Fig. 22. Rain gauge showing construction.
Fig. 22. Rain gauge showing construction.
Fig. 22. Rain gauge showing construction.
106. The rain gauge, as the illustration shows, is a cylindrical vessel with a funnel-shaped receiver at the top, which is 8 inches in diameter. The receiver fits closely upon a narrower brass vessel or measuring tube in which the rain collects. The ratio of surface between receiver and tube is 10 to 1. For readings covering a general area, the rain-gauge is placed in the open, away from buildings or other obstructions, and is sunken in the ground sufficiently to keep it upright. In localities where winds are strong, it is usually braced at the sides also or supported by a wooden frame. In measuring the amount of rain in the measuring tube, the depth is divided by ten in order to ascertain the actual rainfall. The depth is measured by inserting the measuring-rod through the hole in the funnel until it touches the bottom. It is left for a second or so, quickly withdrawn, and the limit of the wetted portion noted. In the case of standard rods, the actual rainfall is read directly in hundredths, so that the division by ten is unnecessary. After each reading, the measuring tube is carefully drained, replaced, and the receiver put in position. No regular time for making readings is necessary. During a rainy period, it is customary to make a measurement each day, but it has been found more satisfactory for ecological purposes to measure each shower, and to record its duration. These two facts furnisha ready clue to the relative amount of run-off in each fall of rain. The measurement of snowfall is often made merely by determining its depth. For comparison with rainfall, the rain gauge with receiver and tube withdrawn is used. The snow which falls is melted, poured into the measuring tube, and measured in the ordinary way. The U. S. Weather Bureau standard rain gauge, with measuring stick, may be obtained of H. J. Green, or of J. P. Friez for $5.25.
107. Precipitation records.From the periodic character of precipitation, rainfall sums, means, and curves have little importance in the careful study of the habitat. The rainfall curve for the growing season is an aid in explaining the curve of water-content, and the mean rainfall of a region gives some idea of its vegetation, though even here the matter of its distribution is of primary importance. The rain and snow charts published by the U. S. Weather Bureau furnish data of some importance for the general study of vegetation, but it is evident that they can play little part in a system which is founded upon the habitat. Precipitation records, for reasons of brevity and convenience, are united with wind records, and the form will be found under the discussion of this factor.
Fig. 23. Simple anemometer.
Fig. 23. Simple anemometer.
Fig. 23. Simple anemometer.
108. Value of readings.On account of its direct effect upon humidity, and its consequent influence upon water-content, the part which wind plays in a habitat can not be ignored in a thorough investigation. It is an important element in exposure, and accordingly has a marked mechanical effect upon the vegetation of exposed habitats, alpine slopes, seacoasts, plains, etc. Owing to its inconstancy and its extreme variation in velocity, single wind readings are absolutely without value. When read in series, anemometers give some information upon the comparative air movement in different habitats,but the chance of error is great, except when the breeze is steady. Anemographs alone give real satisfaction. Accurate results, however, are not obtainable without a series of two or more in different habitats, and it is still an open question whether the results obtained justify the expense. For a completely equipped base station, anemometer, anemograph, and wind vane are desirable instruments, but the study of the habitat has by no means reached the stage of precision in which their general use is necessary.
Fig. 24. Standard anemometer.
Fig. 24. Standard anemometer.
Fig. 24. Standard anemometer.
109. The anemometerin its simplest form is adapted only to readings made under direct observation, as a sudden change in the direction of the wind reverses the movement of the indicator needle. This simple wind gauge, shown in figure 23, has been used for instructional purposes, and to a slight extent, also, in ascertaining the effect of cover. In constant winds, successive single readings are found to have value, but, ordinarily, the observations must be simultaneous. Careful tests of this simple instrument show that it is essentially accurate. It may be obtained from the C.H. Stoelting Company, 31 W. Randolph St., Chicago, for $25. The standard anemometer (Fig. 24) is practically a recording instrument up to 1,000 miles, but as the dials run on without any indication of the total number of revolutions, it must be visited and read each day. This renders its use difficult for habitats which are some distance apart. When exact determinations of wind values become necessary, the most successful method is to establish a series of three standard anemometers. One of these should be placed upon the most exposed part of a typically open habitat, the second in the most protected part of the same habitat, while the third is located in the midst of a representative forest formation. If the two habitats are close together, the daily visitscan be made without serious inconvenience. The reading of the registering dials requires detailed explanation, and for this the reader is referred to the printed directions which accompany the instrument. In setting up the anemometer it must be borne in mind that the ecologist desires the wind velocity for a particular habitat. In consequence, the precautions which the meteorologist takes to place the instrument at a certain height and well away from surrounding obstructions do not hold here. Standard anemometers are furnished by H. J. Green, and J. P. Friez for $25 each.
The anemograph is an anemometer electrically connected with an automatic register. It is the only instrument adapted to continuous weekly records in different habitats, but the price, $75 ($25 for the anemometer and $50 for the register) is practically prohibitive, at least until a complete series of ecographs for other factors has been obtained.
110. Records.The following form is used as a combined record for precipitation and wind:
DayTimeFormationStationAltitudeExposureCommunityRAINFALLBaseWINDBaseInchesDurationVelocityHeig’tDirection29/8/046:30P.M.Half gravelHiawatha2550 m.N.E. 17°Asterare18 hours53 ft.N. W.31/8/045:45P.M.„„„„„Trace10 min.12„„2/9/044:00P.M.„„„„„.22 hours7„W.3/9/0410:00P.M.„„„„„Trace18„„
111. Soil as a factor.In determining the value of the soil as a factor in a particular habitat, it must be clearly recognized that its importance lies solely in the control which it exerts upon water-content and nutrient-content. The former is directly connected with the texture or fineness of the soil, the latter with its chemical nature. Accordingly, the structure of the soil and its chemical composition are the fundamental points of attack. These are not at all of equal value, however. Water is both a food, and a solvent for the nutrient salts of the soil. Furthermore, the per cent of soluble salts, as determined in mechanical analyses, is practically the same for all ordinary soils. Indeed, the variations for the same soil types are as great as for entirely different types. For these reasons, soluble salt-content may be ignored except where it is readily seen to be excessive, as in alkaline soils; and determinations of chemical composition are necessary only in those soils which contain salts or acids to an injurious degree, e. g.,alkaline soils, peat bogs, humus swamps, etc. The structure of the soil, on the other hand, in the usual absence of excessive amounts of solutes, absolutely controls the fate of the water that enters the ground, in addition to its influence upon the run-off. It determines the amount of gravitation water lost by percolation, as well as the water that can be raised by capillarity. The resultant of these, the total soil water or holard, is hence an effect of structure, while the size and compactness of the particles are conclusive factors in controlling the chresard. It must be recognized, however, that these are all factors which enable us to interpret the amount of holard or chresard found in a particular soil. They have no direct important effect upon the plant, but influence it only in so far as they affect the water present.
112. The value of soil surveys.The full appreciation of the preeminent value of water-content, particularly of the chresard, greatly simplifies the ecological study of soils. The ecologist is primarily concerned with soil water only in its relation to the plant, and while a fair knowledge of soil structure is essential to a proper understanding of this, he has little concern with the detailed study of the problems of soil physics. For the sake of a proper balance of values, he must avoid the tendency noted elsewhere of ignoring the claims of the plant, and of studying the soil simply as the seat of certain physical phenomena. Accordingly, it is felt that mechanical and chemical analyses, determinations of soluble salt-content, etc., have much less value than has been commonly supposed. The usual methods of soil survey, which pay little or no attention to water-content, and none at all to available water, are practically valueless for ecological research. This statement does not indicate a failure to appreciate the importance of the usual soil methods for many agricultural problems, such as the use of fertilizers, conservation of moisture, etc., though even here to focus the work upon water-content would give much more fundamental and serviceable results. For these reasons, slight attention will be paid to methods of mechanical and chemical analysis. In their stead is given a brief statement of the origin, structure, and character of soils with especial reference to water-content.
113. The origin of soils.Rocks form soils in consequence of weathering, under the influence of physical and biotic factors. Weathering consists of two processes, disintegration, by which the rock is broken into component particles of various sizes, and decomposition, in which the rock or its fragments are resolved into minute particles in consequence of the chemical disaggregation of its minerals, or of some other chemical change. These processes are usually concomitant, although, as a rule, one is more evident than the other. The relation between them is dependent upon the characterof the rock and the forces which act upon it. Hard rocks, i. e., igneous and metamorphic ones, as a rule disintegrate more rapidly than they decompose; sedimentary rocks, on the other hand, tend to decompose more rapidly than they disintegrate. In many cases the two processes go hand in hand. This difference is the basis for the distinction, first proposed by Thurmann, between those rocks which weather with difficulty and those which weather readily. The former were called dysgeogenous, the latter eugeogenous. Thurmann restricted the application of the first term to those rocks which produce little soil, but it seems more logical to apply dysgeogenous to those in which disintegration is markedly in excess of decomposition, and eugeogenous to those rocks that break down rather readily into fine soils. With respect to the general character of the soil formed, rocks arepelogenous, clay-producing,psammogenous, sand-forming, orpelopsammogenous, producing mixed clay and sand. The first two are divided intoperpelic,hemipelic,oligopelic,perpsammic, etc., with reference to the readiness with which they are weathered, but this distinction is not a very practicable one. The grouping of soils into silicious, calcareous, argillaceous, etc., with reference to the chemical nature of the original rock, is of no value to the ecologist, apart from the general clue to the physical properties which it furnishes.
114. The structure of soils.The water capacity of a soil is a direct result of the fineness of the particles. Since the water is held as a thin surface film by each particle or group of them, it follows that the amount of water increases with the water-holding surface. The latter increases as the particles become finer and more numerous, and thus produce a greater aggregate surface. The upward and downward movements of water in the soil are likewise in immediate connection with the size of particles. The upward or capillary movement increases as the particles become finer, thus making the irregular capillary spaces between them smaller, and magnifying the pull exerted. On the contrary, the downward movement of gravitation water, i. e., percolation, is retarded by a decrease in the size of the soil grains and hastened by an increase. Hence, the two properties, capillarity and porosity, are direct expressions of the structure of the soil, i. e., of its texture or fineness. Capillarity, however, increases the water-content of the upper layers permeated by the roots of the plant, while porosity decreases it. On the basis of these properties alone, soils would fall into two groups, capillary soils and porous soils, the former fine-grained and of high water-content, the latter coarse-grained and with relatively little water. A third factor, however, of great importance must be taken into account. This is the pull exerted upon each water film by the soil particle itself. This pull apparentlyincreases in strength as the film grows thinner, and explains why it finally becomes impossible for the root-hairs to draw moisture from the soil. This property, like capillarity, is most pronounced in fine-grained soils, such as clays, and is least evident in the coarser sands and gravels. It seems to furnish the direct explanation of non-available water, and, in consequence, to indicate that the chresard is an immediate result of soil texture.
Fig. 25. Sieves for soil analysis.
Fig. 25. Sieves for soil analysis.
Fig. 25. Sieves for soil analysis.
115. Mechanical analysis.From the above it is evident that, with the same rainfall, coarse soils will be relatively dry, and fine soils correspondingly moist. However, this difference in holard is somewhat counterbalanced by the fact that the chresard is much greater in the former than in the latter. The basis of these relations can be obtained only from a study of the texture of the soil. The usual method of doing this is by mechanical analysis. This is far from satisfactory, since the use of the sieves often brings about the disaggregation of groups of particles which act as units in the soil. Furthermore, the analysis affords no exact evidence of the compactness of the soil in nature, and tests of capillarity and porosity made with soil samples out of position are open to serious error. Nevertheless, mechanical analyses furnish results of some value by making it possible to compare soils upon the basis of texture. For ecological purposes, minute analyses are undesirable; their value in any work is doubtful. A separation of soil into gravel, sand, and silt-clay is sufficient, since the relative proportion of these will explain the holard and chresard of the soil concerned. The latter are also affected in rich soils, especially of forests, by the organic matter present. If this is in a finely divided condition, the amount is determined by calcining. When a definite layer of leafmold is present, as in forests and thickets, its water-value is found separately, since its power of retaining water is altogether out of proportion to its weight.
116. Kinds of soils.It is very doubtful whether it is worth while to attempt to distinguish soils upon the basis of mechanical analysis. Unquestionably, the most satisfactory method is to distinguish them with respect to holard and chresard, and to regard texture as of secondary importance. A series of soil classes which comprise various soil types has been proposed by the U. S. Bureau[7]of Soils as follows: (1) stony loam, (2) gravel, (3) gravelly loam, (4) dunesand, (5) sand, (6) fine sand, (7) sandy loam, (8) fine sandy loam, (9) loam, (10) shale loam, (11) silt loam, (12) clay loam, (13) clay, (14) adobe. These are basedentirely upon mechanical analyses, and in some cases are too closely related to be useful. The line between them can nowhere be sharply drawn. Indeed, the variation within one class is so great that soils have frequently been referred to the wrong group. Thus, Cassadaga sand (gravel 22 per cent, sand 43 per cent, silt 21 per cent, clay 10 per cent) is more closely related to Oxnard sandy loam (26–37–18–12) and to Afton fine sandy loam (28–43–18–8) than to Coral sand (61–29–3–4), Galveston sand (6–91–1–1), or Salt Lake sand (84–15–1–0). Elsinore sandy loam (8–38–35–10) is much nearer to Hanford fine sandy loam (9–36–33–14) than to Billings sandy loam (1–60–22–11) or to Utuado sandy loam (48–23–19–8). The soil types are much more confused, and for ecological purposes at least are entirely valueless. Lake Charles fine sandy loam has the composition, 1–34–52–9; Vernon fine sandy loam, 1–37–54–7, while many other so-called types show nearly the same degree of identity.
117. The chemical nature of soils.The effect of alkaline and acid substances in the soil upon water-content and the activities of the plant is far from being well understood. It is generally recognized that salts and acids tend to inhibit the absorptive power of the root-hairs. In the case of saline soils, this inhibitive effect seems to be established, but the action of acids in bogs and swamps is still an open question. It is probable that the influence of organic acid has been overestimated, and that the curious anomaly of a structural xerophyte in a swamp is to be explained by the stability of the ancestral type and by the law of extremes. Apart from the effect which excessive amounts of acids and salts may have in reducing the chresard, the chemical character of the soil is powerless to produce structural modification in the plant. Since Thurmann’s researches there has been no real support of the contention that the chemical properties of the soil, not its physical nature, are the decisive factors in the distribution and adaptation of plants. It is not sufficient that the vegetation of a silicious soil differs from that of a calcareous one. A soil can modify the plants upon it only though its water-content, or the solutes it contains. Hence, the chemical composition of the original rock is immaterial, except in so far as it modifies these two factors. Humus, moreover, while an important factor in growth, has no formative influence beyond that which it exerts through water-content.
118. Factors.The physiographic factors of a definite habitat are altitude, exposure, slope, and surface. In addition, topography is a general though less tangible factor of regions, while the dynamic forces of weathering,erosion and sedimentation play a fundamental role in the change of habitats. It is evident, however, that these, except where they affect the destruction of vegetation directly, can operate upon the plant only through more direct factors, such as water, light, and temperature. While they are themselves not susceptible of measurement, they can often be expressed in terms of determinable factors, i. e., slope, exposure, and surface. Fundamentally, they constitute the forces which change one habitat into another, and, in consequence, are really to be considered as the factors which produce succession. The static features of physiography, altitude, etc., lend themselves readily to determination by means of precise instruments. These factors, though by no means negligible, are remote, and consequently their mere measurement is insufficient to indicate the nature or extent of their influence upon the plant. It is necessary to determine also the manner and degree in which they affect other factors, a task yet to be done. Readings of altitude, slope, and exposure are so easily made that the student must carefully avoid the tendency to let them stand at their own value, which is slight. Instead, they should be made the starting point for ascertaining the differences which they produce in water-content, humidity wind, and temperature.
119. Analysis into factors.Of all physiographic features, altitude is the most difficult to resolve into simple factors. Because of general geographic relations, it has a certain connection with rainfall, but this is vague and inconstant. Obviously, in its influence upon the plant, altitude is really pressure, and in consequence its effect is exerted upon the climatic and not the edaphic factors of the habitat. Theoretically, the decrease of air pressure in the increased altitude directly affects humidity, light, and temperature. Actually, while there is unquestionably a decrease in the absorption of the light and heat rays owing to the fact that they traverse less atmosphere, which is at the same time less dense, this seems to be negligible. Photometric readings at elevations of 6,000 and 14,000 feet have so far failed to show more than slight differences, which are altogether too small to be efficient. The effect upon humidity is greater, but the degree is uncertain. Continuous psychrographic records at different elevations for a full season, at least, will be necessary to determine this, since the psychrometric readings so far made, while referred to a base psychrograph, are too scattered to be conclusive. Finally, the length of the season, itself a composite, is directly dependent upon the altitude. This relation, though obscure, rests chiefly upon the rarefaction of the air which prevents the accumulation of heat in both the soil and the air.
Fig. 26. Aneroid barometer.
Fig. 26. Aneroid barometer.
Fig. 26. Aneroid barometer.
120. The barometer.To secure convenience and accuracy in the determination of altitude, it is necessary to use both a mercurial and an aneroid barometer. The latter is by far the most serviceable for field work, but it requires frequent standardizing by means of the former. The mercurial form is much more accurate and should be read daily in the base station. It is practically impossible to carry it in the field, except in the so-called mountain form, which is of great service in establishing the altitudes of a series of stations. In use the aneroid barometer may be checked daily by the mercurial standard, or it may be set at the altitude of the base station, thus giving a direct reading. After the normal pressure at the base has once been ascertained, however, the most satisfactory method is to set the aneroid each day by the standard, at the same time noting the pressure deviation in feet of elevation (see p.46). The absolute elevation of the various stations of a series may be determined either by adding or subtracting this deviation from the actual reading at the station, or by noting the change from the base station, and then adding or subtracting this from the normal of the latter. When it is impossible to check the aneroid by means of a mercurial barometer, the average of a series of readings made at different days at one station, especially if taken during settled weather, will practically eliminate the daily fluctuations, and yield a result essentially accurate. Even in this event, the accuracy of the aneroid should be checked as often as possible, since the mechanism may go wrong at any time. The barograph, while a valuable instrument for base stations, is not at all necessary. These instruments can be obtained from all makers of meteorological apparatus, such as H. J. Green, and J. P. Friez. Aneroid barometers reading to 16,000 feet cost about $20; the price of the Richards aneroid barograph is $45. Ordinary observatory barometers cost $30–$40; the standard instrument sells at $75–$100. The mountain barometer, which is altogether the most serviceable for the ecologist, ranges from $30–$55, depending upon accessories, etc.
Slope
Fig. 27. Mountain barometer: (a) in carrying case; (b) set up for use.
Fig. 27. Mountain barometer: (a) in carrying case; (b) set up for use.
Fig. 27. Mountain barometer: (a) in carrying case; (b) set up for use.
121. Concept.This term is used in the ordinary sense to indicate the relation of the surface of a habitat to the horizon. Although it is a complex of factors, or rather influences several factors, these are readily determinable. The primary effect of slope is seen in the control of run-off and drainage, and consequently of water-content, although these are likewise affected by soil texture and by surface. Slope, moreover, as a concomitant of exposure, has an important bearing upon light and heat by virtue of determining the angle of incidence, and also upon wind, and, through it, upon the distribution of snow. At present, while it can be expressed definitely in degrees, it has not yet been connected quantitatively with more direct factors. This is, however, not a difficult task, and it is probable that we shall soon come to express slope principally in amount of run-off, and of incident heat.
122. The clinometer.In the simplest form, this instrument is merely a semicircle of paper, with each half graduated from 1–90°. It is mounted on a board and placed base upward, upon a wooden strip, 2 feet long and 2 inches wide, which has a true edge. At the center of the circle is attached a line and plummet for reading the perpendicular. A more convenient form is shown in figure 28, which is both clinometer and compass. This also necessitates the use of abasing strip to eliminate the inequalities of the surface. The dial face is graduated to show inches of rise per yard, as well as the number of degrees, but the latter, as the simpler term, is preferable for ecological work. In making a reading, the basing strip is placed upon a representative area of the slope, and pressed down firmly to equalize slight irregularities. The clinometer is moved slightly along the upper edge, causing the marker to swing freely. After the latter comes to rest, the instrument is carefully turned upon its back, when the angle of the slope in degrees may be read directly. Two or three such readings in different areas will suffice for the entire habitat, unless it be extremely irregular. The clinometer with compass may be obtained from the Keuffel and Esser Company, 111 Madison St., Chicago, Illinois, for $5.
Fig. 28. Combined clinometer and compass.
Fig. 28. Combined clinometer and compass.
Fig. 28. Combined clinometer and compass.
123. The trechometer.For measuring the effect of slope upon run-off, a simple instrument called the trechometer (τρέχω, to run off) has been devised. This consists merely of a metal tank, 3 × 4 × 12 inches, holding 144 cubicinches of water, with an opening ¼ × 12 inches at the base in front, closed by a tight-fitting slide. Three metal strips, 2 × 12 inches, are fastened to the front of the tank in such a way as to enclose a square foot of soil into which the strips penetrate an inch. In the front strip is an opening, 1 inch square, provided with a drip from which the run-off is collected in a measuring vessel. In use, the instrument is put in position with the metal rim forced down 1 inch into the soil; the tank is filled, the graduate put in place, and the slide raised. The run-off for a square foot is the amount of water caught by the graduate, and is represented in cubic inches per square foot. For obtaining results which express slope alone, comparisons must be made upon the same soil, from which all cover, dead and living, has been removed. They must be as closely together in time as possible, at least during the same day, as rain or evaporation willcause considerable error. It is obvious that with the same slope or on a level the trechometer may also be used to advantage to determine the absorptive power of soils of different texture. It serves well a similar purpose when used in different habitats to measure the composite action of slope, soil, and cover in dividing the rainfall into run-off and absorbed water.
124. Exposurerefers primarily to the direction toward which a slope faces, i. e., its exposition or insolation with respect to sun and wind. It is not altogether separable from slope, however, inasmuch as the angle of the slope has some effect upon the degree of exposure. The chief influence of exposure is exerted through temperature, since slopes longest exposed to the sun’s rays receive the most heat. This is supplemented in an important degree by the fact that a group of rays 1 foot square will occupy this area only on slopes upon which they fall at right angles. In all other cases the rays are spread over a longer area, with a consequent reduction in the amount of heat received. This effect is felt principally in evaporation from the soil, and in soil temperatures. For the leaf, it is largely if not entirely negligible, since the angle of incidence is determined by the position of the leaf, which is the same for each species whether on the level or upon a slope. On this account, exposure has little or no bearing upon light, except that the total amount of light received by the aggregate vegetation of a slope will be greater than for a level area of the same size. The effect of wind varies with the exposure. It is naturally most pronounced in those directions from which the prevailing dry or cold winds blow, and it is greatly emphasized by the fact that the opposite exposure is correspondingly protected. The influence of wind, especially in producing evaporation from the plant and the soil, increases with the slope, since the mutual protection of the plants, or that afforded the soil by the cover, is much reduced. Finally, the distribution of the snow by the wind, a matter of considerable importance for early spring vegetation, is largely determined by exposure.
Exposure is expressed directly in terms of direction, to which is added the angle of the slope. A good field compass, reading to twelve points, is sufficient. It should be checked, of course, by the declination of the needle at the place under observation. A convenient instrument is the one already mentioned, in which compass and clinometer are combined, since these are regularly used at the same time.
125. Surface.The most important consideration with respect to surface is the presence or absence of cover, and the character of the latter. Withthe exception of snow, cover is, however, a question of vegetation, living and dead, and consequently is to be referred to the discussion of biotic factors. The surface of the soil itself often shows irregularities which must be taken into account. Such are the rocks of boulder and rock fields, the hummocks of meadows and bogs, the mounds of prairie dog towns, the innumerable minute gullies and ridges of bad lands, the raised tufts of sand-hills, etc. The influence of these is not profound, but they do have an appreciable effect upon the run-off, temperature, and wind. In many cases, this is distinctly measurable, but as a rule little more can be done than to indicate that the surface is even or uneven, and to describe the degree and kind of unevenness.
126. Record of physiographic factors.Altitude, slope, exposure, and surface are essentially constant factors, and are determined once for all, after a few check readings have been made, except in those relatively rare habitats in which dynamic forces are very active. The form of record used is the following:
DATEFORMATIONSTATIONGROUPALTITUDESLOPEEXPOSURESURFACE10/7/02Gravel slideGolf LinksEriogonare2700 m.23°N.N.W.Even„Brook bankJack BrookViolare2550 m.5°E.N.E.„„Half gravelHiawathaAchilleare2600 m.14°E.Uneven„SpruceMilky WayOpulasterare2625 m.12°N.Even
127. Topography.As heretofore indicated, questions pertaining to the form and development of the land concern groups of habitats within which each habitat is the unit of investigation after the manner already laid down. A knowledge of topography is essential to the accurate mapping of a region, for which the simple methods of plane table and contour work are employed, while the geology of the surface is of primary importance in the study of successions.
128. Influence and importance.Biotic factors are animals and plants. With respect to influence they are usually remote, rarely direct. Nevertheless, they often play a decisive part in the vegetation. Their effect is, as a rule, felt directly by the formation rather than the habitat, but in either case the one reacts upon the other. Such factors are not themselves susceptible of exact measurement, but their influence upon the habitat is usually measurable in terms of the physical factors affected. In the caseof biotic factors, it must be distinctly understood that these are not properly factors of the habitat as a physical complex, but that they are rather to be considered as reactions exerted by the effect, or formation, upon the cause or habitat. This is most especially true of plants.
129. Animals.The activities of man fall into two classes: (1) those that destroy vegetation, and (2) those that modify it. There are rare instances also where the work of man has changed a new or already denuded habitat. In the cases where the vegetation is destroyed, the habitat itself is sufficiently changed to permit the effect to be measured by physical factor instruments. Otherwise, the influence is felt only by the formation, as when man makes possible the migration of weeds, and it can be measured in terms of invasion by the quadrat alone. It becomes especially evident, then, in the case of man’s activities, that where they produce a denuded habitat they are to be regarded as factors in the habitat; when they merely affect the formation, this is not strictly true. The changes wrought by other animals are essentially the same as those produced by man. They are not so marked nor so important, but their relation to habitat and formation is the same. As a rule, however, they affect the habitat much less than they do the formation.
130. Plants.As a dead cover, vegetation is a factor of the habitat proper, but it has relatively little importance, since it occurs regularly during the resting period. Its chief effects are in modifying soil temperature, and in holding snow and rain, and thereby increasing the water-content. By its gradual decay, moreover, it not only adds humus to the soil, but it thereby increases the water-retaining capacity of the latter also. The cover of living vegetation reacts upon the habitat in a much more vital fashion, exerting a powerful effect upon every physical factor of the habitat. The factors thus affected are distinctly measurable though it is often impossible to determine just how much of the factor is directly traceable to the vegetation. This is a simple problem in the case of most aerial factors, especially light, but it is extremely difficult for soil factors, such as water-content and soil texture. In the case of all habitats covered with formations, by far the great majority, it is impossible as well as unnecessary to separate the physical factors of the habitat proper from the reaction upon them which the plant covering exerts. Indeed, the great differentiation of habitats is largely due to the universal principle that in vegetation the effect or formation always reacts upon the cause or habitat in such a way as to modify it. As fundamental causes of succession, the discussion of the various reactions of vegetation is reserved for another place.
Methods of Habitat Investigation
131.The use of the various instruments previously described depends largely upon the preponderance of simple instruments or recording ones. The former necessitate a number of well-trained assistants; the latter require only a part of the time of one investigator. For the most satisfactory results, however, an assistant is all but indispensable. Since simple instruments are most easily obtained because of their cheapness, and are especially adapted to purposes of instruction, the method of using them will be described first, and then that of ecograph batteries.
Fig. 29. Series of stations: I, at Minnehaha; II, at Lincoln in the prairie formation.
Fig. 29. Series of stations: I, at Minnehaha; II, at Lincoln in the prairie formation.
Fig. 29. Series of stations: I, at Minnehaha; II, at Lincoln in the prairie formation.
132. Choice of stations.This method is based upon simultaneous readings by means of simple instruments in a series of habitats, or of stations in a single habitat. Such readings are necessary for the variable atmospheric factors, humidity, light, temperature, and wind. Frequent readings suffice for water-content and precipitation, while only two or three determinations, enough to check out the error, are necessary for the constant factors, altitude, slope, exposure, and surface. An account of the exact procedure employed in class study at Lincoln and Minnehaha will best serve to illustrate the use of this method. The series of stations chosen at Lincoln were primarily within a single formation, for the purpose of determining the physical factor variation in different areas. One series was located in the prairie-grass formation (Koelera-Andropogon-psilium), and consisted of the following stations: (1) low prairie, (2) crest of ridge I,(3) northeast slope of ridge I, (4) grassy ravine, (5) southwest slope of ridge II, (6) bare crest of ridge II, (7) thicket ravine. The other series was established in the bur-oak-hickory forest (Quercus-Hicoria-hylium) at the following stations: (1) thicket, (2) woodland, (3) knoll in forest, (4) depression in forest, (5) level forest floor, (6) nettle thicket, (7) brook bank. At Minnehaha the series was primarily one of different formations: (1) the pine formation (Pinus-xerohylium), (2) the gravel slide formation (Pseudocymopterus-Mentzelia-chalicium), (3) east slope of spruce forest (Picea-Pseudotsuga-hylium), (4) ridge in the spruce forest, (5) north slope of spruce forest, (6) brook bank in forest, (7) the thicket formation (Quercus-Cercocarpus-lochmodium), (8) the aspen formation (Populus-hylium). When permanent or temporary quadrats are established, they are ordinarily used as regular stations, since this enables one to refer the physical factor readings to a few definite individual plants, as well as to the entire formation. The transects in figure 29 illustrate two of the above series of stations.
133. Time of readings.The frequency of simple readings and the times at which they are made must be regulated largely by opportunity and convenience. In addition to making readings once or twice a week throughout the season, the series should be read at least once every day for a representative week or two. It is also very desirable to have a series for each hour of a typical day, or of two days, one of which is clear, the other cloudy. When a single daily reading is made, it should be taken at or as near meridian as possible. The usual series is the one obtained by simultaneous observations at the same level in different stations. An important series is also secured by simultaneous readings at the various levels of the same station, though it is not necessary to take this series frequently.
Fig. 30. A denuded station in the aspen formation.
Fig. 30. A denuded station in the aspen formation.
Fig. 30. A denuded station in the aspen formation.
134. Details of the method.After the stations have been selected by a careful preliminary survey of the habitat or series of habitats, their location is indicated by a small flag bearing a number, in case there is no danger of these being disturbed. Otherwise, less conspicuous stakes are used. The ordinary practice is to visit each station of the series, and to take readings of water-content, altitude, slope, and exposure. On the first trip these are all made by the instructor, but after a short time the determination of each factor may be assigned in rotation to each of the students. After these constant factors have been read and recorded, one student is equipped with photometer, thermometer, and psychrometer, and, if desirable, anemometer, and left at the first station. At each succeeding station the same plan is followed, so that at the end of the series the constant factors have all been read, and there is an observer at each station prepared to make readings of the variable ones. The task of acquainting the students with the operation of photometer, psychrometer, etc., can best be done in class or at a previous field period, as it is evident that they must be familiar with the instruments before they can use them accurately in the field series. The details of operation have already been given and need not be repeated here. The task of obtaining readings at the same moment may be met by supplying each observer with a watch, which runs exactly with all the others, or by making observations upon signal. The second means has been found most successful in practice, since the signal fixes the attention at the exact moment. The best plan is for the instructor to occupy a commanding position somewhere near the middle of the series, and to give the signals by shout or whistle at the proper interval. Considerable care and experience are necessary to do the last satisfactorily. Sufficient time must be given for the operation of the instrument and the making of the record. In addition, a period must be permitted to elapse which is long enough for every instrument to reach the proper reading. For example, in a series which contains a gravel slide and a forest, the thermometer which has just been used for an air reading will require four or five times as long an interval to respond to the temperature of the gravel as to that of the cool forest floor. In such series, the instructor should regularly take his place in the station wherethe response is slowest or greatest. He must record the exact time of each signal, and note any general changes of sky or wind that produce temporary fluctuations at the time of reading. When the readings extend over a whole day, the usual plan is to begin at the last station and take a second series of water-content samples, noting the exact time in order that the rate of water loss may be determined. A check series of physiographic factors may be made at this time also, or this may be left for future visits. While it is unnecessary to take soil samples oftener than once a day, it is important to make at least one series at each visit. Sometimes it becomes desirable to know the rate of water loss in different stations during the day, and in this event, samples are taken at one or two hour intervals for the entire day.
In making simultaneous readings at the different levels of one station, the observers are grouped in one spot in such a way that they do not interfere with the correct reading of each instrument. Readings of this sort are most valuable in the case of temperature, which shows greater differences at the various levels. Important differences of humidity and wind also are readily obtained, and, in layered formations, marked variations in the amount of light. In the open, the ordinary levels for temperature are 6 feet, 3 feet, surface, 5, 10, and 15 inches in the ground, and for wind and humidity, 6 feet, 3 feet, and surface. In forests the same levels are used for comparison with formations in the open, but a more desirable series for light especially is secured by making readings at the height of, or better, just below the various layers. Series of this sort are likewise made on signal. The best time of day is that of a period in which the middle station is read near meridian, since the variation due to time is sufficiently small to permit fairly accurate comparisons between the readings for the different stations.
135. Records.The form used for recording the observations made by means of simple instruments is shown below. It is hardly necessary to state that it may be readily modified to suit the needs of different investigators. Ordinarily, each sheet is used for the records of one habitat or series alone, but for convenience sake, the records of two different series are here combined. The figures given are taken from records for the prairie and forest formations at Lincoln.