TWO WAYS OF READING __________

After attaching a lubricator, all valves should be opened wide and live steam blown through the outer vents for a few minutes to insure the openings clean and free. Then follow the usual directions given with all lubricators. Be particular in getting your lubricator attached so it will stand perfectly plum, in order that the drop can pass up through the glass without touching the sides, and keep the drop-nipple clean, be particular to drain in cold weather.

Now, I am about to leave you alone with your engine, just as I have left any number of young engineers after spending a day with them in the field and on the road. And I never left one, that I had not already made up my mind fully, as to what kind of an engineer he would make.

Now there are two ways to read this book, and if I know just how you had read it I could tell you in a minute whether to take hold of an engine or leave it alone. If you have read it one way, you are most likely to say "it is no trick to run an engine." If you have read it the other way you will say, "It is no trouble to learn how to run an engine." Now this fellow will make an engineer, and will be a good one. He has read it carefully, noting the drift of my advice. Has discovered that the engineer is not expected to build an engine, or to improve it after it has been built. Has recognized the fact that the principle thing is to attend to his own business and let other people attend to theirs. That a monkey wrench is a tool to be left in the tool box till he knows he needs it. That muscle is a good thing to have but not necessary to the successful engineer. That an engineer with a bunch of waste in his hand is a better recommendation than an "engineer license." That good common sense, and a cool head is the very best tools he can have. Has learned that carelessness will get him into trouble, and that to "forget" costs money.

Now the fellow who said "It is no trick to run an engine," read this book another way. He did not see the little points. He was hunting for big theories, scientific theories, something he could not understand, and didn't find them. He expected to find some bright scheme to prevent a boiler from exploding, didn't notice the simple little statement, "keep water in it," that was too commonplace to notice. He was looking for cuts, diagrams, geometrical figures, theories for constructing engines and boilers and all that sort of thing and didn't find them. Hence "It is no trick to run an engine."

If this has been your idea of "Rough and Tumble Engineering" forget all about your theory, and go back and read it over and remember the little suggestions and don't expect this book to teach you how to build an engine. We didn't start out to teach you anything of the kind. That is a business of itself. A good engineer gets better money than the man who builds them. Read it as if you wanted to know how to run an engine and not how to build one.

Study the following questions and answers carefully. Don't learn them like you would a piece of poetry, but study them, see if they are practical; make yourself thoroughly acquainted with the rule for measuring the horse-power of an engine; make yourself so familiar with it that you could figure any engine without referring to the book. Don't stop at this, learn to figure the heating surface in any boiler. It will enable you to satisfy yourself whether you are working your boiler or engine too hard or what it ought to be capable of doing.

Q. What is fire? A. Fire is the rapid combustion or consuming of organic matter.

Q. What is water? A. Water is a compound of oxygen and hydrogen. In weight 88 9-I0 parts oxygen to II I-I0 hydrogen. It has its maximum density at 39 degrees Fahr., changes to steam at 2I2 degrees, and to ice at 32 degrees.

Q. What is smoke? A. It is unconsumed carbon finely divided escaping into open air.

Q. Is excessive smoke a waste of fuel?A. Yes.

Q. How will you prevent it A. Keep a thin fire, and admit cold air sufficient to insure perfect combustion.

Q. What is low water as applied to a boiler? A. It is when the water is insufficient to cover all parts exposed to the flames.

Q. What is the first thing to do on discovering that you havelow water?A. Pull out the fire.

Q. Would it be safe to open the safety valve at such time?A. No.

Q. Why not? A. It would relieve the pressure on the water which being allowed to flow over the excessive hot iron would flash into steam, and might cause an explosion.

Q. Why do boilers sometimes explode just on the point ofstarting the engine?A. Because starting the engine has the same effect asopening the safety valve.

Q. Are there any circumstances under which an engineer is justified in allowing the water to get low? A. No.

Q. Why do they sometimes do it?A. From carelessness or ignorance.

Q. May not an engineer be deceived in the gauge of water?A. Yes.

Q. Is he to be blamed under such circumstances?A. Yes.

Q. Why? A. Because if he is deceived by it it shows he has neglected something.

Q. What is meant by "Priming." A. It is the passing of water in visible quantities into the cylinder with the steam.

Q. What would you consider the first duty of an engineer on discovering that the water was foaming or priming A. Open the cylinder cocks at once, and throttle the steam.

Q. Why would you do this? A. Open the cocks to enable the water to escape, and throttle the steam so that the water would settle.

Q. Is foaming the same as priming?A. Yes and no.

Q. How do you make that out? A. A boiler may foam without priming, but it can't prime without first foaming..

Q. Where will you first discover that the water is foaming? A. It will appear in the glass gauge, the glass will have a milky appearance and the water will seem to be running down from the top, There will be a snapping or cracking in the cylinder as quick as priming begins.

Q. What causes a boiler to foam? A. There are a number of causes. It may come from faulty construction of boiler; it may have insufficient steam room. It may be, and usually is, from the use of bad water, muddy or stagnant water, or water containing any soapy substance.

Q. What would you do after being bothered in this way?A. Clean out the-boiler and get better water if possible.

Q. How would you manage your pumps while the water wasfoaming.A. Keep them running full.

Q. Why? A. In order to make up for the extra amount of water going out with the steam.

Q. What is "cushion?" A. Cushion is steam retained or admitted in front of the piston head at the finish of stroke, or when the engine is on "center."

Q. What is it for? A. It helps to overcome the "inertia" and momentum of the reciprocating parts of the engine, and enables the engine to pass the center without a jar.

Q. How would you increase the cushion in an engine?A. By increasing the lead.

Q. What is lead? A. It is the amount of opening the port shows on steam end of cylinder when the engine is on dead center.

Q. Is there any rule for giving an engine the proper lead?A. No.

Q. Why not?A. Owing to their variation in construction, speed, etc.

Q. What would you consider the proper amount of lead,generally.A. From I/32 to I/I6.

Q. What is "lap?" A. It is the distance the valve overlaps the steam ports when in mid position.

Q. What is lap for?A. In order that the steam may be worked expansively.

Q. When does expansion occur in a cylinder? A. During the time between which the port closes and the point at which the exhaust opens.

Q. What would be the effect on an engine if the exhaustopened too soon?A. It would greatly lessen the power of the engine.

Q. What effect would too much lead have. A. It would also weaken the engine, as the steam would enter before the piston had reached the end of the stroke, and would tend to prevent it passing the center.

Q. What is the stroke of an engine?A. It is the distance the piston travels in the cylinder.

Q. How do you find the speed of a piston per minute? A. Double the stroke and multiply it by the number of revolutions a minuet. Thus an engine with a 12 inch stroke would travel 24 inches, or 2 feet, at a revolution. If it made 200 revolutions a minute, the travel of piston would be 400 feet a minute.

Q. What is considered a horse power as applied to anengine?A. It is power sufficient to lift 33,000 pounds one foot highin one minute.

Q. What is the indicated horse power of an engine? A. It is the actual work done by the steam in the cylinder as shown by an indicator.

Q. What is the actual horse power? A. It is the power actually given off by the driving belt and pulley.

Q. How would you find the horse power of an engine? A. Multiply the area of the piston by the average pressure, less 5; multiply this product by the number of feet the piston travels per minute; divide the product by 33,000; the result will be horse power of the engine.

Q. How will you find the area of piston?A. Square the diameter of piston and multiply it by .7854.

Q. What do you mean by squaring the diameter? A. Multiplying it by itself. If a cylinder is 6 inches in diameter, 36 multiplied by .7854, gives the area in square inches.

Q. What do you mean by average pressure? A. If the pressure on boiler is 60 pounds, and the engine is cutting off at 1/2 stroke, the pressure for the full stroke would be 50 pounds.

Q. Why do you say less 5 pounds?A. To allow for friction and condensation.

Q. What is the power of a 7 x 10 engine, running 200 revolutions, cutting off at 1/2 stroke with 60 pounds steam? A. 7 x 7 = 49 x .7854 = 38.4846. The average pressure of 60 pounds would be 50 pounds less 5 = 45 pounds; 38-4846 x 45 = 1731.8070 x .333 1/3, (the number of feet the piston travels per minute) 577,269.0000 by 33,000=17 1/2 horse power.

Q. What is a high pressure engine? A. It is an engine using steam at a high pressure and exhausting into the open air.

Q. What is a low pressure engine? A. It is one using steam at a low pressure and exhausting into a condenser, producing a vacuum, the piston being under steam pressure on one side and vacuum on the other.

Q. What class of engines are farm engines?A. They are high pressure.

Q. Why?A. They are less complicated and less expensive.

Q. What is the most economical pressure to carry on highpressure engine?A. From 90 to 110 pounds.

Q. Why is high pressure more economical than low pressure? A. Because the loss is greater in low pressure owing to the atmospheric pressure. With 45 pounds steam the pressure from the atmosphere is 15 pounds, or 1/3, leaving only 30 pounds of effective power; while with 90 pounds the atmospheric pressure is only 1-6 of the boiler pressure.

Q. Does it require any more fuel to carry I00 pounds than it does to carry 60 pounds? A. It don't require quite as much.

Q. If that is the case why not increase the pressure beyond this and save more fuel? A. Because we would soon pass the point of safety in a boiler, and the result would be the loss of life and property.

Q. What do you consider a safe working pressure on a boiler? A. That depends entirely on its diameter. While a boiler of 30 inches in diameter 3/8 inch iron would carry I40 pounds, a boiler of the same thickness 80 inches in diameter would have a safe working pressure of only 50 pounds, which shows that the safe working pressure decreases very rapidly as we increase the diameter of boiler. This is the safe working pressure for single riveted boilers of this diameter. To find the safe working pressure of a double riveted boiler of same diameter multiply the safe pressure of the single riveted by 70, and divide by 56, will give a safe pressure of a double riveted boiler.

Q. Why is a steel boiler superior to an iron boiler?A. Because it is much lighter and stronger.

Q. Does boiler plate become stronger or weaker as it becomes heated? A. It becomes tougher or stronger as it is heated, till it reaches a temperature Of 550 degrees when it rapidly decreases its power of resistance as it is heated beyond this temperature.

Q. How do you account for this? A. Because after you pass the maximum temperature of 550 degrees, the more you raise the temperature the nearer you approach its fusing point when its tenacity or resisting power is nothing.

Q. What is the degree of heat necessary to fuse iron?A. 2912 degrees.

Q. Steel?A. 2532 degrees.

Q. What class of boilers are generally used in a threshingengine?A. The flue boiler and the tubular boiler.

Q. About what amount of heating and grate surface is required per horse power in a flue boiler. A. About 15 square feet of heating surface and 3/4 square feet of grate surface.

Q. What would you consider a fair evaporation in a flueboiler?A. Six pounds of water to I pound of coal.

Q. How do these dimensions compare in a tubular boiler. A. A tubular boiler will require I/4 less grate surface, and will evaporate about 8 pounds of water to I pound of coal.

Q. Which do you consider the most available?A. The tubular boiler.

Q. Why?A. It is more economical and is less liable to "collapse?"

Q. What do you mean by "collapse?"A. It is a crushing in of a flue by external pressure.

Q. Is a tube of a large diameter more liable to collapse than one of small diameter? A. Yes.

Q. Why? A. Because its power of resistance is much less than a tube of small diameter.

Q. Is the pressure on the shell of a boiler the same as on thetubes?A. No.

Q. What is the difference? A. The shell of boiler has a tearing or internal pressure while the tubes have a crushing or external pressure.

Q. What causes an explosion? A. An explosion occurs generally from low water, allowing the iron to become overheated and thereby weakened and unable to withstand the pressure.

Q. What is a "burst?" A. It is that which occurs when through any defect the water and steam are allowed to escape freely without further injury to boiler.

Q. What is the best way to prevent an explosion or burst? A. (I) Never go beyond a safe working pressure. (2) Keep the boiler clean and in good repair. (3) Keep the safety valves in good shape and the water at its proper height.

Q. What is the first thing to do on going to your engine inthe morning?A. See that the water is at its proper level.

Q. What is the proper level?A. Up to the second gauge.

Q. When should you test or try the pop valve?A. As soon as there is a sufficient pressure.

Q. How would you start your engine after it had been standing over night? A. Slowly.

Q. Why? A. In order to allow the cylinder to become hot, and that the water or condensed steam may escape without injury to the cylinder.

Q. What is the last thing to do at night? A. See that there is plenty of water in boiler, and if the weather is cold drain all pipes.

Q. What care should be taken of the fusable plug? A. Keep it scraped clean, and not allow it to become corroded on top.

Q. What is a fusible plug? A. It is a hollow cast plug screwed into the crown sheet or top of fire box, and having the hollow or center filled with lead or babbit.

Q. Is such a plug a protection to a boiler?A. It is if kept in proper condition.

Q. Can you explain the principle of the fusible or soft plug as it is sometimes called? A. It is placed directly over the fire, and should the water fall below the crown sheet the lead fuses or melts and allows the steam to flow down on top of the fire, destroys the heat and prevents the burning of crown sheet.

Q. Why don't the lead fuse with water over it? A. Because the water absorbs the heat and prevents it reaching the fusing point.

Q. What is the fusing point of lead?A. 618 degrees.

Q. Is there any objection to the soft plug?A. There is, in the hands of some engineers.

Q. Why? A. It relieves him of the fear of a dry crown sheet, and gives him an apparent excuse for low water.

Q. Is this a real or legitimate objection?A. It is not.

Q. What are the two distinct classes of boilers?A. The externally and internally fired boilers.

Q. Which is the most economical?A. The internally fired boiler.

Q. Why? A. Because the fuel is all consumed in close contact with the sides of furnace and the loss from radiation is less than in the externally fired.

Q. To what class does the farm or traction engine belong?A. To the internally fired.

Q. How would you find the H.P. of such a boiler? A. Multiply in inches the circumference or square of furnace, by its length, then multiply, the circumference of one tube by its total length, and this product by the number of tubes also taking into account the surface in tube sheet, add these products together and divide by I44, this will give you the number of square feet of heating surface in boiler. Divide this by 14 or 15 which will give the H.P. of boiler.

Q. Why do you say 14 or 15? A. Because some claim that it requires 14 feet of heating surface to the H.P. and others 15. To give you my personal opinion I believe that any of the standard engines today with good coal and properly handled, will and are producing 1 H.P. for as low as every 10 feet of surface. But to be on the safe side it is well to divide by 15 to get the H.P. of your boiler, when good and bad fuel is considered.

Q. How would you find the approximate weight of a boiler by measurement? A. Find the number of square feet in surface of boiler and fire box, and as a sheet of boiler iron or steel 1/16 of an inch thick, and one foot square, weighs 2.52 pounds, would multiply the number of square feet by 2.52 and this product by the number of 16ths or thickness of boiler sheet, which would give the approximate, or very near the weight of the boiler.

Q. What would you recognize as points in a good engineer. A. A good engineer keeps his engine clean, washes the boiler whenever he thinks it needs it. Never meddles with his engine, and allows no one else to do so. Goes about his work quietly, and is always in his place, only talks when necessary, never hammers or bruises any part of his engine, allows no packing to become baked or burnt in the stuffing box or glands, renews them as quick as they show that they require it. Never neglects to oil, and then uses no more than is necessary. He carries a good gauge of water and a uniform pressure of steam. He allows no unusual noise about his engine to escape his notice he has taught his ear to be his guide. When a job is about finished you will see him cleaning his ash pan, getting his tools together, a good fire in fire box, in fact all ready to go, and he looses no time after the belt is thrown off. He hooks up to his load quietly, and is the first man ready to go.

*Q. When the piston head is in the exact center of cylinder, is the engine on the quarter? *A. It is supposed to be, but is not.

*Q. Why not?A. The angularity of the rod prevents it reaching the quarter.

*Q. Then when the engine is on the exact quarter what position does the piston head occupy? A. It is nearest the end next to crank.

Q. If this is the case, which end of cylinder is supposed to bethe stronger?A. The opposite end, or end furtherest from crank.

Q. Why? A. Because this end gets the benefit of the most travel, and as it makes it in the same time, it must travel faster.

*Q. At what part of the cylinder does the piston head reachthe greatest speed?A. At and near the center.

*Q. Why? Figure this out for yourself. *Note. The above few questions are given for the purpose of getting you to notice the little peculiarities of the crank engine, and are not to be taken into consideration in the operation of the same.

Q. If you were on the road and should discover that you had low water, what would you do? A. I would drop my load and hunt a high place for the front end of my engine, and would do it quickly to.

Q. If by some accident the front end of your engine should drop down allowing the water to expose the crown sheet, what would you do? A. If I had a heavy and hot fire, would shovel dirt into the fire and smother it out.

Q. Why would you prefer this to drawing the fire? A. Because it would reduce the heat at once, instead of increasing it for a few minutes while drawing out the hot bed of coals, which is a very unpleasant job.

Q. Would you ever throw water in the fire box? A. No. It might crack the side sheets, and would most certainly start the flues.

Q. You say, in finding low water while on the road, you would run your engine with the front end on high ground. Why would you do this? A. In order that the water would raise over the crown sheet, and thus make it safe to pump up the water.

Q. While your engine was in this shape would you not expose the front end of flues'? A. Yes, but as the engine would not be working this would do no damage.

Q. If you were running in a hilly country how would you manage the boiler as regards water? A. Would carry as high as the engine would allow, without priming.

Q. Suppose you had a heavy load or about all you could handle, and should approach a long steep hill, what condition should the water and fire be to give you the most advantage? A. A moderately low gauge of water and a very hot fire.

Q. Why a moderately low gauge of water? A. Because the engine would not be so liable to draw the water or prime in making the hard pull.

Q. Why a very hot fire? A. So I could start the pumps full without impairing or cutting the pressure.

Q. When would you start your pump?A. As soon as fairly started up the hill.

Q. Why? A. As most hills have two sides, I would start them full in order to have a safe gauge to go down, without stoping to pump up.

Q. What would a careful engineer do before starting to pull a load over a steep hill? A. He would examine his clutch, or gear pin.

Q. How would you proceed to figure the road speed of traction. A. Would first determine the circumference of driver, then ascertain how many revolutions the engine made to one of the drivers. Multiply the number of revolutions the engine makes per minute by 60, this will give the number of revolutions of engine per hour. Divide this by the number of revolutions the engine makes to the drivers once, and this will give you the number of revolutions the drivers will make in one hour, and multiplying this by the circumference of driver in feet, and it will tell you how many feet your engine is traveling per hour, and this divided by 5280, the number of feet in a mile, would tell you just what speed your engine would make on the road.

THINGS HANDY FOR THE ENGINEER ____________

The first edition of this work brought me a great many letters asking where certain articles could be procured, what I would recommend, etc. These questions required attention and as the writers had bought and paid for their book it was due them that they get the benefit of my experience, as nothing is so discouraging to the young engineer as to be continually annoyed by unreliable and inferior fittings used more or less on all engines. I have gone over my letter file and every article asked for will be taken up in the order, showing the relative importance of each article in the minds of engineers. For instance, more letters reached me asking for a good brand of oil than any other one article. Then comes injectors, lubricators have third place, and so on down the list. Now without any intention of advertising anybody's goods I will give you the benefit of my years of experience and will be very careful not to mention or recommend anything which is not strictly first class, at least so in my opinion, and as good as can be had in its class, yet in saying that these articles are good does not say that others are not equally as good. I am simply anticipating the numerous letters I otherwise would receive and am answering them in a lump bunch. If you have no occasion to procure any of these articles, the naming of them will do no harm, but should you want one or more you will make no mistake in any one of them.

As I have stated, more engineers asked for a good brand of oil than for any other one article and I will answer this with less satisfaction to myself than any other for this reason: You may know what you want, but you do not always get what you call for. Oil is one of those things that cannot be branded, the barrel can, but then it can be filled with the cheapest stuff on the market. If you can get Capital Cylinder Oil your valve will give you no trouble. If you call for this particular brand and it does not give you satisfaction don't blame me or the oil, go after the dealer; he did not give you what you called for. The same can be said of Renown Engine Oil. If you can always have this oil you will have no fault to find with its wearing qualities, and it will not gum on your engine, but as I have said, you may call for it and get something else. If your valve or cylinder is giving you any trouble and you have not perfect confidence in the dealer from whom you usually get your cylinder oil send direct to The Standard Oil Company for some Capital Cylinder Oil and you will get an oil that will go through your cylinder and come out the exhaust and still have some staying qualities to it. The trouble with so much of the so called cylinder oil is that it is so light that the moment it strikes the extreme heat in the steam chest it vaporizes and goes through the cylinder in the form of vapor and the valve and cylinder are getting no oil, although you are going through all the necessary means to oil them.

It is somewhat difficult to get a young engineer to understand why the cylinder requires one grade of oil and the engine another. This is only necessary as a matter of economy, cylinder or valve oil will do very well on the engine, but engine oil will not do for the cylinder. And as a less expensive oil will do for the engine we therefore use two grades of oil.

Engine oil however should be but little lower in quality than the cylinder oil, owing to the proximity of the bearings to the boiler, they are at all times more or less heated, and require a much heavier oil than a journal subject only to the heat of its own friction. The Renown Engine Oil has the peculiarity of body or lasting qualities combined with the fact that it does not gum on the hot iron and allows the engine to be wiped clean.

The next in the list of inquiries was for a reliable injector. I was not surprised at this for up to a few years ago there were a great many engines running throughout the country with only the independent or cross-head pump, and engineers wishing to adopt the injector naturally want the best, while others had injectors more or less unsatisfactory. In replying to these letters I recommend one of three or four different makes (all of which I had found satisfactory) with a request that the party asking for same should write to me if the injector proved unsatisfactory in any way. Of all the letters received, I never got one stating any objection to either the Penberthy or the Metropolitan. This fact has led me to think that probably my reputation as a judge of a good article was safer by sticking to the two named, which I shall do until I know there is something better. This does not mean that there are not other good injectors, but I am telling you what I know to be good, and not what may be good. The fact that I never received a single complaint from either of them was evidence to me that the makers of these two injectors are very careful not to allow any slighting of the work. They therefore get out no defective injectors. The Penberthy is made by The Penberthy Injector Co., of Detroit, Mich., and the Metropolitan by The Hayden & Derby Mfg. Co., New York, N. Y.

These come next in the long list of inquiries and wishing to satisfy myself as to the relative superiority of various cylinder Lubricators, I resorted to the same method as persued in regard to injectors. This method is very satisfactory to me from the fact that it gives us the actual experience of a class of engineers who have all conditions with which to contend, and especially the unfavorable conditions. I have possibly written more letters in answer to such questions as: "Why my Lubricator does this or that; and why it don't do so and so?" than of any other one part of an engine, (as a Sight Feed Lubricator might in this day be considered a part of an engine.) Of all the queries and objections made of the many Lubricators, there are two showing the least trouble to the operator. There are the Wm. Powell Sight Feed Lubricator (class "A") especially adapted to traction and road engines owing to the sight-glass being of large diameter, which prevents the drop touching the side of glass, while the engine is making steep grades and rough uneven roads, made by The Wm. Powell Co., Cincinnati, O., and for sale by any good jobbing house, and the Detroit Lubricator made by the Detroit Lubricator Co., of Detroit, Mich. I have never received a legitimate objection to either of these two Lubricators, but I received the same query concerning both, and this objection, if it may be called such, is so clearly no fault of the construction or principle of the Lubricator that I have concluded that they are among if not actually the best sight feed Lubricator on the market to-day. The query referred to was: "Why does my glass fill with oil?" Now the answer to this is so simple and so clearly no fault of the Lubricator that I am entirely satisfied that by recommending either of these Lubricators you will get value received; and here is a good place to answer the above query. If you have run a threshing engine a season or part of a season you have learned that it is much easier to get a poor grade of oil than a good one, yet your Lubricator will do this at times even with best of oil, and the reason is due to the condition of the feed nozzle at the bottom of the feed glass. The surface around the needle point in the nozzle becomes coated or rough from sediment from the oil. This coating allows the drop to adhere to it until it becomes too large to pass up through the glass without striking the sides and the glass becomes blurred and has the appearance of being full of oil, so in a measure to obviate this Powell's Lubricators are fitted with 3/4 glasses-being of large internal diameter. The permanent remedy however is to take out the glass and clean the nozzle with waste or a rag, rubbing the points smooth and clean. The drop will then release itself at a moderate size and pass up through the glass without any danger of striking the sides. However, if the Lubricator is on crooked it may do this same thing. The remedy is very simple-straighten it up. While talking of the various appliances for oiling your engine you will pardon me if I say that I think every traction engine ought to be supplied with an oil pump as you will find it very convenient for a traction engine especially on the road. For instance, should the engine prime to any great extent your cylinder will require more oil for a few minutes than your sight feed will supply, and here is where, your little pump will help you out. Either the Detroit or Powell people make as good an article of this kind as you can find anywhere, and can furnish you either the glass or metal body.

Hard Grease and a good Cup come next. In my trips over various parts of the country I visit a great many engineers and find a great part of them using hard grease and I also find the quality varying all the way from the very best down to the cheapest grade of axle grease. The Badger Oil I think is the best that can be procured for this purpose, and while I do not know just who makes it, you will probably have but little trouble in finding it, and if you are looking for a first class automatic cup for your wrist pin or crank box get the Wm. Powell Cup from any jobbing supply house.

These people also make a very neat little attachment for their Class "A" Lubricator which is a decided convenience for the engineer, and is called a "Filler." It consists of a second reservoir or cup, of about the same capacity of the reservoir of Lubricator, thus doubling the capacity. It is attached at the filling plug, and is supplied with a fine strainer, which catches all dirt, and grit, allowing only clear oil to enter the lubricator, and by properly manipulating the little shut-off valve the strainer can be removed and cleaned and the cup refilled without disturbing the working of the Lubricator. This little attachment will soon be in general use.

Injectors have a dangerous rival in the Moore Steam Pump or boiler feeder for traction engines, and the reason this little pump is not in more general use is the fact that among the oldest methods for feeding a boiler is the independent steam pump and they were always unsatisfactory from the fact that they were a steam engine within themselves, having a crank or disc, flywheel, eccentric, eccentric yoke, valve, valve stem, crosshead, slides, and all the reciprocating parts of a complete engine. Being necessarily very small, these parts of course are very frail and delicate, were easily broken or damaged by the rough usage to which they were subjected while bumping around over rough roads on a traction engine. The Moore Pump, manufactured by The Union Steam Pump Company, of Battle Creek, Mich., is a complete departure from the old steam engine pump, and if you take any interest in any of the novel ways in which steam can be utilized send to them for a circular and sectional cuts and you can spend several hours very profitably in determining just how the direct pressure from the boiler can be made to drive the piston head the full stroke of cylinder, open exhaust port, shift the valve open steam port and drive the piston back again and repeat the operation as long as the boiler pressure is allowed to reach the pump and yet have no connection whatever with any of the reciprocating parts of the pump, and at the same time lift and force water into the boiler in any quantity desired.

Another novel feature in this "little boiler feeder" is that after the steam has acted on the cylinder it can be exhausted directly into the feed water, thus utilizing all its heat to warm the water before entering the boiler. Now it required a certain number of heat units to produce this steam which after doing its work gives back all its heat again to the feed water and it would be a very interesting problem for some of the young engineers, as well as the old ones, to determine just what loss if any is sustained in this manner of supplying a boiler. If you are thinking of trying an independent pump, don't be afraid of this one. I take particular pride in recommending anything that I have tried myself, and know to be as recommended.

And a boiler feeder of this kind has all the advantage of the injector, as it will supply the boiler without running the engine, and it has the advantage over the injector, in not being so delicate, and will work water that can not be handled by the best of injectors.

We have very frequently had this question put to us: "Ought I to grease my gearing?" If I said "yes," I had an argument on my hands at once. If I said "no," some one would disagree just as quickly, and how shall I answer it to the satisfaction of most engineers of a traction engine?

I always say what I have to say and stay by it until I am convinced of the error. Now some of you will smile when I say that the only thing for gear where there is dust, is "Mica Axle Grease." And you smile because you don't know what it is made of, but think it some common grease named for some old saint, but that is not the case. If these people who make this lubricant would give it another name, and get it introduced among engineers, nothing else would be used. You have seen it advertised for years as an axle grease and think that is all it is good for; and there is where you make a mistake. It is made of a combination of solid lubricant and ground or pulverized mica, that is where it gets its name, and nothing can equal mica as a lubricant if you could apply it to your gear; and to do this it has been combined with a heavy grease. This in being applied to the gear retains the small particles of mica, which soon imbed themselves in every little abrasion or rough place in the gearing, and the surface quickly becomes hard and smooth throughout the entire face of the engaging gear, and your gear will run quiet, and if your gearing is not out of line will stop cutting if applied in time.

It will run dry and dust will not collect on the surface of your cogs, and after a coating is once formed it should never be disturbed by scraping the face of the gear, and a very little added from time to time will keep your gear in fine shape. Its name is against it and if the makers would take a tumble to themselves and call it "Mica Oil" or some catchy name and get it introduced among the users of tight gearing, they would sell just as much axle grease and all the grease for gearings.

Force feed oiler come next on the list. This is something not generally understood by engineers of traction and farm engines, and accounts for it being so far down the list. But we think it will come into general use within a few years, as an oiler of this kind forces the oil instead of depending on gravity.

The Acorn Brass Works of Chicago make a very unique and successful little oiler which forces a small portion of oil in a spray into the valve and cylinder, and repeats the operation at each stroke of the engine, and is so arranged that it stops automatically as soon as the oil is out of the reservoir; and at once calls the attention of the engineer to the fact, and it can be regulated to throw any quantity of oil desired. Is made for any size or make of engine.

One of the little things, that every engineer ought to have is a Motion counter or speeder. Of course, you can count the revolutions of your engine, but you frequently want to know the speed of the driven pulley, cylinder for instance: When you know the exact size of engine pulley and your cylinder pulley, and the exact speed of your engine, and there was no such thing as the slipping of drive belt, you could figure the speed of your cylinder, but by knowing this and then applying the speeder, you can determine the loss by comparing the figured speed with the actual speed shown by the speeder. If you have a good speeder you can make good use of it every day you run machinery. If you want one you want the best and there is nothing better than the one made by The Tabor Manufacturing Co., of Philadelphia, Pa. We use no other. You will see their advertisement in the American Thresherman.

But one article in the entire list did I find to be sectional, and that was for a spark arrester. These inquiries were all without exception from the wooded country, that is, from a section where it is cheaper to burn wood than coal. There is nothing strange that parties running engines in these sections should ask for a spark arrester, as builders of this class of engines usually supply their engines with a "smoke stack", with little or no reference to safety from fire. This being recognized by some genius in one of our wooded states who has profited by it and has produced a "smoke stack" which is also a "spark arrester." This stack is a success in every sense of the word, and is made for any and all styles of farm and saw mill engines. It is made by the South Bend Spark Arrester Co., of South Bend, Indiana, and if you are running an engine and firing with wood or straw, don't run too much risk for the engineer usually comes in for a big share of the blame if a fire is started from the engine. And as the above company make a specialty of this particular article, you will get something reliable if you are in a section where you need it.

Next comes enquiries for a good lifting Jack.

This would indicate that the boys had been getting their engine in a hole, but there are a great many times when a good Jack comes handy, and it will save its cost many times every season.

Too many engineers forget that when he is fooling around that he is the only one losing time. The facts are the entire crew are doing nothing, besides the outfit is making no money unless running.

You want to equip yourself with any tool that will save time.

The Barth Mfg, Co., of Milwaukee, make a Jack especially adapted to this particular work, and every engine should have a "mascot" in the shape of a lifting Jack.

Now before dropping the subject of "handy things for an engineer," I want to say to the engineer who takes pride in his work, that if you would enjoy a touch of high life in engineering, persuade your boss, if you have one, to get you a Fuller Tender made by the Parson's Band Cutter and Feeder Co., Newton, Iowa, and attach to your engine. It may look a little expensive, but a luxury usually costs something and by having one you will do away with a great deal of the rough and tumble part of an engineers life.

And if you want to keep yourself posted as to what is being done by other threshermen throughout the world, read some good "Threshermen's Home journal." The American Thresherman for instance is the "warmest baby in the bunch." And if anything new under the sun comes out you will find it in the pages of this bright and newsy journal. Keep to the front in your business. Your business is as much a business as any other profession, and while it may not be quite as remunerative as a R. R. attorney, or the president of a life insurance company it is just as honorable, and a good engineer is appreciated by his employer just as much as a good man in any other business. A good engineer can not only always have a job, but he can select his work. That is if there is any choice of engines in a neighborhood the best man gets it.

Now before bringing this somewhat lengthy lecture to a close, (for I consider it a mere lecture, a talk with the boys) I want to say something more about pressure. You notice that I have not advocated a very high pressure; I have not gone beyond 125 lbs. and yet you know and I know that very much higher pressure is being carried wherever the traction engine is used, and I want to say that a very high pressure is no gauge or guarantee of the intelligence of the engineer. The less a reckless individual knows about steam the higher pressure he will carry. A good engineer is never afraid of his engine without a good reason, and then he refuses to run it. He knows something of the enormous pressure in the boiler, while the reckless fellow never thinks of any pressure beyond the I00 or I40 pounds that his gauge shows. He says, "'O! That,' that aint much of a pressure, that boiler is good for 200 pounds." It has never dawned on his mind (if he has one) that that I40 pounds mean I40 pounds on every square inch in that boiler shell, and I40 on each square inch of tube sheets. Not only this but every square inch in the shell is subjected to two times this pressure as the boiler has two sides or in other words, each square inch has a corresponding opposite square inch, and the seam of shell must sustain this pressure, and as a single riveted boiler only affords 62 per cent of the strength of solid iron. It is something that every engineer ought to consider. He ought to be able to thoroughly appreciate this almost inconceivable pressure. How many engineers are today running 18 and 20 horse power engines that realizes that a boiler of this diameter is not capable of sustaining the pressure he had been accustomed to carry in his little 26 or 30 inch boiler? On page 114 You will get some idea of the difference in safe working pressure of boilers, of different diameters. On the other hand this is not intended to make you timid or afraid of your engine, as there is nothing to be afraid of if you realize what you are handling, and try to comprehend the fact that your steam gauge represents less than one 1-1000 part of the power you have under your management. You never had this put to you in this light before, did you?

If you thoroughly appreciate this fact and will try to comprehend this power confined in your boiler by noting the pressure, or power exerted by your cylinder through the small supply pipe, you will soon be an engineer who will only carry a safe and economical pressure, and if there comes a time when it is necessary to carry a higher pressure, you will be an engineer who will set the pop back again, when or as soon as this extra pressure is not necessary.

If I can get you to comprehend this power proposition no student of"Rough and Tumble Engineering" will ever blow up a boiler.

When I started out to talk engine to you I stated plainly that this book would not be filled up with scientific theories, that while they were very nice they would do no good in this work. Now I am aware that I could have made a book four times as large as this and if I had, it would not be as valuable to the beginner as it is now.

From the fact that there is not a problem or a question contained in it that any one who has a common school education can not solve or answer without referring to any textbooks The very best engineer in the country need not know any more than he will find in these pages. Yet I don't advise you to stop here, go to the top if you have the time and opportunity. Should I have taken up each step theoretically and given forms, tables, rules and demonstrations, the young engineer would have become discouraged and would never have read it through. He would have become discouraged because he could not understand it. Now to illustrate what I mean, we will go a little deeper and then still deeper, and you will begin to appreciate the simple way of putting the things which you as a plain engineer are interested in.

For example on page 114 we talked about the safe working pressure of different sized boilers. It was most likely natural for you to say "How do I find the safe working pressure?" Well, to find the safe working pressure of a boiler it is first necessary to find the total pressure necessary to burst the boiler. It requires about twice as much pressure to tear the ends out of a boiler as it does to burst the shell, and as the weakest point is the basis for determining the safe pressure, we will make use of the shell only.

We will take for example a steel boiler 32 inches in diameter and 6 ft. long, 3/8 in. thick, tensile strength 60,000 lbs. The total pressure required to burst this shell would be the area exposed times the pressure. The thickness multiplied by the length then by 2 (as there are two sides) then by the tensile strength equals the bursting pressure: 3/8 x 72 X 2 x 60,000 = 3,240,000 the total bursting pressure and the pressure per square inch required to burst the shell is found by dividing the total bursting pressure 3,240,000 pounds by the diameter times the length 3,240,000 / (32 x 72) = 1406 lbs.

It would require 1406 lbs. per square inch to burst this shell if it were solid, that is if it had no seam, a single seam affords 62 per cent of the strength of shell, 1406 x .62 = 871 lbs. to burst the seam if single riveted; add 20 per cent if double riveted.

To determine the safe working pressure divide the bursting pressure of the weakest place by the factor of safety. The United States Government use a factor of 6 for single riveted and add 20 per cent for double riveted, 871 / 6 = 145 lbs. the safe working pressure of this particular boiler, if single riveted and 145 + 20 per cent=174 double riveted.

Now suppose you take a boiler the same length and of the same material, but 80 inches in diameter. The bursting pressure would be 3,240,000 / (80 x 72) = 560 lbs., and the safe working pressure would be 560 / 6 = 93 lbs.

You will see by this that the diameter has much to do with the safe working pressure, also the diameter and different lengths makes a difference in working pressure.

Now all of this is nice for you to know, and it may start you on a higher course, it will not make you handle your engine any better, but it may convince you that there is something to learn.

Suppose we give you a little touch of rules, and formula in boiler making.

For instance you want to know the percent of strength of single riveted and double riveted as compared to solid iron. Some very simple rules, or formula, are applicable.

Find the percent of strength to the solid iron in a single-riveted seam, 1/4 inch plate, 5/8 inch rivet, pitched or spaced 2 inch centers. First reduce all to decimal form, as it simplifies the calculation; 1/4=.25 and 5/8 inch rivets will require 11/16 inch hole, this hole is supposed to be filled by the rivet, after driving, consequently this diameter is used in the calculation, 11/16 inches=.6875.

First find the percent of strength of the sheet.

P-D——-The formula is P = percent.

P = the pitch, D = the diameter of the rivet hole, percent = percent of strength of the solid iron.

2 -.6875 ———— Substituting values, 2 = .66. Now of course you understand all about that, but it is Greek to some people.

So you see I have no apologies to make for following out my plain comprehensive talk, have not confused you, or lead you to believe that it requires a great amount of study to become an engineer. I mean a practical engineer, not a mechanical engineer. I just touch mechanical engineering to show you that that is something else. If you are made of the proper stuff you can get enough out of this little book to make you as good an engineer as ever pulled a throttle on a traction engine. But this is no novel. Go back and read it again, and ever time you read it you will find something you had not noticed before.

INDEX——-

End of Project Gutenberg's Rough and Tumble Engineering, by James H. Maggard


Back to IndexNext