Filling the Lime Spreader at the Ohio Experiment StationFilling the Lime Spreader at the Ohio Experiment Station
Lime DistributorsLime Distributors
The smaller application of any form of lime to correct soil acidity may be made on grass land that should not be plowed, but the full effectiveness of an application is not secured in top-dressings. If the land is under a crop rotation, it is better practice not to apply the lime on grass, but to defer application until the sod has been broken, when the lime can be intimately mixed with the soil by use of harrows. It is the rule that it should go on plowed land, and should be mixed with the soil before rain puddles it. In no case should it be plowed down.
When clover or alfalfa shows a lime deficiency, it is advisable to make an application, either in the spring or after a cutting, obtaining whatever degree of effectiveness may be possible to this way, but the fact remains that full return from an application is secured only after intimate mixture with the soil particles. On the other hand,if land needs lime, and there is not time or labor for the application when the soil can be stirred, it is far better to apply on the surface during any idle time than to leave the soil deficient in lime.
Distributors.The most satisfactory means of distribution is a machine made for the purpose. A number of good distributors are on the market. They are designed to handle a large quantity of material after the fashion of a fertilizer distributor ordinarily attached to a grain drill. A V-shaped box, with openings at the bottom, and a device to regulate the quantity per acre, enables the workman to cover the surface of the ground with an even coat, and the mixing with the soil is done by harrows.
Light applications can be made with a drill having a fertilizer attachment. Some makes of drill have much more capacity than others. Granular lime, such as limestone, is handled more satisfactorily than a floury slaked lime.
Farm-Slaked Lime.Lime slaked on the farm must continue to be a leading source of supply to land. If there is stone on the farm, and labor in the winter is available, itis not a costly source of supply. The chief drawback to the use of farm-slaked lime is the difficulty in securing even distribution. The loss from spreading with shovels from small piles slaked in the field is heavy. The quantity per acre must be large to insure sufficient material for every square foot of surface. The lime slaked in a large heap can be put through distributors only after screening to remove pieces of stone, unless they are made with a screening device, and the caustic character and floury condition make handling disagreeable, but no other method is as economical when lime is high in price.
Use of the Manure Spreader.The next best device is the manure spreader. The makes on the market vary in ability to do satisfactory work with lime, and none does even work with a small quantity per acre. An addition to the bulk to be handled by placing a layer of other material in the spreader before filling with lime helps, but some spreaders do fair work in spreading as little as 3000 pounds of slaked lime per acre, and certainly far better work than usually is done with shovels from a wagon.
Soils Vary in Requirement.There is always the insistent question respecting the amount of lime that should be used on a particular field. Usuallynodefinite reply can be safely made. The requirement of the present, and probably of thenextfew years, should be met by one application. The existing degree of acidity is an unknown quantity until a careful test has been made. There are soils so sour that several tons of fresh burned lime per acre would only meet present requirement, and there are soils so soundly alkaline that they need none at all. This uncertainty regarding amount required is responsible for much failure to do anything, even when some acidity is indicated by general appearance.
A Working Basis.If land has once been productive and in later years clover has ceased to grow and grass sods are thin, there is a strong probability that liming will pay, and the experience of farmers on normal soils, and the tests of experimentstations, justify the estimate that two tons of fine stone, or one and a quarter tons of fresh burned lime per acre, can be used with profit. This amount probably will permit fertilizers and tillage to make their full return in heavy sods that will provide humus. It is a reasonable expectation that the application will serve through a crop rotation of four or five years.
If the soil was not very sour, the second application at the end of four or five years may be reduced somewhat, and even a ton of stone given once in the crop rotation may fully meet the requirement.
In the case of the normal soil that has ceased to grow clover, and does grow plants that are acid-resistant, it is better practice to secure a relatively low-priced supply of coarsely pulverized stone and apply three or four tons per acre, and thus lengthen the interval between applications to eight or 10 years. The fine material in the heavy application will take care of present need, and the coarser particles will disintegrate later on.
The quantities suggested may not be the most economical for the reader, but their use cannot be attended by loss if a soil issour, and there is reason to believe that it is much better to use such quantities without question than to defer liming for a year in the hope that some more definite knowledge of a particular field's needs may be secured.
Small Amounts Per Acre.There is much experience as a basis for the claim that a few hundred pounds of burned lime per acre may have marked results. Fields that indicated an actual lime requirement of a ton of fresh lime per acre have had a test of 500 pounds per acre made in strips, and the clover later on was so superior to that which was struggling to live in the untreated portion that the light application appeared almost to be adequate. In such land there cannot be full bacterial activity or continuing friendliness to plants unless the need is met fully. A larger application would have paid better. It is the soil rich in lime that can make the best response to tillage and fertilization.
A Heavy Soil.When burned lime is not high in price, an application of two tons per acre may be more profitable than a smaller one. A heavy soil needs to be richer in lime than a light one for best results, and physical condition also is improved by the larger quantity. A correspondingly heavy coat of stone will give quite satisfactory results, but effect upon the texture of the soil is less marked.
Sandy Soils.It is inadvisable to apply any large quantity of caustic lime to a light soil. Such a soil does not need as high a percentage in it as a heavy soil requires for good results, and caustic lime can easily injure physical condition. Limestone is safe for use, and is to be advised for all quite sandy land. Acidity rarely runs high in a light soil, and the opinion is hazarded here that one ton of stone per acre meets the needs of a light soil about as surely as two tons supply a heavy soil. In case of each type of soil there are wide exceptions, and yet these estimates form a basis for the judgment of the individual farmer.
Lime-Loving Crops.There are plants which are acid-resistant, giving a good return for fertilization and care when the soil is sour. There are a few kinds of cultivated plants that seem to prefer an acid soil, and to resent lime applications. Most staple crops prefer an alkaline soil, or at least one that has no large requirement, and there are plants that thrive best only in land rich in lime. Not all such plants require more as a component part of their structure, but do have a high percentage in their ash.
Liming for Alfalfa.When all other conditions are right, alfalfa thrives or fails according as a soil is rich in lime or is distinctly deficient. It is entirely possible to get fair yields of this legume for a short time from land that is not fully alkaline, but full yields and ability to last for a term of years depend upon a liberal lime supply. Alfalfa is at home only in a naturally calcareous soil, or one that has been given some of the characteristics of such land byfree use of lime. In the case of neutral or slightly acid ground it is good practice to mix four tons of limestone per acre thoroughly with the soil. Such treatment gives greater permanence to the seeding, enabling the plants to compete successfully with the wild grasses and other weeds that are the chief obstacle to success in the humid climate of our Mississippi valley and eastern states. When this amount of stone is used, the finest grade may not be preferred to material having a considerable percentage of slightly coarser grains.
Remarkable Effect of Lime on Sweet Clover at the Ohio Experiment StationRemarkable Effect of Lime on Sweet Clover at the Ohio Experiment Station
Sweet Clover Thrives When Lime and Manure Are Supplied, Ohio Experiment StationSweet Clover Thrives When Lime and Manure Are Supplied, Ohio Experiment Station
Red Clover.When land is in excellent tilth, it may grow red clover satisfactorily while showing a decided lime deficiency. On the other hand, much slightly acid land fails to grow clover, and an application of lime is followed by heavy growths. Red clover is most at home in calcareous soils, and lack of lime is a leading cause of clover failure in this country. Other causes may be important ones in the absence of lime and be overcome when it is present.
Alsike Clover.Most legumes like lime, and alsike clover is not an exception, but is far more acid-resistant than the red. It is less valuable, both for soil improvementand for forage, having an inferior root system, but has proved a boon to farmers in areas that have been losing the power to grow red clover. The custom of mixing red and alsike seed has become widespread, and distinctly acid soils are marked in the clover flowering season by the profusion of the distinctive alsike bloom to the exclusion of the red. While there is acid-resistant power, this clover responds to liming.
Crimson Clover.Among lime-loving plants crimson clover has a rightful place, but it makes fairly good growth where the lack of lime is marked.
Bluegrass.The heaviest bluegrass sods are found where lime is abundant in the soil. This most valuable pasture grass may withstand the encroachments of weeds for a long time when lime is not abundant, if plant food is not in scant supply, but dependable sods of this grass are made only in an alkaline soil. Heavy liming of an acid soil pays when a seeding to permanent pasture is made, and old sods on land unfit for tillage may be given a new life by a dressing.
Crops Favored by Lime.Nearly all staple farm crops respond to applicationsgiven acid soils. Corn, oats, timothy, potatoes and many other crops have considerable power of resistance to acids, but give increased yields when lime is present. Liming is not recommended for potatoes because it furnishes conditions favorable to a disease which attacks this crop. When clover is wanted in a crop rotation with potatoes, it is advisable to apply the lime immediately after the potato crop has been grown, and to use limestone rather than burned lime. Most kinds of vegetables thrive best in an alkaline soil.