par le choc d'un projectile isolé. Dans cette manière de voir, on aurait affaire, pour la première fois, à un phénomène permettant de distinguer l'action individuelle d'une particule dont les dimensions sont du même ordre de grandeur que celles d'un atome.

L'aspect des points lumineux est le même que celui des étoiles ou des objets ultra-microscopiques fortement éclairés qui ne produisent pas sur la rétine des images nettes, mais des taches de diffraction; et ceci est bien en accord avec la conception que chaque point lumineux extrêmement petit est produit par le choc d'un seul atome.

Les rayons pénétrants non déviables γ semblent être de tout autre nature et semblent analogues aux rayons Röntgen. Rien ne prouve, d'ailleurs, que des rayons peu pénétrants de même nature ne puissent exister dans le rayonnement du radium, car ils pourraient être masqués par le rayonnement corpusculaire.

On vient de voir combien le rayonnement des corps radioactifs est un phénomène complexe. Les difficultés de son étude viennent s'augmenter par cette circonstance, qu'il y a lieu de rechercher si ce rayonnement éprouve de la part de la matière une absorption sélective seulement, ou bien aussi une transformation plus ou moins profonde.

On ne sait encore que peu de choses relativement à cette question. Toutefois, si l'on admet que le rayonnement du radium comporte à la fois des rayons genre cathodique et des rayons genre Röntgen, on peut s'attendre à ce que ce rayonnement éprouve des transformations en traversant les écrans. On sait, en effet: 1º que les rayons cathodiques qui sortent du tube de Crookes à travers une fenêtre d'aluminium (expérience de Lenard) sont fortementdiffusés par l'aluminium, et que, de plus, la traversée de l'écran entraîne une diminution de la vitesse des rayons; c'est ainsi que des rayons cathodiques d'une vitesse égale à 1,4 × 1010centimètres perdent 10 pour 100 de leur vitesse en traversant 0mm,01 d'aluminium[72]; 2º les rayons cathodiques, en frappant un obstacle, donnent lieu à la production de rayons Röntgen; 3º les rayons Röntgen, en frappant un obstacle solide, donnent lieu à une production derayons secondaires, qui sont en partie des rayons cathodiques[73].

On peut donc, par analogie, prévoir l'existence de tous les phénomènes précédents pour les rayons des substances radioactives.

En étudiant la transmission des rayons du polonium à travers un écran d'aluminium, M. Becquerel n'a observé ni production de rayons secondaires ni transformation en rayons genre cathodique[74].

J'ai cherché à mettre en évidence une transformation des rayons du polonium, en employant la méthode de l'interversion des écrans: deux écrans superposés E1et E2étant traversés par les rayons, l'ordre dans lequel ils sont traversés doit être indifférent, si le passage au travers des écrans ne transforme pas les rayons; si, au contraire, chaque écran transforme les rayons en les transmettant, l'ordre des écrans n'est pas indifférent. Si, par exemple, les rayons se transforment en rayons plus absorbables en traversant du plomb, et que l'aluminium ne produise pas un effet du même genre avec la même importance, alors le système plomb-aluminium paraîtra plus opaque que le système aluminium-plomb; c'est ce qui a lieu pour les rayons Röntgen.

Mes expériences indiquent que ce phénomène se produit avec les rayons du polonium. L'appareil employé était celui de la figure 8. Le polonium était placé dans la boîte CCCC et les écrans absorbants, nécessairement très minces, étaient placés sur la toile métallique T.

Les résultats obtenus prouvent que le rayonnement est modifié en traversant un écran solide. Cette conclusion est d'accord avec les expériences dans lesquelles, de deux lames métalliques identiques et superposées, la première se montre moins absorbante que la suivante. Il est probable, d'après cela, que l'action transformatrice d'un écran est d'autant plus grande que cet écran est plus loin de la source. Ce point n'a pas été vérifié, et la nature de la transformation n'a pas encore été étudiée en détail.

J'ai répété les mêmes expériences avec un sel de radium très actif. Le résultat a été négatif. Je n'ai observé que des variations insignifiantes dans l'intensité de la radiation transmise lors de l'interversion de l'ordre des écrans. Les systèmes d'écrans essayés ont été les suivants:

Le système plomb-aluminium s'est montré légèrement plus opaque que celui aluminium-plomb, mais la différence n'est pas grande.

Je n'ai pu mettre ainsi en évidence une transformation notable des rayons du radium. Cependant, dans diverses expériences radiographiques, M. Becquerel a observé des effets très intenses dus aux rayons diffusés ou secondaires, émis par les écrans solides qui recevaient les rayons du radium. La substance la plus active, au point de vue de ces émissions secondaires, semble être le plomb.

Action ionisante des rayons du radium sur les liquides isolants.—M. Curie a montré que les rayons du radium et les rayons de Röntgen agissent sur les diélectriques liquides comme sur l'air, en leur communiquant une certaine conductibilité électrique[75]. Voici comment était disposée l'expérience (fig.9).

Fig. 9.

Fig. 9.

Le liquide à expérimenter est placé dans un vase métallique CDEF, dans lequel plonge un tube de cuivre mince AB; ces deux pièces métalliques servent d'électrodes. Le vase est maintenu à un potentiel connu, au moyen d'une batterie de petits accumulateurs, dont un pôle est à terre. Le tube AB est en relation avec l'électromètre. Lorsqu'un courant traverse le liquide, on maintient l'électromètre au zéro à l'aide d'un quartz piézoélectriquequi donne la mesure du courant. Le tube de cuivre MNM'N', relié au sol, sert de tube de garde pour empêcher le passage du courant à travers l'air. Une ampoule contenant le sel de baryum radifère peut être placée au fond du tube AB; les rayons agissent sur le liquide après avoir traversé le verre de l'ampoule et les parois du tube métallique. On peut encore faire agir le radium en plaçant l'ampoule en dessous de la paroi DE.

Pour agir avec les rayons de Röntgen, on fait arriver ces rayons au travers de la paroi DE.

L'accroissement de conductibilité par l'action des rayons du radium ou des rayons de Röntgen semble se produire pour tous les diélectriques liquides; mais, pour constater cet accroissement, il est nécessaire que la conductibilité propre du liquide soit assez faible pour ne pas masquer l'effet des rayons.

En opérant avec le radium et les rayons de Röntgen, M. Curie a obtenu des effets du même ordre de grandeur.

Quand on étudie avec le même dispositif la conductibilité de l'air ou d'un autre gaz sous l'action des rayons de Becquerel, on trouve que l'intensité du courant obtenu est proportionnelle à la différence de potentiel entre les électrodes, tant que celle-ci ne dépasse pas quelques volts; mais pour des tensions plus élevées, l'intensité du courant croît de moins en moins vite, et le courant de saturation est sensiblement atteint pour une tension de 100 volts.

Les liquides étudiés avec le même appareil et avec le même produit radiant très actif se comportent différemment; l'intensité du courant est proportionnelle à la tension quand celle-ci varie entre 0 et 450 volts, et cela même quand la distance des électrodes ne dépasse pas 6mm. On peut alors considérer laconductivitéprovoquée dans divers liquides par le rayonnement d'un sel de radium agissant dans les mêmes conditions.

Les nombres du Tableau suivant multiplié par 10-14donnent la conductivité en mhos (inverse d'ohm) pour 1cm³:

On peut cependant supposer que les liquides et les gaz se comportent d'une façon analogue, mais que, pour les liquides, le courant reste proportionnel à la tension jusqu'à une limite bien plus élevée que pour les gaz. On pouvait, par analogie avec ce qui a lieu pour les gaz, chercher à abaisser la limite de proportionnalité en employant un rayonnement beaucoup plus faible. L'expérience a vérifié cette prévision; le produit radiant employé était 150 fois moins actif que celui qui avait servi pour lespremières expériences. Pour des tensions de 50, 100, 200, 400 volts, les intensités du courant étaient représentées respectivement par les nombres 109, 185, 255, 335. La proportionnalité ne se maintient plus, mais le courant varie encore fortement quand on double la différence de potentiel.

Quelques-uns des liquides examinés sont des isolants à peu près parfaits, quand ils sont maintenus à température constante, et qu'ils sont à l'abri de l'action des rayons. Tels sont: l'air liquide, l'éther de pétrole, l'huile de vaseline, l'amylène. Il est alors très facile d'étudier l'effet des rayons. L'huile de vaseline est beaucoup moins sensible à l'action des rayons que l'éther de pétrole. Il convient peut-être de rapprocher ce fait de la différence de volatilité qui existe entre ces deux hydrocarbures. L'air liquide qui a bouilli pendant quelque temps dans le vase d'expérience est plus sensible à l'action des rayons que celui que l'on vient d'y verser; la conductivité produite par les rayons est de 1/4 plus grande dans le premier cas. M. Curie a étudié sur l'amylène et sur l'éther de pétrole l'action des rayons aux températures de + 10° et de - 17°. La conductivité due au rayonnement diminue de 1/10 seulement de sa valeur, quand on passe de 10° à - 17°.

Dans les expériences où l'on fait varier la température du liquide on peut soit maintenir le radium à la température ambiante, soit le porter à la même température que le liquide; on obtient le même résultat dans les deux cas. Cela tient à ce que le rayonnement du radium ne varie pas avec la température, et conserve encore la même valeur même à la température de l'air liquide. Ce fait a été vérifié directement par des mesures.

Divers effets et applications de l'action ionisante des rayons émis par les substances radioactives.—Les rayons des nouvelles substances radioactives ionisent l'airfortement. On peut, par l'action du radium, provoquer facilementla condensation de la vapeur d'eau sursaturée, absolument comme cela a lieu par l'action des rayons cathodiques et des rayons Röntgen.

Sous l'influence des rayons émis par les substances radioactives nouvelles, ladistance explosive entre deux conducteurs métalliques pour une différence de potentiel donnée se trouve augmentée; autrement dit, le passage de l'étincelle est facilité par l'action des rayons. Ce phénomène est dû à l'action des rayons les plus pénétrants. Si, en effet, on entoure le radium d'une enveloppe en plomb de 2cm, l'action du radium sur l'étincelle n'est pas considérablement affaiblie, alors que le rayonnement qui traverse n'est qu'une très faible fraction du rayonnement total.

En rendant conducteur, par l'action des substances radioactives, l'air au voisinage de deux conducteurs métalliques, dont l'un est relié au sol et l'autre à un électromètre bien isolé, on voit l'électromètre prendre une déviation permanente, qui permet de mesurer la force électromotrice de la pile formée par l'air et les deux métaux (force électromotrice de contact des deux métaux, quand ils sont séparés par l'air). Cette méthode de mesures a été employée par lord Kelwin et ses élèves, la substance radiante étant l'uranium[76]; une méthode analogue avait été antérieurement employée par M. Perrin qui utilisait l'action ionisante des rayons Röntgen[77].

On peut se servir des substances radioactives dans l'étude de l'électricité atmosphérique. La substance active est enfermée dans une petite boîte en aluminium mince, fixée à l'extrémité d'une tige métallique en relation avec l'électromètre. L'air est rendu conducteur au voisinagede l'extrémité de la tige, et celle-ci prend le potentiel de l'air qui l'entoure. Le radium remplace ainsi avec avantage les flammes ou les appareils à écoulement d'eau de lord Kelwin, généralement employés jusqu'à présent dans l'étude de l'électricité atmosphérique[78].

Effets de fluorescence, effets lumineux.—Les rayons émis par les nouvelles substances radioactives provoquent la fluorescence de certains corps. M. Curie et moi, nous avons tout d'abord découvert ce phénomène en faisant agir le polonium au travers d'une feuille d'aluminium sur une couche de platinocyanure de baryum. La même expérience réussit encore plus facilement avec du baryum radifère suffisamment actif. Quand la substance est fortement radioactive, la fluorescence produite est très belle.

Un grand nombre de substances sont susceptibles de devenir phosphorescentes ou fluorescentes par l'action des rayons de Becquerel. M. Becquerel a étudié l'action sur les sels d'urane, le diamant, la blende, etc. M. Bary a montré que les sels des métaux alcalins et alcalino-terreux, qui sont tous fluorescents sous l'action des rayons lumineux et des rayons Röntgen, sont également fluorescents sous l'action des rayons du radium[79]. On peut également observer la fluorescence du papier, du coton, du verre, etc., au voisinage du radium. Parmi les différentes espèces de verre, le verre de Thuringe est particulièrement lumineux. Les métaux ne semblent pas devenir lumineux.

Le platinocyanure de baryum convient le mieux quand on veut étudier le rayonnement des corps radioactifs par la méthode fluoroscopique. On peut suivre l'effet des rayons du radium à des distances supérieures à 2m. Le sulfurede zinc phosphorescent est rendu extrêmement lumineux, mais ce corps a l'inconvénient de conserver la luminosité pendant quelque temps, après que l'action des rayons a été supprimée.

On peut observer la fluorescence produite par le radium quand l'écran fluorescent est séparé du radium par des écrans absorbants. Nous avons pu observer l'éclairement d'un écran au platinocyanure de baryum à travers le corps humain. Cependant, l'action est incomparablement plus intense, quand l'écran est placé tout contre le radium et qu'il n'en est séparé par aucun écran solide. Tous les groupes de rayons semblent capables de produire la fluorescence.

Pour observer l'action du polonium il est nécessaire de mettre la substance tout près de l'écran fluorescent sans interposition d'écran solide, ou tout au moins avec interposition d'un écran très mince seulement.

La luminosité des substances fluorescentes exposées à l'action des substances radioactives baisse avec le temps. En même temps la substance fluorescente subit une transformation. En voici quelques exemples:

Les rayons du radium transforment le platinocyanure de baryum en une variété brune moins lumineuse (action analogue à celle produite par les rayons Röntgen et décrite par M. Villard). Ils altèrent également le sulfate d'uranyle et de potassium en le faisant jaunir. Le platinocyanure de baryum transformé est régénéré partiellement par l'action de la lumière. Plaçons le radium au-dessous d'une couche de platinocyanure de baryum étalée sur du papier, le platinocyanure devient lumineux; si l'on maintient le système dans l'obscurité, le platinocyanure s'altère, et sa luminosité baisse considérablement. Mais, exposons le tout à la lumière; le platinocyanure est partiellement régénéré, et si l'on reporte le tout dans l'obscurité, la luminosité reparaît assez forte. On a donc, au moyen d'un corps fluorescent et d'un corps radioactif, réalisé un systèmequi fonctionne comme un corps phosphorescent à longue durée de phosphorescence.

Le verre, qui est rendu fluorescent par l'action du radium, se colore en brun ou en violet. En même temps, il devient moins fluorescent. Si l'on chauffe ce verre ainsi altéré, il se décolore et, en même temps que la décoloration se produit, le verre émet de la lumière. Après cela le verre a repris la propriété d'être fluorescent au même degré qu'avant la transformation.

Le sulfure de zinc qui a été exposé à l'action du radium pendant un temps suffisant s'épuise peu à peu et perd la faculté d'être phosphorescent, soit sous l'action du radium, soit sous celle de la lumière.

Le diamant est rendu phosphorescent par l'action du radium et peut être distingué ainsi des imitations en strass, dont la luminosité est très faible.

Tous les composés de baryum radifèresont spontanément lumineux[80]. Les sels haloïdes, anhydres et secs, émettent une lumière particulièrement intense. Cette luminosité ne peut être vue à la grande lumière du jour, mais on la voit facilement dans la demi-obscurité ou dans une pièce éclairée à la lumière du gaz. La lumière émise peut être assez forte pour que l'on puisse lire en s'éclairant avec un peu de produit dans l'obscurité. La lumière émise émane de toute la masse du produit, tandis que, pour un corps phosphorescent ordinaire, la lumière émane surtout de la partie de la surface qui a été éclairée. A l'air humide les produits radifères perdent en grande partie leur luminosité, mais ils la reprennent par desséchement (Giesel). La luminosité semble se conserver. Au bout de plusieurs années aucune modification sensible ne semble s'être produite dans la luminosité de produits faiblement actifs,gardés en tubes scellés à l'obscurité. Avec du chlorure de baryum radifère, très actif et très lumineux, la lumière change de teinte au bout de quelques mois; elle devient plus violacée et s'affaiblit beaucoup; en même temps le produit subit certaines transformations; en redissolvant le sel dans l'eau et en le séchant à nouveau, on obtient la luminosité primitive.

Les solutions de sels de baryum radifères, qui contiennent une forte proportion de radium, sont également lumineuses; on peut observer ce fait en plaçant la solution dans une capsule de platine qui, n'étant pas lumineuse elle-même, permet d'apercevoir la luminosité faible de la solution.

Quand une solution de sel de baryum radifère contient des cristaux qui s'y sont déposés, ces cristaux sont lumineux au sein de la solution, et ils le sont bien plus que la solution elle-même, de sorte que, dans ces conditions, ils semblent seuls lumineux.

M. Giesel a préparé du platinocyanure de baryum radifère. Quand ce sel vient de cristalliser, il a l'aspect du platinocyanure de baryum ordinaire, et il est très lumineux. Mais peu à peu le sel se colore spontanément et prend une teinte brune, en même temps que les cristaux deviennent dichroïques. A cet état, le sel est bien moins lumineux, quoique sa radioactivité ait augmenté[81]. Le platinocyanure de radium, préparé par M. Giesel, s'altère encore bien plus rapidement.

Les composés de radium constituent le premier exemple de substances spontanément lumineuses.

Dégagement de chaleur par les sels de radium.—Tout récemment MM. Curie et Laborde ont trouvé queles sels de radium sont le siège d'un dégagement dechaleur spontané et continu[82]. Ce dégagement de chaleur a pour effet de maintenir les sels de radium à une température plus élevée que la température ambiante; l'excès de température dépend d'ailleurs de l'isolement thermique de la substance. Cet excès de température peut être mis en évidence par une expérience grossière faite au moyen de deux thermomètres à mercure ordinaires. On utilise deux vases isolateurs thermiques à vide, identiques entre eux. Dans l'un des vases on place une ampoule de verre contenant 7dgde bromure de radium pur; dans le deuxième vase on place une autre ampoule de verre toute pareille qui contient une substance inactive quelconque, par exemple du chlorure de baryum. La température de chaque enceinte est indiquée par un thermomètre dont le réservoir est placé au voisinage immédiat de l'ampoule. L'ouverture des isolateurs est fermée par du coton. Quand l'équilibre de température est établi, le thermomètre qui se trouve dans le même vase que le radium indique constamment une température supérieure à celle indiquée par l'autre thermomètre; l'excès de température observé était de 3°.

On peut évaluer la quantité de chaleur dégagée par le radium à l'aide du calorimètre à glace de Bunsen. En plaçant dans ce calorimètre une ampoule de verre qui contient le sel de radium, on constate un apport continu de chaleur qui s'arrête dès qu'on éloigne le radium. La mesure faite avec un sel de radium préparé depuis longtemps indique que chaque gramme de radium dégage environ 80 petites calories pendant chaque heure. Le radium dégage donc pendant une heure une quantité de chaleur suffisante pour fondre son poids de glace, et un atome gramme (225g) de radium dégagerait en une heure 18000cal, soit une quantité de chaleur comparable àcelle qui est produite par la combustion d'un atome gramme (1g) d'hydrogène. Un débit de chaleur aussi considérable ne saurait être expliqué par aucune réaction chimique ordinaire, et cela d'autant plus que l'état du radium semble rester le même pendant des années. On pourrait penser que le dégagement de chaleur est dû à une transformation de l'atome de radium lui-même, transformation nécessairement très lente. S'il en était ainsi, on serait amené à conclure que les quantités d'énergie mises en jeu dans la formation et dans la transformation des atomes sont considérables et dépassent tout ce qui nous est connu.

On peut encore évaluer la chaleur dégagée par le radium à diverses températures en l'utilisant pour faire bouillir un gaz liquéfié et en mesurant le volume du gaz qui se dégage. On peut faire cette expérience avec du chlorure de méthyle (à - 21°). L'expérience a été faite par MM. Dewar et Curie avec l'oxygène liquide (à - 180°)et avec l'hydrogène liquide (à - 252°). Ce dernier corps convient particulièrement bien pour réaliser l'expérience. Une éprouvette A, entourée d'un isolateur thermique à vide, contient de l'hydrogène liquide H (fig.10); elle est munie d'un tube de dégagementtqui permet de recueillir le gaz dans une éprouvette graduée E remplie d'eau. L'éprouvette A et son isolateur plongent dans un bain d'hydrogène liquide H'. Dans ces conditions aucun dégagement gazeux ne se produit dans l'éprouvette A. Lorsque l'on introduit, dans l'hydrogène liquide contenu dans cette éprouvette, une ampoule qui contient 7dgde bromure de radium, il se fait un dégagement continu de gaz, et l'on recueille 73cm³de gaz par minute.


Back to IndexNext