BIRTHPLACE OF THE OILCLOTH INDUSTRY.

Brewery Storage VatsSLATE STORE-VATS FOR BREWERIES.

Slate has but slight affinity for water, and, moreover, resists atmospheric influences, humidity and heat pretty well.

This property renders it valuable for a large number of domestic purposes.

There is no certain proof, it is true, that it was employed by the ancients, but it is, nevertheless, extremely probable that it was used in mass at an early period for stair heads, pillars for buildings and as a material for fencing.

The exploitation of the material became especially active at the period when the idea occurred to some one to use slate for the rooting of houses. It was employed for this purpose along with tiles as far back as the eleventh century in the majority of schistose districts. It is well known, for example, that Fumay (Ardennes) at this period had a brotherhood of slate quarrymen.

A method of getting out the material and cutting it regularly was found toward the end of the twelfth century, and it was not till then that it became of general application. Moreover, with the advent of the Gothic period slate became indispensable for castle roofs, which have a conical form.

The best slate for roofing purposes is hard, heavy and of a bluish gray color. A good slate should readily split into even laminæ; it should not be absorbent of water either on its face or endwise, a property evinced by its not increasing perceptibly in weight after immersion in water; and it should be sound, compact and not apt to disintegrate in the air.

For a long time past there have been used in schools slate tablets upon which the pupils write with a pencil made of soft gray schist. This application, which is capable of rendering services in a host of details of domestic economy, has given rise to artificial slates, which, made by a process of moulding a composition analogous to cardboard pulp, present the same advantages as ordinary slate, while being much lighter.

Along about 1834 an Englishman of the name of Magnus utilized the property that slate possesses of taking a fine polish in the invention of what are called enameled slates. These products are used especially in the manufacture of table tops, mantelpieces, altars, etc. They very closely imitate the most expensive marbles, and their properties, along with their low price, have been the cause of their introduction into the houses of all classes of the English population, as well as into those of entire Europe and America.

The ease with which slate is obtained in slabs of large dimensions has greatly contributed in recent times toward still further increasing its applications. One of the first of such applications was the substitution of it in urinals for cast iron plates, which very rapidly oxidize and become impregnated with nauseous odors that necessitate a frequent cleaning and constitute a permanent source of infection.

For a few years past, too, slate has been used, in the manufacture of vats designed for breweries. These vats, of which we show in the accompanying figure a model of the installation employed in the Ivry Brewery, are each 6½ feet square and 5 feet in depth. For leading the beer, which, upon coming from the brewing apparatus, must rest for a few days, they are connected by a system of pipes. A second system of pipes, which in our figure is seen running along the cellar vault, serves as a cooling apparatus and maintains a temperature of 5° C. above zero in the vats arranged in two rows to the right and left.

The details or even a simple enumeration of the new applications of slate would, in order to be anywhere nearly complete, necessitate a lengthy article. Let us say in conclusion that slate is substituted for wood, which is too easily attackable, and for marble, which is much more costly, in our laboratories and amphitheaters and everywhere where the manipulation and stay of easily corrupted liquids and solids require the greatest cleanliness in the material of construction.—La Science en Famille.

In Kennebec County, Me., is the quiet borough of East Winthrop, for more than half a century known wherever oilcloth carpeting was used as Baileyville.

Were it not for the inventive brain of one of East Winthrop's early inhabitants, says a contemporary, the village would hardly be known across the lake, but early in the present century one of the numerous family of Maine Baileys evolved a scheme to fill his purse faster than the slow process of nature was likely to do it in growing crops.

Oilcloth carpetings were not known in the long ago, when Ezekiel Bailey pictured in his mind how they might be made, and it was in the little hamlet of East Winthrop that the conceit of their manufacture was hatched and executed. Ezekiel Bailey was, in the days prior to the war of 1812, looked upon as a very likely boy. He was studious and industrious, and while other boys of the village were out in the white oak groves setting box traps for gray squirrels, and spearing pickerel by torch light in the waters of Cobosseecontee, Ezekiel was busy in his little workshop fashioning useful things to be used about the house.

Just how and when and where he was prompted to attempt the making of oilcloth carpet nobody now living at East Winthrop seems to know. Many of the burghers thought he was "a-wastin' uv his time," butthey thought different some years later when great factories for the manufacture of oilcloth floor carpeting were erected in East Winthrop, Hallowell, New Jersey, and other places.

And Ezekiel? He amassed a considerable fortune and left the path of life much easier for his kin to pursue. Having met a peddler one day, he bought a table cover made of a combination of burlap and paint. Such things were a luxury in the country at that time, and Ezekiel Bailey was shrewd enough to foresee a big demand for them if the cost could be moderated a bit. While thinking, an idea came to him, and following the idea a small voice which whispered: "Make 'em yourself." He decided to try, and there is a legend to the effect that half the farmers of the village quit work to see the first table cover.

Procuring a square of burlap, or rather enough burlap from which to fashion a square of the desired size, Ezekiel Bailey framed up the fabric as the good old grandmas used to hitch up quilts at a quilting bee, the only difference being that the burlap was framed or stretched over a table made of planed boards large enough for the full spread of the burlap. With paint and brush he began his work. The first coat was a tiller; the next, a thicker one, gave body to the cloth, and when this was rubbed down to a smooth surface the last coat was prepared. This was of a different color and was spread on thick. Then, with a straight edge, a piece of board with a true, thin edge, reaching across the whole surface of painted cloth, the finishing touches were put on. Commencing at one end of the fabric, the straight edge was moved back and forth, and straight along over the fresh paint once or twice, and the whole thing left to dry.

The first table covers were great curiosities, and the homes of the Baileys were visited by all the neighboring housewives, who were anxious to see "how they worked." Of course, it was easy to keep them clean, and they saved the woodwork of the table, which was recommendation enough. To see a cloth was to covet it, and it was not long before Ezekiel Bailey had a considerable business. Employing a boy to help him, he turned out table cloths as fast as his limited facilities would permit, and, as he progressed, new ideas for decorating took shape in his mind. In less than a year he had men out on the road selling them.

The turning out to perfection of an oilcloth carpet in those days was a task that would make a person in these piping times of labor-saving machinery wish for something easier. All the smoothing or rubbing down was done by hand. Heavy, long-bladed knives, as big as the "Sword of Bunker Hill," were used to scrape down the rough body coats of paint, and a smooth surface, on which to stamp the geometrical figures in colors, was fetched after long and laborious polishing with bricks and pumice stone.

Drummers employed by Mr. Bailey traveled to Massachusetts, to New York, and away down into the South, and ere long the demand for oilcloth carpeting became so general that other factories were built and made to chatter and clank with the new industry. There was living not far from East Winthrop at this time a shrewd, wideawake Yankee farmer named Sampson, who had kept his weather eye peeled on the progress of Ezekiel Bailey, and when housewives everywhere began to yearn for the new carpeting, taking a neighbor in as a partner, Mr. Sampson built a factory, and in a very short time was in a position to be considered a formidable rival of Mr. Bailey.

But the originator of the oilcloth carpet was not to be outdone. Discerning good returns from a plant established close to a big center of consumption, Mr. Bailey entered into a deal with New Jersey capitalists, and a big factory was set a-going in that State. A trusted employe of the Bailey concern, Levi Richardson (who still lives and is the proprietor of a modest little store in East Winthrop), was sent to New Jersey to instruct the green hands there in the art of manufacture. While thus engaged, Mr. Richardson's brain was busy with the problem of labor saving, and one day a phantom device for smoothing and rubbing down the first rough coats on the burlaps took form in his mind, and for some weeks he spent his spare time in experimenting. The result was the present patent used in most factories, whereby as much rubbing down can be done in one day as could have been accomplished in four by the old hand method.—Industrial World.

The question of the design of small locomotives for use on pioneer lines has been always a difficult matter.

The needs of the railway contractor have called for such locomotives, for which several systems of power have been tried. In many ways the electric locomotive has distinct advantages over its rivals, steam and compressed air, for these narrow gage lines. Reviewing these advantages briefly, we see that the electrical equipment is more economical to work, as one good stationary engine develops power much more cheaply than several small locomotives. Again, the electric locomotive can be more readily designed for narrow gages than steam or compressed air locomotives.

Fig. 1 AN ELECTRIC LINE EQUIPPED ON THE KOPPEL SYSTEM.Fig.1—AN ELECTRIC LINE EQUIPPED ON THE KOPPEL SYSTEM.

Fig. 2 THE SECTION WITH THE SUPPORT FOR THE OVERHEAD LINEFig.2.—THE SECTION WITH THE SUPPORT FOR THE OVERHEAD LINE

A new system of equipment of such lines is now being introduced into this country by Mr. Arthur Koppel, of 96 Leadenhall Street, E. C. The keynote of this system is flexibility, the arrangements being such that extensions or alterations can be readily effected. In fact, the line is portable, and it is claimed also to be cheaper than the ordinary construction. The overhead conductor is employed, as can be seen from Fig. 1, which gives a general view of a locomotive and train of skips on a line actually at work abroad. The supports for the wire are not provided by separate posts and brackets in the usual way, but by arched carriers attached to the sections of railway line, thereby forming a portable section of the electric railway, as illustrated by Fig. 2. The steel carrier or "arch" is fixed to one of the sleepers, which is made of sufficient length for that purpose. On the straight line these line supports are placed about 25 yards apart. In curves of a small radius each section of tramway is provided with an arch, to keep the line of the wire as nearly as possible parallel to the curve of the line. Apart from these special extended sleepers with wire carriers attached, the line is constructed in the ordinary mariner with rails 14 lb. per yard and upward. As the electric locomotives are lighter than steam locomotives, the weight of rail required is somewhat less. The special trolley for erecting the wires along the railway line is shown in Fig. 3. This consists of an ordinary four wheeled platform wagon with ladder, and wire drum with tightening gear and clamps or grips for anchoring the trolley to the line. The wire is led over a sheave on top of the ladder and fixed to the picket post at the beginning of the line. When erecting the wire the trolley is pushed beyond the first carrier arch, clamped on to the rails, and the wire is then tightened by means of the tightening gear. It is then firmly fixed to the insulator on the carrier arch The tension in the copper wire is taken up by a second portable ladder, which is also provided with a tightening gear and can be clamped to the rails in the same manner as the trolley, so that the trolley can then be pushed behind the second carrier arch and the process previously described repeated. By the tension in the wire the carrier arches acquire the necessary stability, while without the procedure previously described it would be impossible to use such light arches attached to the sleepers. On permanent lines, the extreme ends of the wire are attached to properly anchored picket posts. On portable lines, on the other hand, the trolley with the wire drum is fixed to the rails at the end of the line, as shown in Fig. 3, so as to enable the line to be lengthened or shortened, as may be required, with ease.

Fig. 3 Straining Gear and Terminal AnchorFig.3.—THE STRAINING GEAR AND TERMINAL ANCHOR.

Care is taken in insulating the drum and ladders so as to prevent leakage from this erecting trolley to earth. The feeders from the power house to the overhead wire and to the rails respectively are erected on light iron posts, which have also been standardized by Mr. Koppel. A specimen of these posts with an anchored stay is shown in Fig. 4. All these details are arranged for convenience of the contractor required to rapidly equip a line of railway, which can also be removed as soon as the work has been done.

Fig. 4 Light pole for Feeders.Fig.4.—LIGHT POLE FOR CARRYING THE FEEDERS.Fig. 5 LocomotiveFig.5.—THE KOPPEL LOCOMOTIVE.

The locomotive used is varied in form with the gage of the line, but we are particularly concerned with those for gages under 24 inches. One form of such locomotive without a hood to protect the driver is shown in Fig. 5. In this locomotive the gear is the same as that of the next illustration, but it is securely boxed in a watertight iron cover. The controlling gear is then placed vertically in front. Figs. 6 and 7 show the details of the electrical and mechanical parts of this locomotive when fitted with a platform at either end, and with a hood. The motor. M, is of the internal pole type, and is supported on the underframe of the wagon. A double gear is used. The first is a spur gearing, connecting the motor to a countershaft placed under the motor. This gear reduces the speed of rotation to about 200 revolutions. The countershaft is then connected to the two axles of the trolley by chain gearing. This gives the necessary flexibility between the car body and the wheel required, as thesprings give to any inequality of the rails. In this gearing there is no change of speed. The underframe is provided with spring axle boxes, and also with spring buffers and drawbars. The speed of the motor can be regulated within very wide limits by the regulator, R. An effective hand brake is also provided.

Fig. 6 Locomotive End ViewFig.6.—END ELEVATION OF LOCOMOTIVE.Fig. 7 Detail View of LocomotiveFig.7.—DETAILED ELEVATION OF A KOPPEL LOCOMOTIVE WITH A DOUBLE PLATFORM AND HOOD.

For gages of 20 inches and upward the motors can be mounted on springs and attached to the running axles inside of the wagon underframe. This construction is particularly recommended by Mr. Koppel where, in order to mount heavy gradients, the dead load of the motor car must be assisted by the paying load to produce the necessary adhesion. In such cases several motor wagons would be used in the same train. As regards the working voltage, this can be varied to suit special requirements, but the locomotive we illustrate was designed for 110 volts. At this pressure its possible working speed was at least eight miles per hour. The supply of power is also a matter not referred to particularly, as in many cases a lighting plant is used by the contractors, which could also be employed to provide the necessary energy for the electric railway. The good work done by small electric locomotives in the excavation work for the Waterloo and City Railway[1]will convince our large contractors of the valuable service which electricity can render both above and below ground.—The Electrical Engineer.

[1]Electrical Engineer, vol. xvi., p. 499.

[1]Electrical Engineer, vol. xvi., p. 499.

A connection between Servian and Roumanian railways is to be established by bridging the Danube. It is reported proposals have already been made to the governments interested, by the Union Bridge Company, also by British and French constructors.—Uhland's Wochenschrift.

The object in view when the following tests were commenced was to obtain some data from which the dimensions of a liquid rheostat for the dissipation as heat of a given amount of energy could be calculated, or at least estimated, when the maximum current and E.M.F. are known. These tests were rather hastily made and are far from being as complete as I should like to have them, and are published only to answer some inquiries for information on the subject.

In the first test, an ordinary Daniell jar (6¼ inches in diameter by 8 inches deep) with horizontal sheet iron electrodes was filled with tap water. It would not carry 4 amperes for over fifteen or twenty minutes, although the jar was full of water and the plates only ¾ inch apart. After that length of time it became too hot, causing great variation in the current on account of the large amount of gas liberated, much of which adhered to the under surface of the upper electrode. The difference of potential between the plates was 200 volts.

A run was made with 1 ampere and then with 2 amperes for one hour. In the latter case the voltage between the electrodes was about 71 volts and the temperature rose to about 167° F.

From these tests it would be safe to allow a vessel with a cross section of 30.7 square inches to carry from 2 to 2½ amperes when tap water and horizontal electrodes are used.

In test No. 2 the same jar and electrodes were used as in the preceding test, but the tap water was replaced by a saturated solution of salt water. Eleven amperes with a potential difference of 7 volts between the electrodes, which were 7¾ inches apart, were passed through the solution for three hours, and the temperature at the end of the run was 122° F., and was rising very slowly.

Although the current per square inch is much greater, the watts absorbed per cubic inch is much less in this case than when water was used. With the water carrying 2 amperes the watts absorbed would be over 10 per cubic inch, while for the saturated solution of salt when carrying 11 amperes it would be only about 0.4 watt.

In test No. 3 use was made of a long, wooden rectangular trough (42 inches by 6½ inches by 8 inches) with vertical, sheet iron electrodes. The cross section of the liquid, which was a 10 per cent. solution of salt in water, was 44 square inches, and with 10 amperes passing through the solution for 1¾ hours the temperature rose to 95° F., and was rising slowly at the end of the run.

The plates were 41¾ inches apart, and at the end of the run the voltmeter across the terminals read 20. This gives a current density of nearly ¼ ampere per square inch and 0.11 watt per cubic inch. These values are too low to be considered maximum values, for this cross section of a 10 per cent. salt solution would probably carry 13 to 15 amperes safely.

It appears that as the amount of salt in the solution is increased from zero to saturation, the maximum current carrying capacity is increased, but the watts absorbed per cubic inch are less.

A very small addition of salt to tap water makes the solution a much better conductor than the water, and reduces greatly the safe maximum watts absorbed. In using glass vessels, such as Daniell jars, there is danger of cracking the jar if the temperature rises much above 165° to 175° F.

In test No. 4 an ordinary whisky barrel, filled up with tap water, was used. Two horizontal circular iron plates (3/16 inch thick) were used for electrodes. The diameter of the inside of the barrel was approximately 19½ inches. With the two plates 263/8inches apart a difference of potential of 486 volts gave a current of 2.6 amperes. With the plates7/8inch apart, 228 volts gave 35.5 amperes at the end of one hour, when all the water in the barrel was very hot (175° F.), and there was quite a good deal of gas given off. The current density in this case was about 0.12 ampere per square inch and the watts absorbed 30.5 per cubic inch. If it were not for the large amount of water above both electrodes, it is doubtful if this current density could have been maintained.

In test No. 5 a rectangular box, in which were placed two vertical sheet iron plates, was filled with tap water. The distance between the plates was5/8inch, and with a difference of potential of 414 at start and 397 at end of the run, a current of 35 amperes was kept flowing for 35 minutes. Cold tap water was kept running in between the electrodes at the rate of 6.11 pounds per minute (about1/10cubic foot) by means of a small rubber tube about ¼ inch inside diameter. This test is very interesting in comparison with the preceding. The current carrying capacity, 0.3 ampere per square inch, was more than double, and the energy absorbed 183 watts per cubic inch, more than six times as great as in case where running water was not used.

The temperature in some places between the plates occasionally rose as high as 205° F., and it was necessary, in order to avoid too violent ebullition, to keep the inflowing stream of water directed along the water surface between the two plates. Less water would not have been sufficient, and, of course, by using morewater, the temperature could have been kept lower, or with the same temperature the watts absorbed could have been increased.

When a large current density is used, there is considerable decomposition of the iron electrodes when either salt or pure water is used, and in the case of horizontal electrodes, the under surface of the top plate may become covered with bubbles of gas, making the resistance between the plates quite variable. For large current density a horizontal top plate is not advisable, unless a large number of holes are drilled through it. A better form for the top electrode would be a hollow cylinder long enough to give sufficient surface. Washing soda is often a convenient substance to use instead of salt.

If, from experience, the size of a liquid rheostat for absorbing a given amount of energy cannot be estimated, the dimensions may be calculated approximately as follows:

Suppose, for instance, it is desired to absorb 60 amperes at 40 volts difference of potential between the electrodes. Now, it is inconvenient to obtain a saturated solution of salt, and to use tap water would require too large a cross section—especially if a barrel or trough is to be used—in order to have the resistance with the plates at a safe distance apart, small enough to give 60 amperes with 40 volts.

Let us try a 10 per cent. solution of salt. Suppose the maximum current this will carry is ¼ ampere per square inch, which will give a cross section of the solution of at least 60 ÷ ¼ = 240 square inches. Now, the specific resistance per inch cube (i.e., the resistance between two opposite surfaces of a cube whose side measures 1 inch) of the 10 per cent. solution of salt used in test No. 3 was 2.12 ohms. The drop, CR, will be 2.12 x ¼ = 0.53 volt per inch length of solution between electrodes. Hence, the electrodes will have to be 40/0.53 = 75 inches apart. This would require about three barrels connected in series. This was taken merely as an illustration, because its specific resistance was known when the current density was ¼ ampere per square inch. This solution, however, will carry safely1/3ampere per square inch, but I used the previous figure, since I did not know its specific resistance for this current density, because its specific resistance will be lower for a larger current density on account of the higher temperature which it will have, for the resistance of a solution decreases as its temperature increases.

To reduce this length would require a solution of higher specific resistance, that is, a solution containing less than 10 per cent. of salt, and an increase in the cross section, since the maximum carrying capacity also diminishes as the percentage of salt diminishes. Only approximate calculations are useful because variations in temperature, amount of salt actually in solution and the rate at which heat can be radiated, all combine to give results which may vary widely from those calculated.

As a matter of fact, it is seldom necessary or advisable to use a solution containing over 2 or 3 per cent. of salt. The best way to add salt to a liquid rheostat is to make a strong solution in a separate vessel and add as much of this solution as is needed. This avoids the annoying increase in conductivity of the solution which happens when the salt itself is added and is gradually dissolved.

Liquid rheostats are ever so much more satisfactory for alternating than for direct current testing. The electrodes and solution are practically free from decomposition, and a given cross section seems to be able to carry a larger alternating than direct current—probably due partly to the absence of the scum on the surface which hinders the radiation of heat.

[1]In American Electrician.

[1]In American Electrician.

A retrospective survey of the progress made and of the reforms instituted in medical education in the United States is instructive. In many respects there is cause for much congratulation, while for other reasons the situation gives rise to feelings of alarm. It is pleasing to note and it augurs well for the future that a decided advance has been made in the direction of a more thorough medical training, yet at the same time it is discouraging to observe that, despite these progressive steps, competition does not abate, but rather daily becomes more acute. Dr. William T. Slayton has just issued his small annual volume on "Medical Education and Registration in the United States and Canada." From a study of this book, which fairly bristles with facts, a sufficiently comprehensive opinion may be formed in regard to the present state of medical education in this country. According to this work, there is now a grand total of one hundred and fifty-four medical schools. Of this number, one hundred and seventeen require attendance on four annual courses of lectures, and twenty-seven require attendance on sessions of eight months, and ten on nine months each year. Twenty-nine States and the District of Columbia require an examination for license to practice medicine; eighteen of these require both a diploma from a recognized college and an examination. Fifteen States require a diploma from a college recognized by them or an examination. Five States, viz., Vermont, Michigan, Kansas, Wyoming and Nevada, have practically no laws governing the practice of medicine; Alaska the same. In order to gain a clear comprehension of the existing state of affairs, a comparison of the number of students at two periods, with a lapse of years intervening sufficient to eliminate all minor variations, will be more to the point than merely regarding the multiplication of schools. Many of these mushroom institutions are not worthy of notice, containing perhaps a dozen students, and brought into existence only for the purpose of profit or from other motives of self-interest. The number of students is as reliable an index as can be given. For instance, taking the decade between 1883-84 and 1893-94, it will be found that the students in regular schools in 1883-84 numbered 10,600; in 1893-94 they had increased to 17,601. Students in homoeopathic schools in 1883-84 were 1,267; in 1893-94, 1,666. The number of eclectic students was stationary at the two periods. The increase during the period from 1893-94 to the present time has been at about the same ratio.

These figures reveal more plainly than words the existing condition of affairs, which must, too, in the nature of things, continue until that time when all the States fall into line and resolve to adopt a four years' course of not less than eight months.

To make yet another comparison, the total number of medical schools in Austria and Germany, with a population exceeding that of this country, is twenty-nine. Great Britain, with more than half the population, has seventeen; while Russia, with one hundred million inhabitants, has nine. Of course we do not argue that America, with her immense territory and scattered population, does not need greater facilities for the study of medicine than do thickly inhabited countries, as Germany and Great Britain; but we do contend that when a city of the size of St. Louis has as many schools as Russia, the craze for multiplying these schools is being carried to absurd and harmful lengths. However, that the number of schools and their yearly supply of graduates of medicine are far beyond the demand is perfectly well known to all. The Medical Record and other medical journals have fully discussed and insisted upon that point for a considerable time. The real question at issue is by what means to remedy or at least to lessen the bad effects of the system as quickly as possible. The first and most important steps toward this desirable consummation have been already taken, and when a four years' course comes into practice throughout the country, the difficult problem of checking excessive competition will at any rate be much nearer its solution. Why should France, Germany, Great Britain and other European nations consider that a course of from five to seven years is not too long to acquire a good knowledge of medical work, while in many parts of America two or three years' training is esteemed ample for the manufacture of a full-fledged doctor? Such methods are unfair both to the public and to the medical profession, and the result is that in numerous instances the short-time graduate has either to learn most of the practical part of his duties by hard experience, to starve, or to utilize his abilities in some more lucrative path of life. Taking into consideration the fact that the theory and practice of medicine have become so extended within recent years, it must be readily conceded that four years is barely sufficient time in which to gain a satisfactory insight into their various departments. For a person, however gifted, to hope to receive an adequate medical training in two or three years is vain.

In those States in which the facilities for securing a medical education are abundant, and where the time and money to be expended are within the reach everyone, there is always the danger that an undue proportion will forsake trade in order to join the profession. This is especially the case when times are bad. Many persons seem to be possessed of the idea that the practice of medicine as a means of livelihood should be regarded as a something to fall back upon when other resources fail. Accordingly, when trade is depressed and money is scarce, there is a rush to enter its ranks. That this view of the matter is altogether an erroneous one is too self-evident to need any demonstrative proof. Again, although the question of a universal four years' course is a most important one, it must not be forgotten that examination takes almost as conspicuous a place. It is desirable that every one entering on medical studies should possess a general education. With the exception of a few unimportant schools, the entrance examinations would appear to afford the necessary test. Then comes the much more vital point of how to gage, in the fairest possible manner, the extent of the medical knowledge of those who have undergone their full term of study. For various reasons the conducting of the final examinations by professors in the school in which the student has been taught is open to many and grave objections, more especially when these professors are themselves teachers in that school. As has been pointed out in The Medical Record on more than one occasion, the most obviously fair regulation is that of independent examination by an unbiased State board. If this plan were carried into execution, medical education in America generally would rest on a firmer basis than in Great Britain, in which country the standard, although nowhere so low as in parts of the United States, still varies very considerably in the different schools. The General Medical Council of England has arrived at the conclusion that competition must be checked, and has lately brought into force two drastic measures calculated to attain this object; one is the lengthening of the course to five years, and, more recently, the abolishing of the unqualified assistant. The medical profession of America is quite as conscious of the disastrous results of competition as are its fellow practitioners on the other side, and should use every legitimate means to sweep away the evils of the present system.—Medical Record.

On December 17, 1897, a fatality occurred during the administration of ether. The patient, a woman aged forty-four years, who suffered from "internal cancer," was admitted for operation into the new hospital for women, Euston Road. It was considered that an operation would afford a chance of the prolongation of her life. At the time of admission the patient was in a very exhausted condition. Mrs. Keith, the anæsthetist to the hospital, administered nitrous oxide gas, followed by ether, which combination of anæsthetics the patient took well. After the expiration of thirty minutes and while the operation was in progress the patient became so collapsed that the surgeon was requested by the anæsthetist to desist from further surgical procedure and she at once complied. Resuscitative measures were at once applied, but the patient died after about ten minutes from circulatory failure arising from surgical shock and collapse. We have not received any particulars as to the means adopted to restore the woman or whether hemorrhage was severe. In all such cases posture, warmth and guarding the patient from the effects of hemorrhage are undoubtedly the most important points for attention both before and during the operation. The fact is established that both chloroform and ether cause a fallof body temperature, and so increase shock unless the trunk and limbs are kept wrapped in flannel or cotton-wool. The fall of temperature under severe abdominal and vaginal operations again is considerable. A profound anæsthesia allows of a considerable drop in arterial tension, which has been shown to be least when the limbs and pelvis are placed at a higher level than the head. Again, saline transfusion of Ringer's fluid certainly lessens the collapse in such cases when the bleeding, always severe, has been excessive. We do not doubt that such a severe operation undertaken when the patient was in a dangerous state of exhaustion was as far as possible safeguarded by every precaution, and we regret we have not been favored with the particulars of the methods employed. A death following the administration of ether is reported from the Corbett Hospital, Stourbridge.[1]The patient, aged thirty-nine years, was admitted on September 21, 1897, suffering from fracture of the right femur. A prolonged application of splints led to a stiffness with adhesions about the knee joint which were to be dealt with under an anæsthetic on December 8. Ether was given from a Clover's inhaler; one ounce was used. The induction was slightly longer than usual but was marked by no unusual phenomena. No sickness occurred during or after anæsthesia and no respiratory spasm was seen. There was a short struggling stage followed by true anæsthesia when the operation, a very brief one, was rapidly performed. The patient was then taken back to the ward and the corneal reflex was noticed as being present. Voluntary movements were also said to have been seen. Later he opened his eyes "and seemed to recognize an onlooker." After this no special supervision was exercised. A hospital porter engaged in the ward noticed the man was breathing in gasps; this was twenty minutes after the patient had been taken from the operating theater and half an hour subsequent to the first administration of the ether. The surgeons were fetched from the operating theater and found by that time that the man was dead. "He was lying with his head thrown back, so that no possible difficulty of breathing could have arisen due to his position. The eyes were open and the lips slightly parted; nor was there any sign of any struggle for breath having taken place." The ether was analyzed and found to fulfill the British Pharmacopœia tests for purity. The necropsy revealed that the right heart was distended with venous fluid blood. The lungs also were loaded with blood, as were all the viscera. We cannot but feel that the fact shown at the post mortem examination seemed to indicate that the man died from asphyxia and not from heart failure. No doubt patients appear to resume consciousness after an anæsthetic and even mutter semi-intelligible words and recognize familiar faces. They then sink into deep sleep just like the stupefaction of the drunken, and in this condition the tongue falls back and the slightest cause—a little thick mucus or the dropping of the jaw—will completely prevent ventilation of the lungs taking place. Two very similar cases occurred in the practice of a French surgeon, who promptly opened the trachea and forced air into the lungs, with the result that both patients survived. In his cases chloroform had been given. A death under chloroform occurred at the infirmary, Kidderminster. The patient, a boy, aged eight years and nine months, suffered from a congenital hernia upon which it became necessary to operate for its radical cure. The house surgeon, Mr. Oliphant, M.B., C.M. Edin., administered chloroform from lint. In about eight minutes the breathing ceased, the operation not having then been commenced. Upon artificial respiration being adopted the child appeared to rally, but sank almost immediately and died within two minutes. The necropsy showed no organic disease. At the inquest the coroner asked Dr. Oliphant whether an inhaler was not a better means of giving chloroform, and whether that substance was not the most dangerous of the anæsthetics in common use, and received the answer that inhalers were not satisfactory for giving chloroform and that it was a matter of opinion as to which was the most dangerous anæsthetic. We so often hear that the Scotch schools never meet with casualties under anæsthetics because they always use chloroform, and prefer to dispense with any apparatus, that we can readily accept the replies given to the coroner as representing the views current among the majority of even the thoughtful alumni of those great centers of medical training. A glance over the long list of casualties under chloroform will unfortunately show that whatever charm Syme exercised during his life has not survived to his followers, and overdosage with chloroform proves as fatal in the hands of those who hail from beyond the Tweed as well as "down south." A death from chloroform contained in the A.C.E. mixture occurred at the General Hospital, Birmingham, on December 15. The patient, a girl, aged five years and ten months, suffered from hypertrophied tonsils and post-nasal adenoid growths. She was given the A.C.E. mixture by Mr. McCardie, one of the anæsthetists to the institution, and tonsillotomy was performed. As consciousness was returning some chloroform was given to enable Mr. Haslam, the operator, to remove the growths. She died at once from respiratory failure, in spite of restorative measures. A necropsy showed absence of organic disease, The anæsthetist regarded the death as one from cardiac failure due to reflex inhibition by irritation of the vagus. We are not told the posture of the child or the method employed.—The Lancet.

[1]We are indebted to Mr. Hammond Smith, honorary surgeon to the hospital, and Mr. Edgar Collis for the notes of the case.—Ed. Lancet

[1]We are indebted to Mr. Hammond Smith, honorary surgeon to the hospital, and Mr. Edgar Collis for the notes of the case.—Ed. Lancet

The resistance of nickel steel to the attack of water increases with the nickel contents. The least expanding alloys, containing about 36 per cent. of nickel, are sufficiently unassailable, and can be exposed for months to air saturated with moisture without being tainted by rust. With a view of testing the expansion of nickel steel, experiments have been carried out by allowing measuring rods to remain in warm water for some hours, according to The Iron and Coal Trades Review. They were not wiped off when taken out, but were exposed for a longer period to hot steam, but the lines traced on the polished surfaces were not altered. The rough surfaces, when exposed to steam, were covered after several days with a continuous, but little adhesive, coat of rust.

Our large Catalogue of American and Foreign Scientific and Technical Books, embracing more than Fifty different subjects, and containing 116 pages, will be mailed, free, to any address in the world.

Any of the foregoing Books mailed, on receipt of price, to any address. Remit by Draft, Postal Note, Check, or Money Order, to order of

MUNN & CO.,361Broadway, New York.

Seventeenth Edition, Revised and Enlarged. 840 Pages. 800 Illustrations. Elegantly bound in Cloth. Price, by mail, postpaid, $4.00; Half Morocco, $5.00.

This is a book full of interest and value for teachers, students and others who desire to impart or obtain a practical knowledge of Physics.

This splendid work gives young and old something worthy of thought. It has influenced thousands of men in the choice of a career. It will give anyone, young or old, information that will enable him to comprehend the great improvements of the day. It furnishes suggestions for hours of instructive recreation.


Back to IndexNext