BEFORE.AFTER.SO2.SO3.SO2.SO3.8.240.635.740.008.290.376.740.079.360.696.960.009.460.637.380.0510.031.087.690.0916.522.9714.390.2317.901.9713.320.1117.802.4616.180.69
BEFORE.AFTER.SO2.SO3.SO2.SO3.8.240.635.740.008.290.376.740.079.360.696.960.009.460.637.380.0510.031.087.690.0916.522.9714.390.2317.901.9713.320.1117.802.4616.180.69
The average absorption for the first set of four analyses when three roasting-furnaces were discharging into the tower was 95 per cent. of the sulphuric acid, and that of the second set of four or five furnaces was 90 per cent. The amount of sulphuric acid charged per twenty-four hours was about 5,000 kilogrammes of 50 degrees Baumé, which flowed off with a density of from 56 to 58 degrees Baumé. The quantity of acid condensed varied according to the nature of the ores and the number of furnaces working. It ranged between 300 and 1,000 kilogrammes of 60 degrees Baumé per twenty-four hours. The condensation of anhydrous sulphuric acid would pay, according to estimates submitted by Herr Hasenclever; but to pass the gases through a tower filled with lime, in order to get rid of the remaining sulphurous acid, would prove too expensive at Stolberg. An attempt to use milk of lime proved partially successful; but it was not followed up, because it was decided to experiment with the process suggested by Prof. Cl. Winkler, of Freiberg, who proposes to pass the gases through a tower filled with iron in some suitable shape, over which water trickles. From the solution thus obtained, sulphurous acid pure enough to be used for the manufacture of sulphuric acid, sulphur, and a solution of green vitriol is made. Experiments with this process are making at Freiberg and at the Rhenania Works, near Stolberg. The trouble with the majority of methods thus far is, that the draught of the furnaces is so much impeded by the absorption towers that fans, blowers, or steam jets must be used to carry the gases through it.
The experience of Herr Hasenclever has proved how difficult it is to find a satisfactory means of removing the noxious vapors from furnace gases without incurring too serious an expense. Thus far the value of the products obtained by absorption of sulphurous acid has not been equal to the cost of producing them. Herr C. Landsberg, who is general manager of the Stolberg Company, has had similar experience, though his experiments were made to test methods suggested at various times by Dr. E. Jacob and Dr. Aarland. Both are very ingenious, and were successful on a small scale, but failed when tried in actual working.--Engineering and Mining Journal.
In common practice, the new exhauster at the Old Kent Road passes about five million cubic feet of gas per day of twenty-four hours, and requires the attention of two men and two boys for driving and stoking, at the following cost:
s. d.Wages--2 men, at 5s. 6d 11 0Wages--2 boys, at 3s. 6d 7 0----£ 0 18 0Oil, 1 gallon 0 3 6Waste, 5 lb 0 1 0--------Total £ 1 2 6
for five million cubic feet, or 0.054d. per 1,000 feet. The boiler burns a mixture of coke and breeze, chiefly the latter, of small value, costing 0.0174d. per 1,000 feet of gas exhausted; therefore the total cost of exhausting gas by the new system is--
Fuel 0.0174dWages, oil, and waste 0.0540--------Total 0.07l4d.
per 1,000 cubic feet of gas, exclusive of repairs, which will be decidedly less for the new exhauster than for that on the older system, from the friction being so much less. The feed water evaporated is at the rate of about 7.4 lb. per pound of breeze, and 7.5 lb. per pound of coke.
IMPROVED GAS EXHAUSTER.
IMPROVED GAS EXHAUSTER.
It will be seen that the exhausting arrangements at the Old Kent Road are extremely economical, the cost of fuel being reduced to a minimum; while a man and boy by day, and their reliefs for the night, attend to the machinery inside the exhauster-house, and also to the pumps outside, and stoke the boiler as well.--Journal of Gas Lighting.
The continued advance in the price of glycerine continues to excite comment among those who deal in or use it, and no one seems to know exactly where or when the advance is likely to stop, or by what means a retrograde movement will probably be brought about.
As we have heretofore stated, the rise has been brought about by a combination of two causes--a falling off in production and a great increase in the demand, owing to the discovery of new uses for it, and the extension of the branches of manufactures in which it has been heretofore employed.
In pharmacy, it is coming more and more into use daily, and in various other branches of manufacture the same tendency is observable. It has proved itself so elegant and so convenient a vehicle for the administration of various medicinal substances, is so easily miscible with both water and alcohol, and is so pleasant to the taste, that it seems almost a wonder that it should have been so long in attaining the rank among the articles of theMateria Medicawhich it now occupies. The two manufactures, however, which seem to lead in the demand for glycerine are of nitro-glycerine and of oleomargarine.
The uses to which it is put for the former are well known, but precisely what the latter could want of the article is not, at first glance, quite so obvious. We are informed, however, that it is valued for its antiseptic properties, and also for its softening effect on thequasibutter. Be this as it may, it seems that both here and in Europe the makers of these two articles are buying largely of both crude and refined glycerine.
So it appears that the willingness of the people to eat artificial butter, and the progress in schemes for internal improvement, such as the De Lesseps Canal, for instance, to say nothing of the European revolutionists, are responsible to a great extent for the scarcity of an important article of pharmaceutical use.
On the other hand, while there is a notable increase in the demand for the article, there is a gradual but very sure and noticeable falling off in the production.
At present the supply for the whole world comes from the candlemakers of Europe--chiefly France and Germany--and, as improved methods of illumination push candles out of the drawing rooms of the wealthier as well as the cabins of the poor, and consequently out of the markets, the production of glycerine naturally grows less. In France, for instance, candles are coming to be regarded among the wealthy chiefly as articles of luxury, and are lighted only for display at festivals of especial magnificence and ceremony, while among the poor the kerosene lamp is coming into almost as universal use as here.
To be sure, the inexorable inn-keeper still keeps up, we believe, the inevitablebougie, but even that is fast becoming more of a fiction than ever. Even in the churches, it is said, the use of candles is gradually falling off. To these causes must be attributed the decreasing supply of the crude material, but it may be doubted whether this decrease would be sufficient to materially affect the price for some time to come were it not for the increased demand for the two industries to which we have alluded. Obviously, there must be found eventually some substitute for glycerine, or else some new source from which it may be procured. The natural place to look for this would be in the waste lye from the soapmakers' boilers, but so far no one has succeeded in obtaining from this substance the glycerine it undoubtedly contains by any process sufficiently cheap to allow of its profitable employment.
We are assured by a veteran soap-boiler who has experimented much in this direction that it is impossible to recover a marketable article of glycerine from the lees of soap in which resin is an ingredient. In his words, it "kills the glycerine," and, as none but a few of the finest soaps are now made without resin, it would seem that the search for glycerine in this direction must be a hopeless one. It is a curious commentary in the present state of affairs that previous to about 1857, when candles were largely manufactured in this country, there was little or no demand for glycerine, and millions of pounds of it were run into the sewers. Even then, however, the use of it as a wholesome and pleasant article of diet was known to the workmen employed in the candle factories, who were accustomed to drink freely of the mingled glycerine and water which constituted the waste from the candles. Yet with this fact under their noses, as it were, it is only recently that members of the medical profession have begun to recommend the same use of glycerine as a substitute for cod liver oil.--Pharmacist.
Oils, fats, waxes, and bodies somewhat similar in nature, may--according to the substance of a paper recently read before the Chemical Society, by Mr. A. H. Allen, of Sheffield, and Mr. Thomson, of Manchester--be divided into two great classes, viz., those which combine with soda, potash, or other alkalies to form soaps, and those which do not; and as those two classes of bodies differ materially in their actions on substances such as iron, copper, etc., with which they come in contact, it often becomes a question of great importance to the users of oils for lubricating purposes to know what proportions of these different substances are contained in any oil or mixture of oils. The object of the authors was to give accurate methods for determining the percentages of these bodies contained in any sample. Hydrocarbon or mineral oils are now much used for lubricating the cylinders of engines, and especially of condensing engines, and that for two reasons--first, because they are neutral bodies, which have no action on metals; and, second, that they are not liable to deposit on the boilers, if they should happen to be introduced with the condensed water so as to produce burning of the ironwork over the flues.
Animal or vegetable oils or fats are composed of fatty acids in combination with glycerine, and these, under the influence of high-pressure steam, are decomposed or dissociated, the fatty acids being liberated from the glycerine, leaving the former to act upon or corrode the iron of the cylinder. But here their objectionable influence does not end. They form with the iron hard, insoluble compounds called iron soaps, which increase the friction between the cylinder and piston, and in some cases gradually collect into the form of hard balls inside the cylinder.
When the water is used over and over again a considerable proportion of the fatty acids of the oils used for lubricating the piston is carried over with the steam and is found in the condensed water which is introduced into the boiler along with the water. Here it commences action, which proves quite as injurious to the boiler as it does to the cylinder, but in a different way. It acts upon the iron of the boiler and on some of the lime salts which constitute the incrustation, forming greasy iron and lime soaps, which prevent the water from coming into absolute contact with it. Thus the heat cannot be drawn away quickly enough by the water, and the plates thus coated above the flues are liable to become burdened and weakened. This action has in many cases gone on to such an extent that the flues have collapsed under the pressure of the steam inside.
The authors give two different processes for the determination of animal or vegetable oils or fats and hydrocarbon or other neutral oils. They take a certain weight of the sample and boil it with twice its weight of an eight per cent, solution of caustic soda in alcohol. The soda combines with the fatty acids of the animal or vegetable oils forming soaps; bicarbonate of soda is then added to neutralize the excess of caustic soda; and, lastly, sand; and the whole is evaporated to dryness at the temperature of boiling water. The dry mixture is then transferred to a large glass tube, having a small hole in the bottom plugged with glass wool to act as a filter, and light petroleum spirit--which boils at about 150° to 180° Fahr.--is poured over it, till all the neutral or unsaponifiable oil is dissolved out. In the other process no sand is used, but the dry mixture is dissolved in water, and the soap solution which holds the neutral oils in solution is treated with ether, which dissolves out the neutral oil and then floats to the surface of the liquid. The ether solution is then drawn off, and the ether in the one case and petroleum spirit in the other are separated from the dissolved oils by distillation, the last traces of these volatile liquids being separated by blowing a current of filtered air through the flask containing the neutral oil, which is then weighed and its percentage on the original sample calculated.
All animal and vegetable oils yield a small quantity--about one per cent.--of unsaponifiable fatty matter, which must be deducted from the result obtained. Sperm oil, however, was found to be an exception, because from its peculiar chemical constitution it yields nearly half its weight of a greasy substance to the ether or to the petroleum spirit. The substance, however, dissolved from sperm oil after saponification has the appearance of jelly, when the ether or petroleum spirit solution is concentrated and allowed to cool, and the presence of sperm oil can thus be readily detected. Solid paraffin, heavy petroleum or paraffin oils, and rosin oil--which is produced by the destructive distillation of rosin--are not saponifiable, and yield about the whole of the amount employed to the petroleum spirit or ether. Japan wax is almost entirely saponifiable, while beeswax and spermaceti yield about half their weights to the petroleum spirit or ether.
Dr. Edgar Kurtz, of Florence, has found this medicament so useful in the various aches and pains of every-day life that he has persuaded many families of his acquaintance to keep it on hand as a domestic remedy. It is an excellent external application for stomach-ache, colic, tooth ache (whether nervous or arising from caries), neuralgia of the trigeminus, of the cervico-brachial plexus, etc. It is superior to anything else when inhaled in so-called angio-spastic hemicrania, giving rapid relief in the individual paroxysms and prolonging the intervals between the latter. No trial was made in cases of angio paralytic hemicrania, since in this affection the drug would be physiologically contraindicated. It has a very good effect in dysmenorrhoea, especially when occurring in chlorotic girls; in mild cases external applications suffice, otherwise the drug should be inhaled (when complicated with inflammatory conditions of the uterus or appendages the results were doubtful or negative). Its physiological action being that of a paralyzing agent of the muscular tissue of the blood vessels, with consequent dilatation of their caliber (most marked in the upper half of the body), nitrite of amyl is theoretically indicated in all conditions of cerebral anaemia. Practically it was found to be of much value in attacks of dizziness and faintness occurring in anæmic individuals, as also in a fainting-fit from renal colic, and in several cases of collapse during anaesthesia by chloroform.
It has been recommended in asphyxia from drowning, hanging, and in asphyxia of the new born, but the first indication in these cases is the induction of artificial respiration, after the successful initiation of which inhalations of nitrite of amyl doubtless assist in overcoming the concomitant spasm of the smaller arteries.
One of the most important indications for the use of the drug is threatening paralysis of the heart from insufficient compensation. In such cases it is necessary to gain time until digitalis and alcoholics can unfold their action, and here nitrite of amyl stands pre-eminent. A single case in point will suffice to illustrate this. The patient was suffering from mitral insufficiency, with irregular pulse, loss of appetite, enlargement of the liver, and mild jaundice. Temporary relief had been several times afforded by infusion of digitalis. In February, 1879, the condition of the patient suddenly became aggravated. The pulse became very irregular and intermittent. The condition described as delirium cordis presented itself, together with epigastric pulsation and vomiting. Vigorous counter-irritation, by means of hot bottles and sinapisms to the extremities, etc., proved useless. Digitalis and champagne, when administered, were immediately vomited. The pulse ran up from seventy until it could no longer be counted at the wrist, while the beats of the heart increased to one hundred and twenty and more per minute. The extremities grew cold, and the face became covered with perspiration. The urine was highly albuminous. Nitrite of amyl was then administered by inhalation: at first, three to five drops; then, ten to twenty; and finally, more or less was poured on the handkerchief without being measured. During each inhalation the condition of the patient rapidly improved, but as quickly grew worse, so that the drug was continued at short intervals all night, ten grammes in all having been used. In the morning the patient was better, and 0.5 gramme of digitalis was then given in infusion per rectum, and repeated on the following day, after which the patient remained comparatively well until a year and a half later, when a second attack of the kind just described was quickly cut short by similar treatment.
Another noteworthy case was that of a robust man of thirty years, who was attacked with acute gastro intestinal catarrh. The patient had as many as one hundred watery evacuations in forty-eight hours, with fainting fits, violent cramps in the calves of the legs, two attacks of general convulsions--in short, he presented the picture of a person attacked with cholera. Opium, champagne, hypodermic injections of sulphuric ether, counter-irritation, etc., proved useless. The doctor was on the point of injecting dilute liquor ammonii into the veins, but, none being obtainable, it occurred to him to try nitrite of amyl as a last resort. A considerable amount was poured on a handkerchief and held before the patient's mouth and nose, while the legs were also rubbed energetically with the same agent. Respiration soon became deeper and more regular, while the pulse gradually returned at the wrist. These procedures were repeated again and again, without regard to the quantity of the drug used, as soon as the radial pulse became weaker, and kept up until the patient complained of a sense of fullness in the head, and requested the discontinuance of the drug. The evacuations became less frequent, and in a week the patient was able to be up. Resuming then, Kurz concludes that nitrite of amyl is indicated in cardiac affections when the capillary circulation is obstructed and the cardiac muscle is threatened with paralysis from overwork; further, in cases of impeded circulation occasioned by cholera or severe diarrhea, particularly in the so-called hydrocephaloid (false hydrocephalus) of children. It is worthy of trial in tetanic and eclamptic seizures, and in tonic angiospasms such as occur during the chill of malarial fevers, although in the last-mentioned condition pilocarpine is perhaps more suitable, provided the energy of the heart be unimpaired.
As regards the dose, Kurz's experience demonstrates that we need not restrict ourselves to a few drops. The quantity may be increased, if necessary, until symptoms of cerebral congestion show themselves, when the drug should be momentarily or permanently discontinued. Usually from three to five or ten drops are sufficient, sometimes even less. Kurz has met with no unpleasant consequences, much less serious complications, from the application of nitrite of amyl. But the drug is contraindicated in cases associated with cerebral hyperaemia, in atheromatous conditions of the arteries, and in the so-called plethoric state--Beta's Memoabilien, March 24, 1881.
The treatment of simple acute articular rheumatism may be abandoned to palliatives and nature. Apart from complications, such cases nearly always recover under rest and careful nursing. Try and disabuse yourselves of the idea that their cure is dependent upon medicines alone; to help nature is often the best we can do. No treatment was ever invented which stopped a case of acute articular rheumatism. It cannot be stopped by bleeding, or sweating, or purging, by niter, by tartar emetic, by guaiacum, by alkalies, by salines, by salicylic acid, or by anything else. The physician can palliate the pain and perhaps shorten the attack, can control and perhaps prevent complications and stiffness of the joints, but he cannot arrest the disease. Where rest, proper diet, and warmth are enjoined, most cases will get well just as soon without as with the use of medicinal methods. Dr. Austin Flint, Sr., of New York, in support of this statement, subjected some patients, a number of years ago, to the expectant treatment, and found that they made just as rapid and just as complete recoveries as did those cases under the most active medication. Purgatives have been used in all ages in the treatment of this disease, because it was thought to be a fever. We are all but too ready to put our necks into the yoke of a theory. In old times they thought that the system ought to be reduced. Before the time of purgatives depletion was employed. This mode of treatment I will not even discuss. There is no evidence of which I am cognizant in favor of purgatives. There are very good reasons indeed why they should not be used: (1) Because they cannot possibly cure; (2) because they oblige the patient to make painful movements; and (3) because they expose him to the dangers of cold. A celebrated London physician had all his patients packed in blankets, and did not allow them to move a finger. This was going to the other extreme. There are certain cases in which purgatives are alleged to be of use, viz.: Those in which the bowels are constipated, and there is a bitter taste in the mouth. I have never seen such cases except in habitual drunkards, and in such cases a purgative does more harm than allowing the effete matter to remain in the system. Opium was once vaunted as a specific, and it was claimed that it diminished the tendency to complications in the course of the disease. Dr. Corrigan, of Dublin, said that large doses of opium were well borne--say from four to twelve grains in the course of twenty-four hours, or sometimes he advised giving as much as one grain every hour. Opium so employed does not produce narcotism, and does not constipate the bowels. More recent experience has shown that opium, of all remedies, is the most likely to cause heart complications. Some have recommended colchicum, arguing that because it does good in gout, it must, therefore, do good in rheumatism. But colchicum is not a remedy for rheumatism. Many years ago it was very much the custom to administer large doses of powdered Peruvian bark. The rationale of these large doses was founded upon their sedative effect. Haygrath, Morton, Heberden, and Fothergill were the first to employ this method. Later still, a number of noted French physicians, among them Briquet, Andral, Monerat, and Legroux, renewed the use of this medicine in the form of quinia, but gave it in smaller doses, seeking only its tonic effect, from five to fifteen grains being administered in the course of twenty-four hours, and then it was still continued in smaller doses. Still more recently, quinia taking the place of Peruvian bark, the old plan of administering large doses has been resumed. From thirty all the way up to one hundred grains have been administered in the course of twenty-four hours. Never was there a more profligate waste of a precious medicine. Even the physicians who so used it were obliged to acknowledge that it only did good in sub-acute and mild cases. I believe that it has also been fashionable in the so called cases of hyperpyrexia to immerse the patient in a bath varying in temperature from 60° to 98° Fahr. Although patients thus treated sometimes recovered, they also sometimes perished from congestion of the lungs and brain.
Among cardiac and nervous sedatives, digitalis, veratrum album and viride, veratria and aconite, have each, at one time or other, been employed indiscriminately. Such treatment, of course, has only proven itself to be a monument of rashness to those who employed it. Such sedatives may reduce the pulse, but do not shorten the disease. Indeed, if it is possible to prove the absurdity of anything more clearly by mere enumeration of these medicines as cures for rheumatism, I do not know of it. Do digitalis and aconite act in the same manner? This is just one expression of the folly which surrounded the use of digitalis at the time of its discovery. Then every affection of the heart was treated with digitalis.
Within the last few years new remedies have been proclaimed in the shape of salicylic acid and its sodium salt. I confess that I possess no personal knowledge of their use in this disease, for I was at first dissuaded from employing them by a prejudice against the grounds on which they were recommended, and more recently by the contradictory judgments respecting them, and the unquestionable mischief they have sometimes caused. According to their eulogists, the arrest of the disease is secured by them within four or five days, whether the attack be febrile or not; its mortality was diminished; relapses do not occur if the medicine is continued until full convalescence; it is without influence on the heart complications already existing, but it tends to prevent them as well as other serious inflammations. One of these gentlemen assures us that to say it far excels any other method of treatment would be to give it but scant praise. But, upon the other hand, it is accused of producing disorders, and even grave accidents in almost all the functions of the economy. In some cases it has produced ringing in the ears or deafness, or a rapid pulse, or an excessively high temperature, panting respiration, profuse perspiration, albuminuria, delirium, and imminent collapse. In one published case this anti-pyretic did not lower, but, on the contrary, seemed actually to raise the temperature so high that immediately after death it stood at 110° F. Many, very many, analogous cases have been published. I repeat, therefore, that I am personally unacquainted with the effects of this medicine in acute articular rheumatism, and that I have not thus far been tempted to employ it.
It may be difficult to see the connection between blisters and alkalies in their power to influence the course of acute articular rheumatism, and yet it is certain that they do so influence it, and in the same way,i. e., by altering the condition of the blood from acid to alkaline. If you ask me to explain to you how blisters act in this way I am obliged to confess my ignorance. To produce this result they must be applied over all the affected joints. Experience, if not science, has decided conclusively in their favor. They do effect a cessation of the local symptoms, render the urine alkaline, and diminish the amount of fibrin in the blood.
This brings us to a consideration of the use of alkalies. Alkalies neutralize the acids, act as diuretics, and eliminate themateries morbi. Alone, and in small doses, they are unable to influence the course of the disease; but when given in very large doses their effects are marvelous; the pulse falls, the urine is increased in quantity and becomes alkaline, and the inflammation subsides. The symptoms of the disease are moderated, the duration of the attack is shortened, and the cardiac complications are prevented. The dose of the alkalies must be increased until the acid secretions are neutralized. A very good combination of these remedies is the following:
Rx. Sodae bicarb 3 iss.Potas. acet 3 ss.Acid. cit f. 3 ss.Aquae f. 3 ij. [1]
[Transcribers note 1: Could also be '2/3 ij.']
S. This dose should be repeated every three or four hours, until the urine becomes alkaline. On the subsidence of the active symptoms two grains of quinine may be added with advantage to each dose. The alkalies must be gradually discontinued, but the quinia continued. The diet should consist of beef tea or broth, with bread and milk; no solid food should be allowed. Woolen cloths, moistened with alkaline solutions, may with advantage be applied to the affected joints. To these laudanum may be added for its anodyne effect. The patient must be sedulously protected from vicissitudes of the temperature and be in bed between blankets. The alkaline treatment relieves the pain, abates the fever, and saves the heart by lessening the amount of fibrin in the blood. A long time ago Dr. Owen Rees, of London, introduced the use of lemon juice. This remedy was thought to convert uric acid into urea, and to so help elimination. Though the treatment is practically correct, the theory of it is all wrong. Lemon juice does good in mild cases, but cannot be relied upon in severe attacks. During the febrile stage of acute articular rheumatism the diet should consist mainly of farinaceous and mucilaginous preparations, with lemonade and carbonic acid water as drinks. The cloths applied to the joints should be changed when they become saturated with sweat, and in changing them the patient should be protected from the air. The sweating may be controlled by small doses of atropia, from the one-sixtieth to the one-thirtieth of a grain. To prevent subsequent stiffness the joints should be bathed with warm oil and chloroform, and wrapped in flannel cloths. In the proper season this condition is very well treated by sea-bathing. There is no specific plan of treatment in acute articular rheumatism. The treatment pursued must vary according to the intensity of the inflammation and the peculiarities of the patients.--Medical Gazette.
No psychologist has hitherto been able, and probably it is impossible, to definemadness, or to give a clearly marked indication of the boundary line between sanity and insanity. Mental soundness is merged in unsoundness by degrees of decadence which are so small as to be practically inappreciable. It is with the mind-state which precedes the development of recognized form of insanity the therapeutist and the social philosopher are chiefly interested. Although in individual cases the subject of mental derangement may, as the phrase runs, "go mad" suddenly, speaking generally insanity is a symptom occurring in the course of disease, and, commonly, not until the malady of which it is the expression has made some progress. Those mental disturbances which consist in a temporary aberration of brain function, and which are the accidents of instability, rather than the effects of developed or even developing neuroses, can scarcely be classed as insanity; although it is true, and in an important sense, that these passing storms of excitement or spells of moody depression may--acting reflexly on the cerebral and nervous centers, as all mind-states and mind-movements react--exert a morbific influence and lay the physical bases of mental disease. The consideration most practical to the community and germane to the question of public safety is, that in any and every population there must exist a dangerously large proportion of persons who are always in a condition of mind to be injuriously influenced by any force which powerfully affects them. As a matter of history, it would seem that the majority of such persons are controlled rather than morbidly excited by the opportunity of throwing themselves into any popular movement. They may suffer afterward for the stimulation they receive at the time of public commotions, but while these are in progress they link their own consciousness with that of other minds, and the tendency to develop individual eccentricities of mental action is thereby for the moment repressed or exhausted. It is in the intervals of great public excitement the peace is disturbed by the vagaries of criminals who are more or less reasonably suspected of being "insane."
It would be premature to assume that the murderer of Mr. Gold, or the man who attempted to assassinate the President of the United States of America, is insane. There are circumstances in connection with each of these tragedies which must suggest the reflection that the assailants were possibly, or even probably, of unsound mind. We do not, however, propose to discuss these features of the respective cases at this juncture. The full facts are not, as yet, ascertained; but enough is known to warrant an endeavor to clear the way for future remark by disposing of the objection that the suspected perpetrator of the Brighton outrage and the would-be assassin of the President both showed "forethought" and "method." It is a common formula for the expression of doubt as to the irresponsibility of an alleged lunatic, that there is "method in his madness." Nothing can be farther from the truth than the inference to which this observation is intended to point. It is not in the least degree necessary that a madman should be unconscious of the act he performs, or of its nature as a violation of the law of God or man; nor is it necessary that he should do the deed under an ungovernable impulse, or at the supposed bidding of God or devil, angel or fiend. The forms of mental disease to which these presumptions apply are coarse developments of insanity. Dr. Prichard was among the first of English medico-psychologists to recognize the existence of a more subtle form of disease, which he termed "moral insanity." Herbert Spencer supplied the key-note to this mystery of madness when he propounded the doctrine of "dissolution;" and Dr. Hughlings Jackson has since applied that hypothesis to the elucidation of morbid mental states and their correlated phenomena. When disorganizing--or, if we may borrow an expression from the terminology of geological science,denuding--disease attacks the mental organism, it, so to say, strips off, layer by layer, the successive strata of "habit," "principle," and "nature," which compose the character. First in order go the higher moral qualities of the mind; next those which are the result of personally formed habits; then the inherited principles of personal and social life; at length the polish which civilization gives to humanity is lost, and in the process of denudation the evolutionary elements of man's nature are progressively destroyed, until he is reduced to the level of a creature inspired by purely animal passions, and obeying the lower brutish instincts. The term "moral insanity" is accurate as far as it goes, but it expresses only the first stage in a process of dissolution which is essentially the same throughout, but which has unfortunately received different designations as its several features have been recognized and studied apart. The difference between the subject of "moral insanity" and the general paralytic, who has lost all sense of decency and lives the life of a beast, is one of degree. The practical difficulty is to convince the mere observer that forms of insanity which seem to consist in the loss of moral qualities and principlesonly, may be as directly the effect of brain disease as any of those grosser varieties of mental disorder which he is perfectly well able to recognize, and fully prepared to ascribe to their proper cause.
To the professional mind, at least, it will follow from what we have said that the injury to mind properties or qualities inflicted by the invasion of disease may be partial, and must in every case be determined by laws or conditions governing the progress of disease, perhaps on the lines and in the directions which have been least well guarded by educationary influences. A man may lose his faculty of forming a wise judgment long before he is deprived of the power of distinguishing between right and wrong. This is so because it is a higher attainment in moral culture to do right advisedly, than simply to perceive the right thing to do. The application of principle to conduct is an advance on the mere recognition of virtue in the concrete, or even the possession of virtue in the abstract. The question whether any past act of wrongdoing was an act of insanity does not so much depend upon the great question whether the person doing it was insane as a whole being, or whether the deed done was the outcome of passion or error, the direct fruit of limited or special disease. In short, the insanity of the act must be inferred from the morbid condition of the brain from which it sprang, rather than from the act itself. A partially disorganized--or as we prefer to say "denuded"--brain may be fully capable of sane thought, except on some one topic, and able to exercise every intellectual function except of a particular order. Or there may be mental weakness and neurotic susceptibility in regard to a special class of impressions. It would be difficult to name any form of act or submission which may not be the outcome of incipient or limited disease. The practical difficulty is to avoid, on the other hand, treating the fruits of disease as willful offenses; while, on the other, we do not allow the supposition or presumption of disease to be employed as an excuse for wrongdoing. It is, of course, clear that there may be perfect method in such madness as springs from partial or commencing brain disease; for every element in the mental process which culminates in a mad act may be sane except the inception of the idea in which the act took its rise. Thus, in the case of the suspected murderer of Mr. Gold, there may have been perfect sanity in respect to every stage of the process by which the crime was planned and carried out, and yet insanity, the effect of brain disease, in the idea by which the deed was suggested. For example, when a man is suffering from morbid suspicion, and, fixing his distrust on some individual, purposes to murder him, the intellectual processes by which he lays his plans and fulfills his morbidly conceived intention, are performed with perfect sanity, as by a sane will. It is important to recognize this. There is no difference innaturebetween the mental operation by which a "sane" man contrives and executes a crime, and that by which a known "lunatic" will commit the like offense. There may be as muchmethodin the one instance as in the other, and the faculties which exhibit this method may be as sound and effective, but in the one case the idea behind the act is sane, while in the other it is insane. The brain is not one large homogeneous organ to be healthy or diseased, orderly or deranged, throughout at any one period. Inflammations, and diseases generally, which affect the brain as a whole do not commonly cause insanity properly so called. The organ of the mind is a composite, or aggregate of cells, or molecules, any number or series of which may be affected with disease while the rest remain healthy. At present we are only on the threshold of investigation concerning the physical causes of insanity, and have scarcely done more than recognize the possibility ofmoleculardisease of the brain. Hereafter science will, probably, succeed in unveiling the obscure facts of molecular brain pathology, and enable the medical psychologist to predicate disease of recognized classes of brain elements from the special phenomena of mind disturbance. This is the line of inquiry, and the result, to which the progress already made distinctly tends. For the present, the inferences we can surely draw from known facts are very few; but prominent among the number are certain which it is all-important to recognize in view of the judgment which must hereafter be formed on the two cases now engaging public attention on both sides of the Atlantic. The existence of method in madness is no marvel, and that characteristic cannot therefore be supposed, or alleged, to weigh as evidence against the "insanity" of the criminal. The perpetrators of these heinous offenses against common right and public safety may be more or less responsible for their acts, and, so far as these are concerned, more or less sane or insane. The measure of the morbid element in their individual cases will be the health or disease of the particular part or element of the brain from which the offense sprang. The ultimate judgment formed must be determined upon the basis of scientific tests to be applied to the action of the brain alleged to be the subject of partial or incipient disease. There is nothing in the facts as they stand to supply the materials for a judgment. Precise scientific inquiry can alone solve the enigma each case presents.
At first sight it seems almost superfluous to write or say a word about any method of arresting hemorrhage from wounds; for the practitioner, as a rule, is well acquainted with all the different manipulations and appliances for the purpose, and enough may be obtained from the text books. Nevertheless, to call attention to some useful, or old, or apparently forgotten matter occasionally, seems not to be amiss, for it refreshes our memory, stimulates us to think about and keeps before our eyes important subjects. A few hints on the above, I hope, will therefore be well received.
The treatment of hemorrhage, viz., the arresting of the same from open wounds, is not only important to the surgeon as the basis of surgery, but it is also of great importance to the laity, and especially to those workmen who are perpetually in danger of being injured. It is astonishing how unknowing the people seem to be, with any method to check bleeding from a wound temporarily; even the most simple method of pressure is in the majority of such accidents not resorted to. The sight of a little blood does not alone upset a timid, nervous woman, but many times the strongest of men; and why? because it naturally creates a feeling of awe and detestation. If a person is wounded by a machine, or otherwise, a crowd of all his fellow workmen gather around him, and look on the poor fellow bleeding; half a dozen or more will start out on a run in different directions to hunt a doctor, or some old woman who has a reputation for stopping bleeding by sympathy, either of whom they are likely to find "not at home." In the meantime the vital fluid trickles away; nobody knows what to do; everybody does something, but none the right thing. Now, it is true, it does not often happen that any one bleeds to death, wise mother nature, as a rule, coming to their assistance, especially in lacerated wounds; but the anemic condition produced by excessive loss of blood is followed by severe consequences, and is to be dreaded, for it retards recovery. To save all the blood possible ought to be apprehended as an important matter by every one.
Hardly a week passes that some unfortunate is not brought to my office, who has been badly injured in some way; he has been bleeding, perhaps, the distance of several blocks, and arrives almost faint. In the most of such cases they have something tied around their wounds, but hardly ever in any manner so as to be equal to stop the bleeding. In exceptional cases you find a tourniquet or the Spanish windlass applied. This, when applied by a surgeon, may answer very well, but when applied by a non-professional person it is invariably screwed up so tight that the pain produced thereby is so great and intolerable that the patient prefers rather to bleed to death. This is a great objection.
Therefore I will call attention to the method of forcible flexion; and though extreme flexion has been practiced by surgeons in isolated cases, still to Professor Adelman, of Dorpat, is due the credit of first having systematized the following method:
Bring the elbows of the patient as near as possible together upon the back, and fasten them with a bandage. From this point let a doppelt bandage pass down to and over the perineum; separate the bandages again in front, let one end run over the left, the other over the right groin back again to the elbows (see Fig. 1)
Fig. 1.
Fig. 1.
"The illustrations will explain at a glance."
Acute flexion of the elbow, simple bending of the forearm upon the upper arm, will suffice. But if there is bleeding from the arteries near the joint of the hand or from any part of the hand, then the hand must also be brought into flexion, and secured by a bandage. (See Fig. 2.) The bandage must always be wrapped around the wound first.
Fig. 2.
Fig. 2.
It needs no other explanation, as Fig. 3 shows the mode of stopping the hemorrhage from that region temporarily.
Bleeding from the front part of the leg (Art. Tibialis Ant.), same as Fig. 3.
FIG. 3.
FIG. 3.
Bleeding from the posterior part of the leg (Art. Tibiailis Post, et Peronea) same as above, with the addition of a tampon or compress under the knee joint, or like Fig. 4.
Flexion of the leg upon the thigh, and flexion of the foot upon the front of the tibia.
Objections might also be raised to the above method on account of the pain which it may produce; but the flexion never needs to be so forced as to be unendurable to the patient; the position may be a little uncomfortable to a very sensitive person, that is all. Furthermore, it has been proven that a limb can be kept in a flexed position for several days, "nine by some authors," without any injury, and with a complete closure of the arteries. We do not expect, however, that this method of arresting hemorrhage will ever be adopted as "the" method in surgery, neither will it be necessary here to point out any cases where the practitioner can have and under certain circumstances be obliged to have to resort to this simple method. Military surgeons may also profit by it, for it is certainly a valuable and admirable mode, and so easily applied in cases of emergency by any one, if the unfortunate should be distant from surgical aid. I also believe that it would be advisable and certainly humane, to instruct the people in general, by popular lectures or through the press, the manner of stopping hemorrhage temporarily.
Fig. 4.
Fig. 4.
The simplest of all methods, however, to arrest hemorrhage is the rubber bandage. It has displaced in surgery the old tourniquet almost completely, which required a certain skill and anatomical knowledge to apply it; not necessarily so with the rubber bandage. Any one can apply it, for the amount of pressure needed to arrest the hemorrhage from a wound suggests itself. The rubber bandage produces but little pain; the patient is comparatively comfortable and out of immediate danger and anxiety; while in the meantime the proper attention can be secured.
I think it would be well if our health officers would direct their attention a little to the accidental hemorrhages, and if they do not possess the power, to refer the matter to the proper tribunal to enact a law that would compel all owners and corporations of factories, saw, planing, and rolling mills, and, in fact, every establishment where the laborers are constantly in danger of accidents, to keep on hand a certain number of strong rubber bandages, according to the number of men employed, and that at least several of the men, if not all in every establishment of that kind, be instructed in the application of the bandage. Steamboats and other vessels should carry a supply, and railroad companies should be obliged to furnish all watchmen along their respective roads with rubber bandages, and see that the men know how to use them in case an accident should occur. Every train that goes out should have some bandages on board in care of some employe, who knows how to handle them when needed. Many pounds of precious blood may thus be saved, and danger to life from this cause be averted.--Indiana Medical Reporter.
Sporer has successfully treated cases of tetanus by merely applying to the nape of the neck and along the spine large pieces of flannel dipped in hot water, of a temperature just bearable to the hand (50-55° C.).--Allg. med. cent. Zeit., January 15, 1881.
After a week's postponement, rendered necessary by the unripe condition of the crops on the first of the month, the trials of sheaf-binding machines, using any other binding material than wire, instituted by the Royal Agricultural Society of England, began on Monday morning, the 8th of August. By nine o'clock, the time appointed for beginning operations, there was a very large number of gentlemen interested in these trials already collected on the farm of Mr. Hall, at Thulston, and the distances that many of them had come testified to the importance of the interests involved. The morning was perfect for reaping, though ominous clouds in the southwest led many to hazard conjectures, which unfortunately turned out too well founded, that the Royal Agricultural Society would not on this occasion escape the fate which had visited them so often. The corn stood ripe and upright in the various plots into which the fields had been divided, and the ground was level and dry. The published list of the competitors contained twenty entries, not by as many firms, however, for many names appeared more than once; but the rules of the society, which objects to different machines being used for different kinds of corn in these trials, together with non-attendance for unknown reasons, had reduced the actual list of competing machines to seven. These were as follows: Mr. W. A. Wood, the McCormick Harvesting Machine Company, the Johnston Harvester Company, Messrs. Samuelson & Company, Messrs. J. & F. Howard, Messrs. Aultman & Company, and Mr. H.J.H. King. All these machines were to be seen at the show, except the second named, which was delayed by the stranding of the steamship Britannic, and had only lately arrived in rather a weather-beaten condition. The trials were to be made upon oats, barley, and wheat, and the plots for the preliminary trials were about half an acre in extent. Shortly after half-past nine o'clock, the judges and engineers of the society having arrived upon the ground, a start was made upon the oats by the three machines belonging to Mr. Wood, Messrs. Samuelson & Co., and the Johnston Harvester Company. It should, perhaps, be mentioned that the strength of this crop of oats varied a good deal in different parts of the field. These three machines all belong to the class which has the automatic trip--that is, the binding gear is thrown into action by the pressure of the straw accumulated arriving at a certain value, independently of any special action on the part of the driver. The sheaves from Messrs. Samuelson's machines were extremely neat and well separated from each other, a point to which farmers attach great importance.
It would appear that it is impossible to secure the binding of every single sheaf. Here and there, even with the best binders, an occasional miss will occur, in which the corn is thrown out unbound. However, with Messrs Samuelson's machine this was extremely rare, and the neatness of the sheaves produced was remarkable. No doubt the shortness of the crop in the portion allotted to this machine may have had something to do with this, as a longer straw is more likely than a shorter one to connect two sheaves and produce that hanging together which in other machines is so often observed to precede a miss in the binding. Mr. Wood's machine had a stronger crop and longer straw to deal with, and the hanging together of the sheaves occurred far too frequently, and was almost always followed by a loose sheaf. The Johnston harvester went through a very fair performance; there was no hanging except at turning the corners, and the piece of work was finished in a shorter time than with the other machines. Notwithstanding the automatic character of the gear for binding, we believe it will be found that the sheaves produced in these machines vary very much in weight.
At about 10:20 the next lot of machines started. They were those of the McCormick Harvesting Machine Company, Messrs. Howard, and Messrs. Aultman & Co. Of these, the first-named only has the automatic trip. We believe it made no miss in binding during this trial, and the sheaves were neat, though, perhaps, rather too tightly bound. There was no hanging together or check in this run. The machine of Messrs. Aultman & Co. was not so successful in separating the sheaves, though this was not so often followed by an unbound sheaf as in some other machines. Sometimes as many as three sheaves, clinging closely together, were ejected at one time. To avoid this a man walked by the machine, and assisted the delivery of the sheaf. The tension of the string which binds the sheaves varies a good deal in this machine, some of the sheaves being rather too loosely held together, while at other times the fault is in the other direction. In Messrs. Howard's machine there is a tendency in the sheaves to cling together, but this is not accompanied to any extent with missing the binding. Mr. King attempted a run after the three last had finished their plots; but his machinery had not been fully adjusted, and after one course the trial stopped. As far as one could judge from this short performance, the chief fault in the sheaf produced was the uncertain position of the string upon it. Sometimes this was near the bottom of the straw, and sometimes among the corn. Unfortunately at 11:25 the rain began, and experiments were stopped till the afternoon. It was no light shower which could give a check to the ardor of the judges and other officers of the society, but a heavy downpour of some hours' duration, which soaked the crop through and through. Indeed, we think it a pity that the experiments should have been continued at all under circumstances in which practical harvesting would have been out of the question. However, after a short lull in the rain, the machines of Mr. Wood, Messrs. Samuelson, and the McCormick Harvesting Company went into the wet barley. The machine of Mr. Wood worked most rapidly, but the clinging of the sheaves and the failure to bind were again very apparent. The stubble left by this machine was the shortest and most even of the three. The machines of Messrs. Samuelson and the McCormick Company left a very ragged, long, and uneven stubble in this trial, though the delivery and binding of the sheaves seemed to be as good as in the oats trial. The binding in the former was rather too tight.
The remaining machines, with the exception of that of Mr. King, then attempted a trial; but Messrs. Howard's machine having too smooth a face to the driving wheel, was unable to drive all the gear in the wet condition of the ground. The damp weather had no doubt tightened up the canvas carriers, and thereby added to the work to be done; but this was the only machine that was found incapacitated through the action of the rain. Unfortunately the plots assigned to this machine and to the Johnston harvester were in juxtaposition, so that the latter machine was blocked by the former, and could not proceed, and that of Messrs. Aultman alone went through with its work. There was no improvement in the separation of the sheaves, and the misses were rather more frequent than in the trials among the oats. The sheaves, too, that issued singly were somewhat wanting in neatness. The whole of these barley trials must be looked upon as unsatisfactory, on account of the condition of the crop, and it is to be hoped that before the investigations are brought to a conclusion all these machines may have a more favorable opportunity of demonstrating the advantages which are claimed for them. It may be here said that throughout these trials there has been as yet no wind at all, which, as the investigations are in other respects to be so thoroughly carried out, is a matter of regret. Probably Messrs. Howard's machine was as well protected from the wind as any other of the seven competitors.
The following are the awards of the judges, which were made known on Wednesday evening: Gold medal--Messrs. McCormick & Co. Silver medals--Messrs. Samuelson, Messrs. Johnston & Co. Highly commended--Mr. H. J. King, for principle of tying and separating sheaves. The only gleaning binding machine which entered the field was that of Mr. J. G. Walker, made by the Notts Fork Company, but no official trials of this were made.--The Engineer.
Messrs. Ellwanger & Barry, of the Mount Hope Nurseries, at Rochester, give the following directions for setting out and cultivating strawberries, the result of long and successful experience, in their recently issued Strawberry Catalogue:
The Soil and Its Preparation.--The strawberry may be successfully grown in any soil adapted to the growth of ordinary field or garden crops. The ground should bewellprepared, by trenching or plowing at least eighteen to twenty inches deep, and beproperly enrichedas for any garden crop. It is unnecessary to say that if the land is wet, it must be thoroughly drained.
Season for Transplanting.--In the Northern States, the season for planting in the spring is during the months of April and May. It may then be done with safety from the time the plants begin to grow until they are in blossom. This is the time we prefer for setting outlarge plantations.
During the months of August and September, when the weather is usually hot and dry,pot-grownplants may be planted to the best advantage. With the ball of earth attached to the roots, they can be transplanted without any failures, and the trouble and annoyance of watering, shading, etc., which are indispensable to the success of layer plants, are thus in a great measure avoided.
To Cultivate the Strawberry.--For family use, we recommend planting in beds four feet wide, with an alley two feet wide between. These beds will accommodate three rows of plants, which may stand fifteen inches apart each way, and the outside row nine inches from the alley. These beds can be kept clean, and the fruit can be gathered from them without setting the feet upon them.
Culture in Hills.--This is the best mode that can be adopted for the garden. If you desire fine, large, high-flavored fruit, pinch off the runners as fast as they appear, repeating the operation as often as may be necessary during the summer. Every runner thus removed produces a new crown at the center of the plant, and in the fall the plants will have formed large bushes or stools, on which the finest strawberries may be expected the following season. In the meantime, the ground among the plants should be kept clear of weeds, and frequently stirred with a hoe or fork.
Covering in Winter.--Where the winters are severe, with little snow for protection, a slight covering of leaves or litter, or the branches of evergreens, will be of great service. This covering should not be placed over the plants till after the ground is frozen, usually from the middle of November till the first of December in this locality. Fatal errors are often made by putting ontoo muchandtoo early. Care must also be taken to remove the covering in spring just as soon as the plants begin to grow.
Mulching to Keep the Fruit Clean.--Before the fruit begins to ripen, mulch the ground among the plants with short hay or straw, or grass mowings from the lawn, or anything of that sort. This will not only keep the fruit clean, but will prevent the ground from drying and baking, and thus lengthen the fruiting season. Tan-bark can also be used as a mulch.
A bed managed in this way will give two full crops, and should then be spaded or plowed down, a new one having been in the meantime prepared to take its place.
The same directions with regard to soil, time of planting, protection, and mulching, as given above, are applicable when planting on a large scale.
The Matted Row System.--The mode of growing usually pursued has its advantages for field culture, but cannot be recommended for the garden. In the field we usually plant in rows three to four feet apart, and the plants a foot to a foot and a half apart in the row. In this case much of the labor is performed with the horse and cultivator.
How to Ascertain the Number of Plants Required for an Acre.--The number of plants required for an acre, at any given distance apart, may be ascertained by dividing the number of square feet in an acre (43,560) by the number of square feet given to each plant, which is obtained by multiplying the distance between rows by the distance between the plants. Thus strawberries planted three feet by one foot give each plant three square feet, or 14,520 plants to the acre.
Pretentious gardens are now gayly decorated with glowing masses of pelargoniums and vincas, belts of rich coleuses and fiery alternantheras, patchwork of feverfew and mesembryanthemum, and scroll-work of house leeks, but amid this gay checkering it is wonderful how few flowers there are for cutting for bouquets. As tender plants, except the few that may have been wintered in windows and cellars, are beyond the reach of most of our country folks, I will consider those only that are perfectly hardy and in full blossom now, July 21.
Koempfer's irises, blue, white, purple, streaked, marbled, and otherwise variegated, are in bloom; they are the grandest of their race, and as different varieties succeed one another, they may be had in bloom from June till August. They are easily raised from seed or by division--prefer rich, moist land, and if in a partly shaded place, their blossoms last longer than in full sunshine.
Trumpet lilies are bursting into bloom; the scarlet martagon is at its best;speciosum, tiger, and American Turk's cap lilies are yet to follow. I find the trumpet lilies have done better this year than any of the other sorts in open places. Most of the yellow day lilies are past, but the tawny one is at its best; they are all hardy, and seem to thrive alike in wild or cultivated land. Seibold's funkia (called also day lily) has pale bluish flowers, and large, handsome glaucous leaves: the undulated-leaved funkia has beautifully variegated leaves, and pale bluish blossoms; these, together with several others of their race, are in bloom. They like to grow in undisturbed clumps in rich and faintly-shaded nooks; if grown in full sunshine they bloom well enough, but their leaves get "scorched."
The European meadow sweet (Spiraea ulmaria), two feet high, and the Kamtchatka one, four feet high, are in bloom; the double varieties are far finer, whiter, and more lasting than the single ones. They will grow anywhere. There are many fine kinds of sedum or liveforever in season; some of them likealbum(white),pulchellum(pink),spurium splendens(pink),hispanicum(white), may more properly be called stonecups, but the stronger-growing sorts, asS. warscewiczii(yellow), should be regarded as liveforevers. They like open, sunny places, and dislike artificial waterings.
Dicentra eximia(pink-purple) is free, neat, copious, and a perpetual bloomer, as is alsoCorydalis lutea(yellow). The climbing fumitory comes up of itself from seed every year, and is now running over bushes, stakes, and strings, and is full of fern-like leaves and flesh-colored flowers. The long, scarlet wands ofPentstemon barbatusare conspicuous in the borders; this should be in every garden, it is so profuse and hardy. Many speedwells still remain in fine condition, notablyVeronica longifolia;they are a hardy and a showy race of plants, and will grow anywhere. The main lot of perennial larkspurs are past, but by cutting them over now many flower spikes will be produced during the fall months. The yucca or bear-grass is in perfection; its massive flower scapes are very telling. It will grow anywhere, and once established it is hard to get rid of.
Many kinds of perennial bell-flowers are in fine condition, as the carpathian, peach-leaved (second crop), nettle-leaved, common harebell, and vase harebell. In the case of many of the tall-growing kinds, better results are obtained by treating them as biennials than perennials. No garden should be without the double white feverfew; the more you cut it the more it blooms.Anthemis tinctoria, yellow or white, the yellow is by far the best, and the lance-leaved, large-flowered, larkspur-leaved and eared coreopsises are fine, seasonable perennials, as are likewise the yellow, white, and pink yarrows, double sneezewort, the cone flowers, and large-flowered fleabanes, and all grow readily in any ordinary garden soil, and with little care. Hollyhocks are in perfection; feed them well and prevent many sprouts to each stool. Many kinds of meadow rue, as garden plants, have a bold, graceful appearance; they love moist soil.
In good soil and a partly shaded spot we have no handsomer plant in bloom than the tall bugbane (Cimicifuga racemosa); from a bunch of thrifty leaves arise a dozen scapes of racemes, creamy white, and six feet high. The scarlet lychnis and its many varieties are nearly past, but the large-flowered, Haag's, and others of that section, are in their prime, and showy plants they are. They are true and lasting perennials, bloom well the first season from seed, quite hardy, copious, and effective; any ordinary garden soil. The pyrenean prunella has large purple heads; the false dragonhead (Physostegia), pale rose-purple spikes; centranthuses, cymes of red and white; centaureas, heads of yellow, blue, and purple; pinks, divers shades of red and white; and monkshoods, hoods of blue or white; and all are very hardy, ready growers, and copious bloomers. The bee balm, one of our handsomest perennials, has bright red whorls; it spreads upon the surface of the ground like mint, and thus may be divided and increased to any extent. It loves rich, moist land, but is not fastidious. Among the evening primroses the Missouri one is the brightest and biggest;speciosa, white, from Texas, of blossoms the most prolific;glauca, riparia, fruticera, andlinearis, all yellow; many others, though perennial, are best treated as annual or biennial. The spiked loosestrife planted by the water's edge of a pond is far finer than in the garden border. It has hundreds of red spikes.
Add to these, everlasting peas, musk mallows, spiderwort, globe thistles, bold senecios, the finer milkweeds,Scabiosa, Gallium, ChineseAstilbe, various kinds of loosestrife (Lysimachia), and many others as perennials, andCoreopsis, balsams, zinnias, marigolds, stocks, Swan river daisy, mignonnette, sweet peas, sweet alyssum, morning glories, larkspurs, canary flowers, cucumber-leaved sunflowers, verbenas, petunias, corn flower, Drummond phlox, double and single poppies, snapdragons,Phacelia, Gilia, Clarkia, candytuft, red flax, tassel flowers, blueAnchusa, Gaillardia, and a multitude besides of seasonable annuals, which can all be raised quite easily without a frame or green-house, and what excuse has any farmer for having a flowerless garden in midsummer?--William Falconer, in Country Gentleman.