RESEARCHES ON MERCERISED COTTON.

Concentration of lye (NaOH)5°B.10°B.15°B25°B30°B35°BDuration of action in minutes110301103011030110301103011030Temperatures as under:—Percentage shrinkages (Egyptian yarns) as under:—2°00011112.215.215.819.219.821.522.722.722.724.224.524.718°0000008.08.811.819.820.121.021.222.022.323.523.824.730°0000004.64.66.019.019.519.018.519.519.820.721.021.180°0000003.53.59.813.413.714.215.015.115.515.015.215.4

The more important general indications of the above results are—(1) The mercerisation action commences with a lye of 10°B., and increases with increased strength of the lye up to a maximum at 35°B. There is, however, a relatively slight increase of action with the increase of caustic soda from 30-40°B. (2) For optimum action the temperature should not exceed 15-20°C. (3) The duration of action is of proportionately less influence as the concentration of the lye increases. As the maximum effect is attained the action becomes practically instantaneous, the only condition affecting it being that of penetration—i.e. actual contact of cellulose and alkali.

(d) The question as to whether the process of 'mercerisation' involves chemical as well as physical effects is briefly discussed. The author is of opinion that, as the degree of lustre obtained varies with the different varieties of cotton, the differentiation is occasioned by differences in chemical constitution of these various cottons. The influence of the chemical factors is also emphasised by the increased dyeing capacity of the mercerised goods, which effect, moreover, is independent of those conditions of strain or tension under mercerisation which determine lustre. It is found in effect that with a varied range of dye stuffs a given shade is produced with from 10 to 30 p.ct. less colouring matter than is required for the ordinary, i.e. unmercerised, goods.

In reference to the constants of strength and elasticity, Buntrock gives the following results of observations upon a 405twofold yarn, five threads of 50 cm. length being taken for each test(Prometheus, 1897, p. 690): (a) the original yarn broke under a load of 1440 grms.; (b) after mercerisation without tension the load required was 2420 grms.; (c) after mercerisation under strain, 1950 grms. Mercerisation, therefore, increases the strength of the yarn from 30 to 66 p.ct., the increase being lessened proportionately to the strain accompanying mercerisation.Elasticity, as measured by the extension under the breaking load, remains about the same in yarns mercerised under strain, but when allowed to shrink under mercerisation there is an increase of 30-40 p.ct. over the original.

Thechange of formsustained by the individual fibres has been studied by H. Lange [Farberzeitung, 1898, 197-198], whose microphotographs of the cotton fibres, both in length and cross-section, are reproduced. In general terms, the change is from the flattened riband of the original fibre to a cylindrical tube with much diminished and rounded central canal. The effect of strain under mercerisation is chiefly seenin the contour of the surface, which is smooth, and the obliteration at intervals of the canal. Hence the increased transparency and more complete reflection of the light from the surface, and the consequent approximation to the optical properties of the silk fibre.

The work concludes with a section devoted to a description of the various practical systems of mercerisation of yarns in general practice in Germany, and an account of the methods adopted in dyeing the mercerised yarns.

The authors, after investigation, are inclined to attribute the lustre of mercerised cotton to the absence of the cuticle, which is destroyed and removed in the process, partly by the chemical action of the alkali, and partly by the stretching at one or other stage of the process. The authors have investigated the action of alcoholic solutions of soda also. The lustre effects are not obtained unless the action of water is associated.

In conclusion, the authors give the following particulars of breaking strains and elasticity:—

TreatmentExperimentsBreaking strainGrammesElasticity Elongation in mm.Cotton unmercerised.136020235620336022Mercerised with Soda 35°B.153044257040355935Alcoholic soda 10 p.ct. cold164524260027361033Alcoholic soda 10 p.ct. hot574033273038369030

FOOTNOTES:[2]This and other similar references are to the matter of the original volume (1895).

[2]This and other similar references are to the matter of the original volume (1895).

[2]This and other similar references are to the matter of the original volume (1895).

(p. 25)Cellulose sulphocarbonate.—Further investigations of the reaction of formation as well as the various reactions of decomposition of the compound, have not contributed any essential modification or development of the subject as originally described in the author's first communications. A large amount of experimental matter has been accumulated in view of the ultimate contribution of the results to the general theory of colloidal solutions. But viscose is a complex product and essentially variable, through its pronounced tendency to progressive decomposition with reversion of the cellulose to its insoluble and uncombined condition. The solution for this reason does not lend itself to exact measurement of its physical constants such as might elucidate in some measure the progressive molecular aggregation of the cellulose in assuming spontaneously the solid (hydrate) form. Reserving the discussion of these points, therefore, we confine ourselves to recording results which further elucidate special points.

Normal and other celluloses.—We may certainly use the sulphocarbonate reaction as a means of defining a normal cellulose. As already pointed out, cotton cellulose passes quantitatively through the cycle of treatments involved in solution as sulphocarbonate and decomposition of the solution with regeneration as structureless or amorphous cellulose (hydrate).

Analysis of this cellulose shows a fall of carbon percentage from 44.4 to 43.3, corresponding with a change in composition from C6H10O5to 4C6H10O5.H2O. The partial hydrolysis affects the whole molecule, and is limited to this effect, whereas, in the case of celluloses of other types, there is a fractionation of the mass, a portion undergoing a further hydrolysis to compounds of lower molecular weight and permanently soluble. Thus in the case of the wood cellulosesthe percentage recovered from solution as viscose is from 93 to 95 p.ct. It is evident that these celluloses are not homogeneous. A similar conclusion results from the presence of furfural-yielding compounds with the observation that the hydrolysis to soluble derivatives mainly affects these derivatives. In the empirical characterisation of a normal cellulose, therefore, we may include the property of quantitative regeneration or recovery from its solution as sulphocarbonate.

In the use of the word 'normal' as applied to a 'bleached' cotton, we have further to show in what respects the sulphocarbonate reaction differentiates the bleached or purified cotton cellulose from the raw product. The following experiments may be cited: Specimens of American and Egyptian cottons in the raw state, freed from mechanical, i.e. non-fibrous, impurities, were treated with a mercerising alkali, and the alkali-cotton subsequently exposed to carbon disulphide. The product of reaction was further treated as in the preparation of the ordinary solution; but in place of the usual solution, structureless and homogeneous, it was observed to retain a fibrous character, and the fibres, though enormously swollen, were not broken down by continued vigorous stirring. After large dilution the solutions were filtered, and the fibres then formed a gelatinous mass on the filters. After purification, the residue was dried and weighed. The American cotton yielded 90.0 p.ct., and the Egyptian 92.0 p.ct. of its substance in the form of this peculiar modification. The experiment was repeated, allowing an interval of 24 hours to elapse between the conversion into alkali-cotton and exposure of this to the carbon disulphide. The quantitative results were identical.

There are many observations incidental to chemical treatments of cotton fabrics which tend to show that the bleaching process produces other effects than the mereremoval of mechanical impurities. In the sulphocarbonate reaction the raw cotton, in fact, behaves exactly as a compound cellulose. Whether the constitutional difference between raw and bleached cotton, thus emphasised, is due to the group of components of the raw cotton, which are removed in the bleaching process, or to internal constitutional changes determined by the bleaching treatments, is a question which future investigation must decide.

The normal sulphocarbonate (viscose).—In the industrial applications of viscose it is important to maintain a certain standard of composition as of the essential physical properties of the solution, notably viscosity. It may be noted first that, with the above-mentioned exception, the various fibrous celluloses show but slight differences in regard to all the essential features of the reactions involved. In the mercerising reaction, or alkali-cellulose stage, it is true the differences are considerable. With celluloses of the wood and straw classes there is a considerable conversion into soluble alkali-celluloses. If treated with water these are dissolved, and on weighing back the cellulose, after thorough washing, treatment with acid, and finally washing and drying, it will be found to have lost from 15 to 20 p.ct. in weight. The lower grade of celluloses thus dissolved are only in part precipitated in acidifying the alkaline solution. On the other hand, after conversion into viscose, the cellulose when regenerated re-aggregates a large proportion of these lower grade celluloses, and the final loss is as stated above, from 5 to 7 p.ct. only.

Secondly, it is found that all the conditions obtaining in the alkali-cellulose stage affect the subsequent viscose reaction and the properties of the final solution. The most important are obviously the proportion of alkali to cellulose and the length of time they are in contact before being treated with carbon disulphide. An excess of alkali beyond the 'normal'proportion—viz. 2NaOH per 1 mol. C6H10O5—has little influence upon the viscose reaction, but lowers the viscosity of the solution of the sulphocarbonate prepared from it. But this effect equally follows from addition of alkali to the viscose itself. The alkali-cellulose changes with age; there is a gradual alteration of the molecular structure of the cellulose, of which the properties of the viscose when prepared are the best indication. There is a progressive loss of viscosity of the solution, and a corresponding deterioration in the structural properties of the cellulose when regenerated from it—especially marked in the film form. In regard to viscosity the following observations are typical:—

(a) A viscose of 1.8 p.ct. cellulose prepared from an alkali-cellulose (cotton) fourteen days old.(b) Viscose of 1.8 p.ct. cellulose from an alkali-cellulose (cotton) three days old.(c) Glycerin diluted with 1/3 vol. water.

(a) A viscose of 1.8 p.ct. cellulose prepared from an alkali-cellulose (cotton) fourteen days old.

(b) Viscose of 1.8 p.ct. cellulose from an alkali-cellulose (cotton) three days old.

(c) Glycerin diluted with 1/3 vol. water.

abbcDiluted withequal vol. waterTimes of flow of equal volumes from narrow orifice in seconds112321103170

Similarly the cellulose in reverting to the solid form from these 'degraded' solutions presents a proportionate loss of cohesion and aggregating power expressed by the inferior strength and elasticity of the products. Hence, in the practical applications of the product where the latter properties are of first importance, it is necessary to adopt normal standards, such as above indicated, and to carefully regulate all the conditions of treatment in each of the two main stages of reaction, so that a product of any desired character may be invariably obtained.

Incidentally to these investigations a number of observations have been made on the alkali-cellulose (cotton) afterprolonged storage in closed vessels. It is well known that starch undergoes hydrolysis in contact with aqueous alkalis of a similar character to that determined by acids [Béchamp, Annalen, 100, 365]. The recent researches of Lobry de Bruyn [Rec. Trav. Chim. 14, 156] upon the action of alkaline hydrates in aqueous solution on the hexoses have established the important fact of the resulting mobility of the CO group, and the interchangeable relationships of typical aldoses and ketoses. It was, therefore, not improbable that profound hydrolytic changes should occur in the cellulose molecule when kept for prolonged periods as alkali-cellulose.

We may cite an extreme case. A series of products were examined after 12-18 months' storage. They were found to contain only 3-5 p.ct. 'soluble carbohydrates'; these were precipitated by Fehling's solution but without reduction on boiling. They were, therefore, of the cellulose type. On acidifying with sulphuric acid and distilling, traces only of volatile acid were produced. It is clear, therefore, that the change of molecular weight of the cellulose, the disaggregation of the undoubtedly large molecule of the original 'normal' cellulose—which effects are immediately recognised in the viscose reactions of such products—are of such otherwise limited character that they do not affect the constitution of the unit groups. We should also conclude that the cellulose type of constitution covers a very wide range of minor variations of molecular weight or aggregation.

The resistance of the normal cellulose to the action of alkalis under these hydrolysing conditions should be mentioned in conjunction with the observations of Lange, and the results of the later investigations of Tollens, on its resistance to 'fusion' with alkaline hydrates at high temperatures (180°). The degree of resistance has been established only on the empirical basis of weighing the product recovered from suchtreatment. The product must be investigated by conversion into typical cellulose derivatives before we can pronounce upon the constitutional changes which certainly occur in the process. But for the purpose of this discussion it is sufficient to emphasise the extraordinary resistance of the normal cellulose to the action of alkalis, and to another of the more significant points of differentiation from starch.

Chemical constants of cellulose sulphocarbonate (solution).—In investigations of the solutions we make use of various analytical methods, which may be briefly described, noting any results bearing upon special points.

Total alkali.—This constant is determined by titration in the usual way. The cellulose ratio, C6H10O5: 2NaOH, is within the ordinary error of observation, 2: 1 by weight. A determination of alkali therefore determines the percentage of cellulose.

Cellulosemay be regenerated in various ways—viz. by the action of heat, of acids, of various oxidising compounds. It is purified for weighing by boiling in neutral sulphite of soda (2 p.ct. solution) to remove sulphur, and in very dilute acids (0.33 p.ct. HCl) to decompose residues of 'organic' sulphur compounds. It may also be treated with dilute oxidants. After weighing it may be ignited to determine residual inorganic compounds.

Sulphur.—It has been proved by Lindemann and Motten [Bull. Acad. R. Belg. (3), 23, 827] that the sulphur of sulphocarbonates (as well as of sulphocyanides) is fully oxidised (to SO3) by the hypochlorites (solutions at ordinary temperatures). The method may be adapted as required for any form of the products or by-products of the viscose reaction to be analysed fortotal sulphur.

The sulphur present in the form of dithiocarbonates, including the typical cellulose xanthogenic acid, is approximatelyisolated and determined as CS2by adding a zinc salt in excess, and distilling off the carbon disulphide from a water bath. From freshly prepared solutions a large proportion of the disulphide originally interacting with the alkali and cellulose is recovered, the result establishing the general conformity of the reaction to that typical of the alcohols. On keeping the solutions there is a progressive interaction of the bisulphide and alkali, with formation of trithiocarbonates and various sulphides. In decomposing these products by acid reagents hydrogen sulphide and free sulphur are formed, the estimation of which presents no special difficulties.

In the spontaneous decomposition of the solution a large proportion of the sulphur resumes the form of the volatile disulphide. This is approximately measured by the loss in total sulphur in the following series of determinations, in which a viscose of 8.5 p.ct. strength (cellulose) was dried down as a thin film upon glass plates, and afterwards analysed:

(a) Proportion of sulphur to cellulose (100 pts.) in original.(b) After spontaneous drying at ordinary temperature.(c) After drying at 40°C.(d) As in (c), followed, by 2 hours' heating at 98°.(e) As in (c), followed by 5 hours' heating at 98°.

abcdeTotal sulphur40.025.031.023.710.4

The dried product in (b) and (c) was entirely resoluble in water; in (d) and (e), on the other hand, the cellulose was fully regenerated, and obtained as a transparent film.

Iodine reaction.—Fresh solutions of the sulphocarbonate show a fairly constant reaction with normal iodine solution. At the first point, where the excess of iodine visibly persists, there is complete precipitation of the cellulose as the bixanthic sulphide; and this occurs when the proportion of iodine added reaches 3I2: 4Na2O, calculated to the total alkali.

Other decompositions.—The most interesting is the interaction which occurs between the cellulose xanthogenate and salts of ammonia, which is taken advantage of by C. H. Stearn in his patent process of spinning artificial threads from viscose. The insoluble product which is formed in excess of the solution of ammonia salt is free from soda, and contains 9-10 p.ct. total sulphur. The product retains its solubility in water for a short period. The solution may be regarded as containing the ammonium cellulose xanthate. This rapidly decomposes with liberation of ammonia and carbon disulphide, and separation of cellulose (hydrate). As precipitated by ammonium-chloride solution the gelatinous thread contains 15 p.ct. of cellulose, with a sp.gr. 1.1. The process of 'fixing'—i.e. decomposing the xanthic residue—consists in a short exposure to the boiling saline solution. The further dehydration, with increase of gravity and cellulose content, is not considerable. The thread in its final air-dry state has a sp.gr. 1.48.

Cellulose Benzoates.—These derivatives have been further studied by the authors. The conditions for the formation of the monobenzoate [C6H9O4.O.CO.Ph] are very similar to those required for the sulphocarbonate reaction. The fibrous cellulose (cotton), treated with a 10 p.ct. solution NaOH, and subsequently with benzoyl chloride, gives about 50 p.ct. of the theoretical yield of monobenzoate. Converted by 20 p.ct. solution NaOH into alkali-cellulose, and with molecular proportions as below, the following yields were obtained:—

Calc. forMonobenzoate(a) C6H10O5: 2.0-2.5 NaOH : C6H5.COCl—150.8}164.0(b) C6H10O5: 2.0-2.5 NaOH : 1.5 mol. C6H5COCl159.0}

An examination of (a) showed that some dibenzoate (about 7 p.ct.) had been formed. The product () was exhaustivelytreated with cuprammonium solution, to which it yielded about 20 p.ct. of its weight, which was therefore unattacked cellulose.

Under conditions as above, but with 2.5 mol. C6H5COCl, a careful comparison was made of the behaviour of the three varieties of cotton, which were taken in the unspun condition and previously fully bleached and purified.

Sea IslandEgyptianAmericanAggregate yield of benzoate153148152Moisture in air dry state5.285.355.15Proportion of dibenzoate p.ct.8.3013.709.4Yield of cellulose by saponification58.054.058.3

It appears from these results that the benzoate reaction may proceed to a higher limit (dibenzoate) in the case of Egyptian cotton. This would necessarily imply a higher limit of 'mercerisation,' under equal conditions of treatment with the alkaline hydrate. It must be noted that in the conversion of the fibrous cellulose into these (still) fibrous monobenzoates, there are certain mechanical conditions imported by the structural features of the ultimate fibres. For the elimination of the influence of this factor a large number of quantitative comparisons will be necessary. The above results are therefore only cited as typical of a method of comparative investigation, more especially of the still open questions of the cause of the superior effects in mercerisation of certain cottons (see p. 23). It is quite probable that chemical as well as structural factors co-operate in further differentiating the cottons.

Further investigation of the influence upon the benzoate reaction, of increase of concentration of the soda lye, used in the preliminary alkali cellulose reaction, from 20 to 33 p.ct. NaOH, established (1) that there is no corresponding increase in the benzoylation, and (2) that this ester reaction and thesulphocarbonate reaction are closely parallel, in that the degree and limit of reaction are predetermined by the conditions of formation of the alkali cellulose.

Monobenzoateprepared as above described is resistant to all solvents of cellulose and of the cellulose esters, and is therefore freed from cellulose by treatment with the former, and from the higher benzoate by treatment with the latter. Several of these, notably pyridine, phenol and nitrobenzene, cause considerable swelling and gelatinisation of the fibres, but without solution.

Structureless cellulosesof the 'normal' type, and insoluble therefore in alkaline lye, treated under similar conditions to those described above for the fibrous celluloses, yield a higher proportion of dibenzoate. The following determinations were made with the cellulose (hydrate) regenerated from the sulphocarbonate:—

Mol. proportions of reagentsYieldDibenzoate p.ct.C6H10O5: 2NaOH : 2BzCl14534.7[Caustic soda at 10 per cent. NaOH]C6H10O5: 4NaOH : 2BzCl16262.7[Caustic soda at 20 per cent. NaOH]

Limit of reaction.—The cellulose in this form having shown itself more reactive, it was taken as the basis for determining the maximum proportion of OH groups yielding to this later reaction. The systematic investigations of Skraup [Monatsh. 10, 389] have determined that as regards the interacting groups the molecular proportions 1 OH: 7 NaOH: 5 BzCl, ensure complete or maximum esterification. The maximum of OH groups in cellulose being 4, the reagents were taken in the proportion C6H10O5: 4 [7 NaOH: 5 BzCl]. The yield of crude product, after purifying as far as possible from the excess of benzoic acid, was 240 p.ct. [calculated for dibenzoate 227 p.ct.]. On further investigating the crude product by treatment with solvents, it was found to have still retained benzoic acid.There was also present a proportion of only partially attacked cellulose (monobenzoate). The soluble benzoate amounted to 90 p.ct. of the product. It may be generally concluded that the dibenzoate represents the normal maximum but that with the hydrated and partly hydrolysed cellulose molecule, as obtained by regeneration from the sulphocarbonate, other OH groups may react, but they are only a fractional proportion in relation to the unit group C6H10O5. In this respect again there is a close parallelism between the sulphocarbonate and benzoyl-ester reactions.

The dibenzoate, even when prepared from the fibrous celluloses, is devoid of structure, and its presence in admixture with the fibrous monobenzoate is at once recognised as it constitutes a structureless incrustation. Under the microscope its presence in however minute proportion is readily observed. As stated it is soluble in certain of the ordinary solvents of the cellulose esters, e.g. chloroform, acetic acid, nitrobenzene, pyridine, and phenol. It is not soluble in ether or alcohol.

Hygroscopic moisture of benzoates.—The crude monobenzoate retains 5.0-5.5 p.ct. moisture in the air-dry condition. After removal of the residual cellulose this is reduced to 3.3 p.ct. under ordinary atmospheric conditions. The purified dibenzoates retain 1.6 p.ct. under similar conditions.

Analysis of benzoates.—On saponification of these esters with alcoholic sodium hydrate, anomalous results are obtained. The acid numbers, determined by titration in the usual way, are 10-20 p.ct. in excess of the theoretical, the difference increasing with the time of boiling. Similarly the residual cellulose shows a deficiency of 5-9 p.ct.

It is by no means improbable that in the original ester reaction there is a constitutional change in the cellulose molecule causing it to break down in part under the hydrolysing treatment with formation of acid products. This point is underinvestigation. Normal results as regards acid numbers, on the other hand, are obtained by saponification with sodium ethylate in the cold, the product being digested with the half-saturated solution for 12 hours in a closed flask.

The following results with specimens of mono- and dibenzoate, purified, as far as possible, may be cited:

Combustion resultsSaponification resultsCalc.C6H5.COOHCalc.CelluloseCalc.MonobenzoateC56.6058.65}46.045.958.060.8H5.065.26}DibenzoateC63.1064.86}65.566.634.340.3H3.404.86}

The divergence of the numbers, especially for the dibenzoate, in the case of the hydrogen, and yield of cellulose on hydrolysis are noteworthy. They confirm the probability of the occurrence of secondary changes in the ester reactions.

Action of nitrating acid upon the benzoates.—From the benzoates above described, mixed nitro-nitric esters are obtained by the action of the mixture of nitric and sulphuric acids. The residual OH groups of the cellulose are esterified and substitution by an NO2group takes place in the aromatic residue, giving a mixed nitric nitrobenzoic ester. The analysis of the products points to the entrance of 1 NO2group in the benzoyl residue in either case; in the cellulose residue 1 OH readily reacts. Higher degrees of nitration are attained by the process of solution in concentrated nitric acid and precipitation by pouring into sulphuric acid. In describing these mixed esters we shall find it necessary to adopt the C12unit formula.

In analysing these products we have employed the Dumas method fortotal nitrogen. For the O.NO2groups we have found the nitrometer and the Schloesing methods to give concordant results. For the NO2groups it was thought that Limpricht's method, based upon reduction with stannous chloride in acidsolution (HCl), would be available. The quantitative results, however, were only approximate, owing to the difficulty of confining the reduction to the NO2groups of the nitrobenzoyl residue. By reduction with ammonium sulphide the O.NO2groups were entirely removed as in the case of the cellulose nitrates; the NO2was reduced to NH2and there resulted a cellulose amidobenzoate, which was diazotised and combined with amines and phenols to form yellow and red colouring matters, the reacting residue remaining more or less firmly combined with the cellulose.

Cellulose dinitrate-dinitrobenzoate, and cellulose trinitrate-dinitrobenzoate.—On treating the fibrous benzoate—which is a dibenzoate on the C12basis—with the acid mixture under the usual conditions, a yellowish product is obtained, with a yield of 140-142 p.ct. The nitrobenzoate is insoluble in ether alcohol, but is soluble in acetone, acetic acid, and nitrobenzene. In purifying the product the former solvent is used to remove any cellulose nitrates. To obtain the maximum combination with nitroxy-groups, the product was dissolved in concentrated nitric acid, and the solution poured into sulphuric acid.

The following analytical results were obtained (a) for the product obtained directly from the fibrous benzoate and purified as indicated, (b) for the product from the further treatment of (a) as described:

FoundCalc. for(a)(b)Dinitrate dinitrobenzoateTrinitrate dinitrobenzoateTotalNitrogen7.848.977.999.24O.NO2"5.005.454.005.54NO2" (Aromatic)2.843.523.993.70

With the two benzoyl groups converted into nitro-benzoyl in each product, the limit of the ester reaction with the cellulose residue is reached at the third OH group.

The nitrogen in the amidobenzoate resulting from the reduction with ammonium sulphide was 4.5 p.ct.—as against 5.0 p.ct. calculated. The moisture retained by the fibrous nitrate—nitrobenzoate—in the air-dry state was found to be 1.97 p.ct.

The product from the structureless dibenzoate or tetrabenzoate on the C12formula, was prepared and analysed with the following results:

Calc. for MononitratetetranitrobenzoateTotalNitrogen6.767.25O.NO2"1.301.45NO2" (Aromatic)5.465.80

The results were confirmed by the yield of product, viz. 131 p.ct. as against the calculated 136 p.ct. They afford further evidence of the generally low limit of esterification of the cellulose molecule. From the formation of a 'normal' tetracetate—i.e. octacetate of the C12unit—we conclude that 4/5 of the oxygen atoms are hydroxyl oxygen. Of the 8 OH groups five only react in the mixed esters described above, and six only in the case of the simple nitric esters. The ester reactions are probably not simple, but accompanied by secondary reactions within the cellulose molecule.

(p. 34)Cellulose Acetates.—In the first edition (p. 35) we have committed ourselves to the statement that 'on boiling cotton with acetic anhydride and sodium acetate no reaction occurs.' This is erroneous. The error arises, however, from the somewhat vague statements of Schutzenberger's researches which are current in the text-books [e.g. Beilstein, 1 ed. p. 586] together with the statement that reaction only occurs at elevated temperatures (180°). As a matter of fact, reaction takes place at the boiling temperature of the anhydride.We have obtained the following results with bleached cotton:

YieldCalc. for MonoacetateC6H7O4O.C2H3OEster reaction121 p.ct.125 p.ct.Saponification{Cellulose79.979.9{Acetic acid29.929.4

This product is formed without apparent structural alteration of the fibre. It is entirely insoluble in all the ordinary solvents of the higher acetates. Moreover, it entirely resists the actions of the special solvents of cellulose—e.g. zinc chloride and cuprammonium. The compound is in other respects equally stable and inert. The hygroscopic moisture under ordinary atmospheric conditions is 3.2 p.ct.

Tetracetate.—This product is now made on the manufacturing scale: it has yet to establish its industrial value.

(p. 38) The authors have studied the nitric esters of a typical series of the now well-defined carbohydrates—pentoses, hexoses, both aldoses and ketoses—bioses and trioses, the nitrates being prepared under conditions designed to produce the highest degree of esterification. Starch, wood, gum, and cellulose were also included in the investigations. The products were analysed and their physical properties determined. They were more especially investigated in regard to temperatures of decomposition, which were found to lie considerably lower than that of the cellulose nitrates. They also show marked and variable instability at 50° C. A main purpose of the inquiry was to throw light upon a probable cause of the instability of the cellulose nitrates, viz. the presence of nitratesof hydrolysed products or carbohydrates of lower molecular weight.

The most important results are these:

Monoses.—Thealdosesare fully esterified, in the pentoses 4 OH, in the hexoses 5 OH groups reacting. The pentose nitrates are comparatively stable at 50°; the hexose nitrates on the other hand are extremely unstable, showing a loss of weight of 30-40 p.ct. when kept 24 hours at this temperature.

Xylose is differentiated by tending to pass into an anhydride form (C5H10O5-H2O) under this esterification. When treated in fact with the mixed acids, instead of by the process usually adopted by the authors of solution in nitric acid and subsequent addition of the sulphuric acid, it is converted into the dinitrate C5H6O2.(NO3)2.

Ketoses(C6).—These are sharply differentiated from the corresponding aldoses by givingtrinitrates C6H7O2(NO3)3instead ofpentanitrates, the remaining OH groups probably undergoing internal condensation. The products are, moreover,extremely stable. It is also noteworthy that levulose gave this same product, the trinitrate of the anhydride (levulosan) by both methods of nitration (supra).

The bisaccharides or biosesall give the octonitrates. The degree of instability is variable. Cane-sugar gives a very unstable nitrate. The lactose nitrate is more stable. Thus at 50° it loses only 0.7 p.ct. in weight in eight days; at 75° it loses 1 p.ct. in twenty-four hours, but with a rapid increase to 23 p.ct. in fifty-four hours. The maltose octonitrate melts (with decomposition) at a relatively high temperature, 163°-164°. At 50°-75° it behaves much like the lactose nitrate.

Trisaccharide.—Raffinose yielded the product

C18H21O5.(NO3)11.

Starchyields the hexanitrate (C12) by both methods of nitration. The product has a high melting and decomposing point,viz. 184°, and when thoroughly purified is quite stable. It is noted that a yield of 157 p.ct. of this nitrate was obtained, and under identical conditions cellulose yielded 170 p.ct.

Wood gum, from beech wood, gave a tetranitrate (C10formula) insoluble in all the usual solvents for this group of esters.

The authors point out in conclusion that the conditions of instability and decomposition of the nitrates of the monose-triose series are exactly those noted with the cellulose nitrates as directly prepared and freed from residues of the nitrating acids. They also lay stress upon the superior stability of the nitrates of the anhydrides, especially of the ketoses.

(p. 38) Cellulose trinitrate (nitrocellulose) will serve as a food supply for moulds when suspended in distilled water containing the requisite mineral matter and placed in the dark. The growth is rapid, and a considerable quantity of the vegetable growth accumulates round the masses of cellulose nitrate, but no growth is observed if mineral matter is absent. Cellulose itself cannot act as a food supply, and it seems probable that if glycerol is present cellulose nitrate is no longer made use of.

(p. 38) Repeated treatment of cellulose, hydrocellulose, and oxycellulose with a mixture of sulphuric and nitric acids inlarge excess, together with successive analyses of the compounds produced, showed that the final product of the reaction corresponded, in each case, with the fixation of 11 NO groups by a molecule containing 24 atoms of carbon. On exposure to air, nitrohydrocellulose becomes yellow and decomposes; nitro-oxycellulose is rather more stable, whilst nitrocellulose is unaffected. The behaviour of these nitro-derivatives with Schiff's reagent, Fehling's solution, and potash show that all three possess aldehydic characters, which are most marked in the case of nitro-oxycellulose. The latter also, when distilled with hydrochloric acid, yields a larger proportion of furfuraldehyde than is obtained from nitrocellulose and nitrohydrocellulose.

(p. 38) The uses of the cellulose nitrates as a basis for explosives are limited by their fibrous character. The conversion of these products into the structureless homogeneous solid or semi-solid form has the effect of controlling their combustion. The use of nitroglycerin as an agent for this purpose gives the curious result of the admixture of two high or blasting explosives to produce a new explosive capable of extended use for military purposes. The leading representatives of this class of propulsive explosives, or 'smokeless powders' are ballistite and cordite, the technology of which will be found fully discussed in special manuals of the subject. Since the contribution of these inventions to the development of cellulose chemistry does not go beyond the broad, general facts above mentioned, we must refer the reader for technical details to the manuals in question.

There are, however, other means of arriving at structureless cellulose nitrates. One of these has been recently disclosed, and as the results involve chemical and technical points ofnovelty, which are dealt with in a scientific communication, we reproduce the paper in question, viz.:—

The starting-point of these investigations was a study of the nitrates obtained from the structureless cellulose obtained from the sulphocarbonate (viscose). This cellulose in the form of a fine meal was treated under identical conditions with a sample of pure cotton cellulose, viz. digested for 24 hours in an acid mixture containing in 100 parts HNO3—24 : H2SO4—70: H2O—6: the proportion of acid to cellulose being 60 : 1—. After careful purification the products were analysed with the following results:


Back to IndexNext