B. LIVING BODIES.

B. LIVING BODIES.

Every one has seen a cornfield. If you pluck up one of the innumerablewheat plantswhich are fixed in the soil of the field, about harvest time, you will find that it consists of a stem which ends in arootat one end and anearat the other, and that blades orleavesare attached to the sides of the stem. The ear contains a multitude of oval grains which are theseedsof the wheat plant. You know that when these seeds are cleared from thehuskorbranin which they are enveloped, they are ground into fine powder in mills, and that this powder is theflourof which bread is made. If a handful of flour mixed with a little cold water is tied up in a coarse cloth bag, and the bag is then put in a large vesselof water and well kneaded with the hands, it will become pasty, while the water will become white. If this water is poured away into another vessel, and the kneading process continued with some fresh water, the same thing will happen. But if the operation is repeated the paste will become more and more sticky, while the water will be rendered less and less white, and at last will remain colourless. The sticky substance which is thus obtained by itself is calledgluten; in commerce it is the substance known asmaccaroni.

If the water in which the flour has thus been washed is allowed to stand for a few hours, a white sediment will be found at the bottom of the vessel, while the fluid above will be clear and may be poured off. This white sediment consists of minute grains ofstarch, each of which, examined with the microscope, will be found to have a concentrically laminated structure. If the fluid from which the starch was deposited is now boiled it will become turbid, just as white of egg diluted with water does when it is boiled, and eventually a whitish lumpy substance will collect at the bottom of the vessel. This substance is calledvegetable albumin.

Besides the albumin, the gluten, and the starch, other substances, about which this rough method of analysis gives us no information, are contained in the wheat grain. For example, there is woody matter orcellulose, and a certain quantity ofsugarandfat. It would be possible to obtain a substance similar to albumin, starch, saccharine and fatty matters, and cellulose, by treating the stem, leaves, and root in a similar fashion, but the cellulose would be in farlarger proportion.Straw, in fact, which consists of the dry stem and leaves of the wheat plant, is almost wholly made up of cellulose. Besides this, however, it contains a certain proportion of mineral bodies, among them, pure flint orsilica; and, if you should ever see a wheat rick burnt, you will find more or less of this silica, in a glassy condition, in the embers. In the living plant, all these bodies are combined with a large proportion of water, or are dissolved, or suspended in that fluid. The relative quantity of water is much greater in the stem and leaves than in the seed.

Everybody has seen a common fowl. It is an active creature which runs about and sometimes flies. It has a body covered with feathers, provided with two wings and two legs, and ending at one end in a neck terminated by a head with a beak, between the two parts of which the mouth is placed. The hen layseggs, each of which is enclosed in a hard shell. If you break an egg the contents flow out and are seen to consist of the colourless glairy “white” and the yellow “yolk.” If the white is collected by itself in water and then heated it becomes turbid, forming a white solid, very similar to the vegetable albumin, which is calledanimal albumin.

If the yolk is beaten up with water, no starch nor cellulose is obtained from it, but there will be plenty of fatty and some saccharine matter, besides substances more or less similar to albumin and gluten.

The feathers of the fowl are chiefly composed of horn; if they are stripped off and the body isboiled for a long time, the water will be found to contain a quantity ofgelatin, which sets into a jelly as it cools; and the body will fall to pieces, the bones and the flesh separating from one another. The bones consist almost entirely of a substance which yields gelatin when it is boiled in water, impregnated with a large quantity of salts of lime, just as the wood of the wheat stem is impregnated with silica. The flesh, on the other hand, will contain albumin, and some other substances which are very similar to albumin, termedfibrinandsyntonin.

In the living bird, all these bodies are united with a great quantity of water, or dissolved, or suspended in water; and it must be remembered that there are sundry other constituents of the fowl’s body and of the egg, which are left unmentioned, as of no present importance.

The wheat plant contains neither horn, nor gelatin, and the fowl contains neither starch, nor cellulose; but the albumin of the plant is very similar to that of the animal, and the fibrin and syntonin of the animal are bodies closely allied to both albumin and gluten.

That there is a close likeness between all these bodies is obvious from the fact that when any of them is strongly heated, or allowed to putrefy, it gives off the same sort of disagreeable smell; and careful chemical analysis has shown that they are, in fact, all composed of the elementsCarbon,Hydrogen,Oxygen, andNitrogen, combined in very nearlythe same proportions. Indeed,charcoal, which is impure carbon, might be obtained by strongly heating either a handful of corn, or a piece of fowl’s flesh, in a vessel from which the air is excluded so as to keep the corn or the flesh from burning. And if the vessel were a still, so that the products of thisdestructive distillation, as it is called, could be condensed and collected, we should find water and ammonia, in some shape or other, in the receiver. Now ammonia is a compound of the elementary bodies, nitrogen and hydrogen; therefore (§ 50) both nitrogen and hydrogen must have been contained in the bodies from which it is derived.

It is certain, then, that very similar nitrogenous compounds form a large part of the bodies of both the wheat plant and the fowl, and these bodies are calledproteids.

It is a very remarkable fact that not only are such substances as albumin, gluten, fibrin and syntonin, known exclusively as products of animal and vegetable bodies; but that every animal and every plant, at all periods of its existence, contains one or other of them, though, in other respects, the composition of living bodies may vary indefinitely. Thus, some plants contain neither starch nor cellulose, while these substances are found in some animals; while many animals contain no horny matter and no gelatin-yielding substance. So that the matter which appears to be theessentialfoundation of both the animal and the plant is theproteidunited withwater; though it is probable that, in all animals and plants, these are associated with more or lessfattyandamyloid(or starchy and saccharine) substances, and with very small quantities of certain mineral bodies, of which the most important appear to bephosphorus,iron,lime,and potash.

Thus there is a substance composed of water + proteids + fat + amyloids + mineral matters which is found in all animals and plants; and, when these are alive, this substance is termedprotoplasm.

The wheat plant in the field is said to be alivingthing; the fowl running about the farm-yard is also said to be alivingthing. If the plant is plucked up, and if the fowl is knocked on the head, they soon die and becomedeadthings. Both the fowl and the wheat plant, as we have seen, are composed of the same elements as those which enter into the composition of mineral matter, though united into compounds which do not exist in the mineral world. Why then do we distinguish this matter when it takes the shape of a wheat plant, or a fowl, asliving matter?

In the spring, a wheat-field is covered with smallgreen plants. These grow taller and taller until they attain many times the size which they had when they first appeared; and they produce the heads of flowers which eventually change into ears of corn.

In so far as this is a process of growth, accompanied by the assumption of a definite form, it might be compared with the growth of a crystal of salt in brine: but, on closer examination, it turns out to be something very different. For the crystal of salt grows by taking to itself the salt contained in the brine, which is added to its exterior; whereas the plant grows by addition to its interior: and there is not a trace of the characteristic compounds of the plant’s body, albumin, gluten, starch, or cellulose, or fat, in the soil, or in the water, or in the air.

Yet the plant creates nothing (§ 50) and, therefore, the matter of the proteids and amyloids and fats which it contains must be supplied to it, and simply manufactured, or combined in new fashions, in the body of the plant.

It is easy to see, in a general way, what the raw materials are which the plant works up, for the plant gets nothing but the materials supplied to it by the atmosphere and by the soil. The atmosphere contains oxygen and nitrogen, a little carbonic acid gas, a minute quantity of ammoniacal salts, and a variable proportion of water. The soil contains clay and sand (silica), lime, iron, potash, phosphorus, sulphur, ammoniacal salts, and other matters which are of no importance. Thus, between them, the soil and the atmosphere contain all the elementary bodies which we find in the plant: but the plant has to separate them and join them together afresh.

Moreover, the new matter, by the addition of which the plant grows, is not applied to its outer surface, but is manufactured in its interior; and the new molecules are diffused among the old ones.

The grain of wheat is a part of the flower of the wheat plant, which, when it becomes ripe, is easily separated. It contains a minute and rudimentary plant; and, when it is sown, this gradually grows, or becomesdevelopedinto, the perfect plant, with its stem, roots, leaves and flowers, which again give rise to similar seeds. No mineral body runs through a regular series of changes of form and size and then gives off parts of its substance which take the same course. Mineral bodies present no suchdevelopmentand give off no seeds orgerms. They do not reproduce their kind.

The fowl in the farm-yard is incessantly pecking about and swallowing now a grain of corn, and now a fly or a worm. In fact, it is feeding, and, as every one knows, would soon die if not supplied with food. It is also a matter of every day knowledge that it would not be of much use to give a fowl the soil of a cornfield, with plenty of air and water, to eat.

In this respect, the fowl is like all other animals; it cannot manufacture the proteid materials of its body, but it has to take them ready made, or in a condition which requires but very slight modification, by devouring the bodies either of other animals or of plants. The animal or vegetable substances devoured are taken into the animal’s stomach; they are there digested or dissolved; and thus they are fitted to be distributed to all parts of the fowl’s own body, and applied to its maintenance and growth.

The fowl’s egg is formed in the body of the hen, and is, in fact, part of her body inclosed in a shell and detached. It contains a minute rudiment of a fowl; and when it is kept at a proper temperature by the hen’s sitting upon it, or otherwise, for three weeks, this rudiment grows or develops, at the expense of the materials contained in the yolk and the white, into a small bird, the chick, which is then hatched and grows into a fowl. The animal, therefore, is produced by the development of a germ in the same way as the plant; and, in this respect, all plants and all animals agree with one another and differ from all mineral matter.

Thus there is a very broad distinction betweenmineral matter and living matter. The elements of living matter are identical with those of mineral bodies; and the fundamental laws of matter and motion apply as much to living matter as to mineral matter; but every living body is, as it were, a complicated piece of mechanism which “goes,” or lives, only under certain conditions. The germ contained in the fowl’s egg requires nothing but a supply of warmth, within certain narrow limits of temperature, to build the molecules of the egg into the body of the chick. And the process of development of the egg, like that of the seed, is neither more nor less mysterious than that, in virtue of which, the molecules of water, when it is cooled down to the freezing-point, build themselves up into regular crystals.

The further study of living bodies leads to the province ofBiology, of which there are two great divisions—Botany, which deals with plants, andZoology, which treats of animals.

Each of these divisions has its subdivisions—such asMorphology, which treats of the form, structure, and development of living beings, andPhysiology, which explains their actions or functions, besides others.


Back to IndexNext