CRYSTALLIZATION TABLE.

n = height of the cylinder inclosing the air;c = a factor which, multiplied by n, converts it into cubicmillimeters;S = cubic contents of the meniscus;d = difference of level between A and B, fig. 4;= the pressure the air is under;N = the cubic contents of the gauge in millimeters;x = a fraction expressing the degree of exhaustion obtained; thenx=1/([N (760/d)]/[nc - S])

It will be noticed that the measurements are independent of the actual height of the barometer, and if several readings are taken continuously, the result will not be sensibly affected by a simultaneous change of the barometer. Almost all the readings were taken at a temperature of about 20° C., and in the present state of the work corrections for temperature may be considered a superfluous refinement.

Gauge correction.--It is necessary to apply to the results thus obtained a correction which becomes very important when high vacua are measured. It was found in an early stage of the experiments that the mercury, in the act of entering the highly exhausted gauge, gave out invariably a certain amount of air which of course was measured along with the residuum that properly belonged there; hence to obtain the true vacuum it is necessary to subtract the volume of this air from nc. By a series of experiments I ascertained that the amount of air introduced by the mercury in the acts of entering and leaving the gauge was sensibly constant for six of these single operations (or for three of these double operations), when they followed each other immediately. The correction accordingly is made as follows: the vacuum is first measured as described above, then by withdrawing all the boxes except the lowest, the mercury is allowed to fall so as nearly to empty the gauge; it is then made again to fill the gauge, and these operations are repeated until they amount in all to six; finally the volume and pressure are a second time measured. Assuming the pressure to remain constant, or that the volumes are reduced to the same pressure,

v = the original volume;  v' = the final volume;V' = volume of air introduced by the first entry of the mercury;V = corrected volume; thenV' = (v'-v)/6V = v - [(v'-v)/6]

It will be noticed that it is assumed in this formula that the same amount of air is introduced into the gauge in the acts of entry and exit; in the act of entering in point of fact more fresh mercury is exposed to the action of the vacuum than in the act exit, which might possibly make the true gauge-correction rather larger than that given by the formula. It has been found that when the pump is in constant use the gauge-correction gradually diminishes from day to day; in other words, the air is gradually pumped out of the gauge-mercury. Thus on December 21, the amount of air entering with the mercury corresponded to an exhaustion of

1/27,308,805 .......Dec. 21.1/38,806,688 ...... Dec. 29.1/78,125,000 .......Jan. 15.1/83,333,333 .......Jan. 231/128,834,063 ......Feb. 1.1/226,757,400 ..... Feb. 9.1/232,828,800 ..... Feb. 19.1/388,200,000 ......March 7.

That this diminution is not due to the air being gradually withdrawn from the walls of the gauge or from the gauge-tube, is shown by the fact that during its progress the pump was several times taken to pieces, and the portions in question exposed to the atmosphere without affecting the nature or extent of the change that was going on. I also made one experiment which proves that the gauge-correction does not increase sensibly, when the exhausted pump and gauge are allowed to stand unused for twenty days.

Rate of the pump's work.--It is quite important to know the rate of the pump at different degrees of exhaustion, for the purpose of enabling the experimenter to produce a definite exhaustion with facility; also if its maximum rate is known and the minimum rate of leakage, it becomes possible to calculate the highest vacuum attainable with the instrument. Examples are given in the tables below; the total capacity was about 100,000 cubic mm.

Time.         Exhaustion.         Ratio.1/78,51110 minutes              }........ 1:1/3.531/276,98010 minutes              }........ 1:1/6.101/1,687,14010 minutes              }........ 1:1/4.151/7,002,000

Upon another occasion the following rates and exhaustions were obtained:

Time.         Exhaustion.         Rate.1/7,812,50010 minutes              }........ 1:1/3.181/24,875,62010 minutes              }........ 1:1/2.691/67,024,09010 minutes              }........ 1:1/1.221/81,760,81010 minutes              }........ 1:1.671/136,986,30010 minutes              }........ 1:1.231/170,648,500

Theirregularvariations in the rates are due to the mode in which the flow of the mercury was in each case regulated.

Leakage.--We come now to one of the most important elements in the production of high vacua. After the air is detached from the walls of the pump the leakage becomes and remains nearly constant. I give below a table of leakages, the pump being in each case in a condition suitable for the production of a very high vacuum:

Duration of the                           Leakage per hour inexperiment                               cubic mm., press.,760 mm.18½ hours............................ 0.00085327  hours............................ 0.00156526½ hours.............................0.00079120  hours.............................0.00084219  hours.............................0.00095119  hours.............................0.0018577  days..............................0.0017007  days..............................0.001574Average.................... 0.001266

I endeavored to locate this leakage, and proved that one-quarter of it is due to air that enters the gauge from the top of its column of mercury, thus:

Duration of the                         Gauge-leakage per hourexperiment.                            in cubic mm., press.760 mm.18 hours.................................0.00022997 days..................................0.00040937 days..................................0.0003464Average.......................0.0003285

This renders it very probable that the remaining three quarters are due to air given off from the mercury at B, Fig. 4, from that in the bends and at the entrance of the fall-tube,o, Fig. 3.

Further on some evidence will be given that renders it probable that the leakage of the pump when in action is about four times as great as the total leakage in a state of rest.

The gauge, when arranged for measurement of gauge-leakage, really constitutes a barometer, and a calculation shows that the leakage would amount to 2.877 cubic millimeters per year, press. 760 mm. If this air were contained in a cylinder 90 mm. long and 15 mm. in diameter it would exert a pressure of 0.14 mm. To this I may add that in one experiment I allowed the gauge for seven days to remain completely filled with mercury and then measured the leakage into it. This was such as would in a year amount to 0.488 cubic millimeter, press. 760 mm., and in a cylinder of the above dimensions would exert a pressure of 0.0233 mm.

Reliability of the results: highest vacuum.

The following are samples of the results obtained. In one case sixteen readings were taken in groups of four with the following result:

Exhaustion.1 / 74,219,1391 / 78,533,4541 / 79,017,2721 / 68,503,182Mean 1 / 74,853,449

Calculating the probable error of the mean with reference to the above four results it is found to be 2.28 per cent of the quantity involved.

A higher vacuum measured in the same way gave the following results:

1 / 146,198,8001 / 175,131,3001 / 204,081,6001 / 201,207,200

The mean is 1 / 178,411,934, with a probable error of 5.42 per cent of the quantity involved. I give now an extreme case; only five single readings were taken; these corresponded to the following exhaustions:

1 / 379,219,5001 / 371,057,2651 / 250,941,0401 / 424,088,2321 / 691,082,540

The mean value is 1 / 381,100,000, with a probable error of 10.36 per cent of the quantity involved. Upon other occasions I have obtained exhaustions of 1 / 373,134,000 and 1 / 388,200,000. Of course in these cases a gauge-correction was applied; the highest vacuum that I have ever obtained irrespective of a gauge-correction was 1 / 190,392,150. In these cases and in general, potash was employed as the drying material; I have found it practical, however, to attain vacua as high as 1 / 50,000,000 in the total absence of all such substances. The vapor of water which collects in bends must be removed from time to time with a Bunsen burner while the pump is in action.

It is evident that the final condition of the pump is reached when as much air leaks in per unit of time as can be removed in the same interval. The total average leakage per ten minutes in the pump used by me, when at rest, was 0.000211 cubic millimeter at press. 760 mm. Let us assume that the leakage when the pump is in action is four times as great as when at rest; then in each ten minutes 0.000844 cubic millimeter press., 760 mm., would enter; this corresponds in the pump used by me to an exhaustion of 1 / 124,000,000; if the rate of the pump is such as to remove one-half of the air present in ten minutes, then the highest attainable exhaustion would be 1 / 248,000,000. In the same way it may be shown that if six minutes are required for the removal of half the air the highest vacuum would be 1 / 413,000,000 nearly, and rates even higher than this have been observed in my experiments. An arrangement of the vacuum-bulb whereby the entering drops of mercury would be exposed to the vacuum in an isolated condition for a somewhat longer time would doubtless enable the experimenter to obtain considerably higher vacua than those above given.

Exhaustion obtained with a plain Sprengel Pump.--I made a series of experiments with a plain Sprengel pump without stopcocks, and arranged, as far as possible, like the instrument just described. The leakage per hour was as follows:

Duration of the             Leakage per hour inexperiment.               cubic mm. at press.760 mm.22 hours                          0.045632 days                           0.045202 days                           0.092104 days                           0.06428-------Mean                    0.06180

Using the same reasoning as above we obtain the following table

Time necessary for removal     Greatest attainableof half the air.                exhaustion.10 minutes                     1 / 5,000,0007.5 minutes                    1 / 7,000,0006.6 minutes                    1 / 12,000,000

In point of fact the highest exhaustion I ever obtained with this pump was 1 / 5,000,000; from which I infer that the leakage during action is considerably greater than four times that of the pump at rest. The general run of the experiments tends to show that the leakage of a plain Sprengel pump, without stopcocks or grease, is, when in action, about 80 times as great as in the form used by me.

Note on annealing glass tubes.--It is quite necessary to anneal all those parts of the pump that are to be exposed to heat, otherwise they soon crack. I found by inclosing the glass in heavy iron tubes and exposing it for five hours to a temperature somewhat above that of melting zinc, and then allowing an hour or two for the cooling process, that the strong polarization figure which it displays in a polariscope was completely removed, and hence the glass annealed. A common gas-combustion furnace was used, the bends, etc, being suitably inclosed in heavy metal and heated over a common ten-fold Bunsen burner. Thus far no accident has happened to the annealed glass, even when cold drops of mercury struck in rapid succession on portions heated considerably above 100° C.

I wish, in conclusion, to express my thanks to my assistant, Dr. Ihlseng, for the labor he has expended in making the large number of computations necessarily involved in work of this kind.--Amer. Jour. of Science.

The following table, prepared by E. Finot and Arm. Bertrand for theJour. de Ph. et de Chim., shows the point at which the evaporation of certain solutions is to be interrupted in order to procure a good crop of crystals on cooling. The density is according to Baumé's scale, the solution warm:

Aluminum sulphate       25 | Nickel acetate             30Alum (amm. or pot.)     20 |   "    ammon. sulphate     18Ammonium acetate        14 |   "    chloride            50"      arsenate        5 |   "    sulphate            40"      benzoate        5 | Oxalic acid                12"      bichromate     28 | Potass. and sod. tartrate  36"      bromide        30 | Potassium arsenate         36"      chloride       12 |   "       benzoate          2"      nitrate        29 |   "       bisulphate       35"      oxalate         5 |   "       bromide          40"      phosphate      35 |   "       chlorate         22"      sulphate       28 |   "       chloride         25"      sulphocyanide  18 |   "       chromate         38"      tartrate       25 |   "       citrate          36Barium ethylsulphate    43 |   "       ferrocyanide     38"    formate          32 |   "       iodide           17"    hyposulphite     24 |   "       nitrate          28"    nitrate          18 |   "       oxalate          30"    oxide            12 |   "       permanganate     25Bismuth nitrate         70 |   "       sulphate         15Boric acid               6 |   "       sulphite         25Cadmium bromide         65 |   "       sulphocyanide    35Calcium chloride        40 |   "       tartrate         48"     ethylsulphate   36 | Soda                       28"     lactate          8 | Sodium acetate             22"     nitrate         55 |   "    ammon. phosp.       17Cobalt chloride         41 |   "    arsenate            36"    nitrate          50 |   "    borate              24"    sulphate         40 |   "    bromide             55Copper acetate           5 |   "    chlorate            43"    ammon. sulph.    35 |   "    chromate            45"    chloride         45 |   "    citrate             36"    nitrate          55 |   "    ethylsulphate       37"    sulphate         30 |   "    hyposulphite        24Iron-ammon. oxalate     30 |   "    nitrate             40" ammon. sulphate     31 |   "    phosphate           20" sulphate            31 |   "    pyrophosphate       18" tartrate            40 |   "    sulphate            30Lead acetate            42 |   "    tungstate           45" nitrate             50 | Stroutium bromide          50Magnesium chloride      35 |   "       chlorate         65"       lactate        6 |   "       chloride         34"       nitrate       45 | Tin choride (stannous)     75"       sulphate      40 |Manganese chloride      47 | Zinc acetate               20"       lactate        8 |   "  ammon. chloride       43"       sulphate      44 |   "  nitrate               55Mercury cyanide         20 |   "  sulphate              45

[Footnote: 'Zeitschrift fur Analyt. Chemie,' 1881.]

Hop flowers contain a great variety of different substances susceptible of extraction with ether, alcohol, and water, and distinguishable from one another by tests of a more or less complex character. The substances are: Ethereal oil, chlorophyl, hop tannin, phlobaphen, a wax-like substance, the sulphate, ammoniate, phosphate, citrate and malates of potash, arabine, a crystallized white and an amorphous brown resin, and a bitter principle. That the characteristic action of the hops is due to such of these constituents only as are of an organic nature is easy to understand; but up to the present we are in ignorance whether it is upon the oil, the wax, the resin, the tannin, the phlobaphen, or the bitter principle individually, or upon them all collectively, that the effect of the hops in brewing depends.

It is the rule to judge the strength and goodness of hops by the amount of farina--the so-called lupuline; and as this contains the major portion of the active constituents of the hop, there is no doubt that approximately the amount of lupuline is a useful quantitative test. But here we are confronted by the question whether the lupuline is to be regarded as containingallthat is of any value in the hops and the leaves, the organic principles in which pass undetected under such a test, as supererogatory for brewers' purposes? Practical experience negatives any such conclusion. Consequently, we are justified in assuming that the concurrent development and the presence of the several organic principles--the oil, the wax, the bitter, the tannin, the phlobaphen, in the choicer sorts--are subject, within certain limits, to variations depending on skilled culture and careful drying, and that the aggregate of these principles has a certain attainable maximum in the finer sorts, under the most favorable conditions of culture, and another, lower maximum in less perfectly cultivated and wild sorts. The difference in the proportion of active organic substance in each sort must be determined by analysis. There then remains to be discovered which of the aforesaid substances plays the leading role in brewing, and also whether the presence of chlorophyl and inorganic salts in the hop extract influences or alters the results.

That in brewing hops cannot be replaced by lupuline alone, even when the latter is employed in relatively large quantities is well known, as also that a considerable portion of the bitter principle of the hop is found in the floral leaves. Neither can the lupuline be regarded as the only active beer agent, as both the hop-tannin and the hop-resin serve to precipitate the albuminous matter, and clarify and preserve the beer.

Both chemists and brewers would gladly welcome some method of testing hops, which should be expeditious, and afford reliable results in practical hands. To accomplish this account must be taken of all the active organic constituents of the hops, which can be extracted either with ether, alcohol, or water containing soda (for the conversion of the hop tannin in phlobaphen).[1] It should further be ascertained whether the chlorophyl percentage in the hop bells, new and old, is or is not the same in cultivated and in wild hops, and whether the aggregate percentages of organic and constituent observe the same limits.

[Footnote 1: See C. Etti, in "Dingler's Polytech. Journ.," 1878, p. 354.]

As wild hops nowadays are frequently introduced in brewing, the proportion of chlorophyl and organic and inorganic constituents in them should be compared with those of cultivated sorts, taking the best Bavarian or Bohemian hops as the standard of measurement. The chlorophyl is of minor importance, as it has little effect on the general results.

By a series of comparative analysis of cultivated and wild hops, in which I would lay especial stress on parity of conditions in regard of age and vegetation, the extreme limits of variation of which their active organic principles are susceptible could be determined.

There is every reason to suppose that the chlorophyl and inorganic constituents do not differ materially in the most widely different sorts of hops. The more important differences lie in the proportions of hop resin and tannin. When this is decided, the proportion of tannin or phlobaphen in the hop extract or the beer can be determined by analysis in the ordinary way. But whenever some quick and sure hop test shall have been found,appearance and aromawill still be most important factors in any estimate of the value of hops. Here a question arises as to whether hops from a warm or even a steppe climate, like that of South Russia, contain the same proportion of ethereal oil--that is, of aroma--as those from a cooler climate, like Bavaria and Bohemia, or like certain other fruit species of southern growth, they are early in maturing, prolific, large in size, and abounding in farina, butdeficient in aroma.

The bearings of certain experimental data on this point I reserve for consideration upon a future occasion.--The Analyst.

[Footnote: Abstract of paper read in Section G. British Association, York]

In many countries and for many years past, inventors have sought some cheap and easy means of decomposing steam in the presence of incandescent carbon in order to produce a cheap heating gas; and working with the same object the writer has devised an apparatus which has been fitted up in the garden of the Industrial Exhibition, and is there making gas for a 3½ horse power (nominal) Otto gas engine. The retort or generator consists of a vertical cylindrical iron casing which incloses a thick lining of ganister to prevent loss of heat and oxidation of the metal, and at the bottom of this cylinder is a grate on which a fire is built up. Under the grate is a closed chamber, and a jet of superheated steam plays into this and carries with it by induction a continuous current of air. The pressure of the steam forces the mixture of steam and air upward through the fire, so that the combustion of the fuel is maintained while a continuous current of steam is decomposed, and in this way the working of the generator is constant, and the gas is produced without fluctuations in quality. The well-known reactions occur, the steam is decomposed, and the oxygen from the steam and air combines with the carbon of the fuel to form carbon dioxide (CO2), which is reduced to the monoxide (CO) on ascending the fuel column. In this way the resulting gases form a mixture of hydrogen, carbon, monoxide, and nitrogen, with a small percentage of carbon dioxide which usually escapes without reduction. The steam should have a pressure of 1½ to 2 atmospheres, and is produced and superheated in a zigzag coil fed with water from a neighboring boiler. The quantity of water required is very small, being only about 7 pints for each 1,000 cubic feet of gas, and, except on the first occasion when the apparatus is started, the coil is heated by some of the gas drawn from the holder, so that after the gas is lighted under the coil the superheater requires no attention.

For boiler and furnace work the gas can be used direct from the generator; but where uniformity of pressure is essential, as for gas engines, gas burners, etc., the gas should pass into a holder. The latter somewhat retards the production, but the steam injector causes gas to be made so rapidly that a holder is easily filled against a back pressure of 1 in. to 1½ in. of water, and at this pressure the generator can pass gas continuously into the holder, while at the same time it is being drawn off for consumption.

The nature of the fuel required depends on the purpose for which the gas is used. If for heating boilers, furnaces, etc, coke or any kind of coal maybe used; but for gas engines or any application of the gas requiring great cleanliness and freedom from sulphur and ammonia it is best to use anthracite, as this does not yield condensable vapors, and is very free from impurities. Good qualities of this fuel contain over 90 per cent of carbon and so little sulphur that, for some purposes, purification is not necessary. For gas engines, etc., it is, however, better to pass the gas through some hydrated oxide of iron to remove the sulphureted hydrogen. The oxide can be used over and over again after exposure to the air, and the purifying is thus effected without smell or appreciable expense. Gas made by this process and with anthracite coal has no tar and no ammonia, and the small percentage of carbon dioxide present does not sensibly affect the heating power. A further advantage of this gas is that it cannot burn with a smoky flame, and there is no deposition of soot even when the object to be heated is placed over or in the flame, and this is of importance for the cylinder and valves of a gas engine.

To produce 1,000 cubic feet only 12 lb. of anthracite are required, allowing 8 to 10 per cent, for impurities and waste; thus a generator A size, which produces 1,000 cubic feet per hour, needs only 12 lb. in that time, and this can be added once an hour or at longer intervals. No skilled labor is necessary, and in practice it is usual to employ a man who has other work to attend to near the generator, and to pay him a small addition to his usual wages.

The comparative explosive force of coal gas and the Dowson gas calculated in the usual way is as 3.4:1, i. e., coal gas has 3.4 times more energy than the writer's gas. Messrs. Crossley, of Manchester, the makers of the Otto gas engines, have made several careful trials of this gas with some of their 3½ horse power (nominal) engines, and in one trial they took diagrams every half-hour for nine consecutive days. These practical trials have shown that without altering the cylinder of the engine it is possible to admit enough of the Dowson gas to give the same power as with ordinary coal gas. It has been seen that the comparative explosive force of the two gases is as 3.4:1, but as it is well known the combustion of carbon monoxide proceeds at a comparatively slow rate, and for this reason, and because of the diluents present in the cylinder which affect the weaker gas more than coal gas, experience has shown that it is best to allow five volumes of the Dowson gas for one volume of coal gas, and then the same uniform power is obtained as with the latter.

This gives very important economical results; for if the cost of the Dowson gas given in the tables as 4¼d., 3-1/3d., and 2¾d. per 1,000 cubic feet, be multiplied by 5 there will be 1s. 9¼d., 1s. 4¾d., and 1s. 2¾d., or a mean of 1s. 5½d. for the equivalent of 1,000 cubic feet of coal gas, which usually costs from 3s. to 4s., and this represents an actual saving of about 50 to 60 per cent, in working cost. Another practical consideration is that coal gas requires 224 lb. to 250 lb. of coal per 1,000 cubic feet of gas, but the writer requires only 12 lb. per 1,000 cubic feet, and multiplying this by 5 to give the equivalent of 1,000 cubic feet of coal gas, for engine work, there are 60 lb. instead of 224 lb. to 250 lb. This is only 24 to 27 per cent, of the weight of the coal required for coal gas, and in many outlying districts this will effect an appreciable saving in the cost of transport.

TABLE I._Generator A Size_ (producing 1,000 cubic feet per hour):Anthracite to make gas at the rate of 1,000   s.  d.cubic feet per hour=l2 lb x 9 workinghours=l08 lb., or say, 1 cwt. at 20s. aton....................................     1   0Allowance for wages of attendant.........     1   0Repairs and depreciation of generator,gasholder, etc. (5 per cent. on £l25)=per working day........................     0   5Interest on capital outlay, ditto........     0   5______Total...........................     2  10cub. ft.Gas produced.............................     9.000Less gas used for generating andsuperheating steam.....................    1,000_____Total effective gas for 2s. 10d.     8,000Net cost 4¼ d. per 1,000 cubic feet.TABLE II._Generator B Size_ (producing 1,500 cubic feet per hour)Anthracite to make gas at the rate of 1,500   s.  d.cubic feet per hour=18 lb. x 9 workinghours=162 lb., or, say, 1½ cwt. 20s.a ton..................................     1    6Allowance for wages of attendant.........     1    0Repairs and depreciation of generator,gasholder, etc. (5 per cent, on £140)=per working day.......................     0    5½Interest on capital outlay, ditto........     0    5½___  ___Total...........................     3    5cub. ft.Gas produced.............................    13,500Less gas used for generating andsuperheating steam.....................     1,200______Total effective gas for 3s. 5d..    12,300Net cost 3 1/3d. per 1,000 cubic feet.TABLE III._Generator C Size_ (producing 2,500 cubic feet per hour):Anthracite to make gas at the rate of 2,500      s. d.cubic feet per hour=30 lb. x 9 workinghours=270 lb. at 20s. a ton............          2  4½Allowance for wages of attendant.......          1  6Repairs and depreciation of generator,gasholder, etc. (5 per cent, on £160)=per working day......................          0  6½Interest on capital outlay, ditto......          0  6½_______Total.........................          4 11½cub. ft.Gas produced...........................        22,500Less gas used for generating andsuperheating steam...................         1,500______Total effective gas for 4s. 11½d      21,000Net cost, say, 2¾ d. per 1,000 cubic feet.

[Footnote: Abstract of paper read before Section C (Chemical Science), British Association meeting, York.]

The authors described their experiments on the fluid density of metals made in continuation of those submitted to Section B at the Swansea meeting of the Association. Some time since one of the authors gave an account of the results of experiments made to determine the density of metallic silver, and of certain alloys of silver and copper when in a molten state. The method adopted was that devised by Mr. R. Mallet, and the details were as follows: A conical vessel of best thin Lowmoor plate (1 millimeter thick), about 16 centimeters in height, and having an internal volume of about 540 cubic centimeters, was weighed, first empty, and subsequently when filled with distilled water at a known temperature. The necessary data were thus afforded for accurately determining its capacity at the temperature of the air. Molten silver was then poured into it, the temperature at the time of pouring being ascertained by the calorimetric method. The precautions, as regards filling, pointed out by Mr. Mallet, were adopted; and as soon as the metal was quite cold, the cone with its contents was again weighed. Experiments were also made on the density of fluid bismuth; and two distinctive determinations gave the following results:

10.005 )) mean 10.039.10.072 )

The invention of the oncosimeter, which was described by one of the authors in the "Journal of the Iron and Steel Institute" (No. II., 1879, p. 418), appeared to afford an opportunity for resuming the investigation on a new basis, more especially as the delicacy of the instrument had already been proved by experiments on a considerable scale for determining the density of fluid cast iron. The following is the principle on which this instrument acts:

If a spherical ball of any metal be plunged below the surface of a molten bath of the same or another metal, the cold ball will displace its own volume of molten metal. If the densities of the cold and molten metal be the same, there will be equilibrium, and no floating or sinking effect will be exhibited. If the density of the cold be greater than that of the molten metal, there will be a sinking effect, and if less a floating effect when first immersed. As the temperature of the submerged ball rises, the volume of the displaced liquid will increase or decrease according as the ball expands or contracts. In order to register these changes the ball is hung on a spiral spring, and the slightest change in buoyancy causes an elongation or contraction of this spring which can be read off on a scale of ounces, and is recorded by a pencil on a revolving drum. A diagram is thus traced out, the ordinates of which represent increments of volume, or, in other words, of weight of fluid displaced--the zero line, or line corresponding to a ball in a liquid of equal density, being previously traced out by revolving the drum without attaching the ball of metal itself to the spring, but with all other auxiliary attachments. By means of a simple adjustment the ball is kept constantly depressed to the same extent below the surface of the liquid; and the ordinate of this pencil line, measuring from the line of equilibrium, thus gives an exact measure of the floating or sinking effect at every stage of temperature, from the cold solid to the state when the ball begins to melt.

If the weight and specific gravity of the ball be taken when cold, there are obtained, with the ordinate on the diagram at the moment of immersion, sufficient data for determining the density of the fluid metal; for

W / W1= D / D1

the volumes being equal. And remembering that

W (weight of liquid) = W1(weight of ball) + x

(where x is always measured as +veor -vefloating effect), there is obtained the equation:D = \frac{D_1 \times (W_1 +x)}{W_1}

The results obtained with metallic silver are perhaps the most interesting, mainly from the fact that the metal melts at a higher temperature, which was determined with great care by the illustrious physicist and metallurgist, the late Henri St. Claire Deville, whose latest experiments led him to fix the melting point at 940° Cent. The authors of the paper showed that the density of the fluid metal was 9.51 as compared with 10.57, the density of the solid metal. Taking their results generally, it is found that the change of volume of the following metals in passing from the solid to the liquid state may be thus stated:

Specific       SpecificMetal.        Gravity,      Gravity,      Percentage ofSolid.        Liquid.         Change.Bismuth         9.82         10.055     Decrease of volume  2.3Copper          8.8           8.217     Increase       "    7.1Lead           11.4          10.37          "          "    9.93Tin.            7.5           7.025         "          "    6.76Zinc            7.2           6.48          "          "   11.10Silver         10.57          9.51          "          "   11.20Iron            6.95          6.88          "          "    1.02

M. Pasteur and other French savants have lately been devoting special attention to hydrophobia. The great authority on germs has, in fact, definitely announced that he does not intend to rest until he has made known the exact nature and life-history of this terrible disease, and discovered a means of preventing or curing it. The most curious result yet attained in this direction, however, has been announced by Professor V. Galtier, of the Lyons Veterinary School. This inquirer has found, in the first place, that if the virus of rabies be injected into the veins of a sheep, the animal does not subsequently exhibit any symptoms of hydrophobia. This in itself would be a sufficiently curious result to justify attention, though its importance, except as confirmatory testimony, becomes less striking when it is remembered that M. Pasteur has lately shown that the specialnidusof the disease appears to be the nervous tissue, and particularly the ganglionic centers. But there is this further curious consequence: sheep who have thus been treated through the blood, and who are afterwards inoculated in the ordinary way through the cellular tissue, as if by a bite, are proof against the disease. It is as though the injection into the veins acted as a vaccine. Twenty sheep were experimented upon; ten only were treated to the venous injection, and then all were inoculated through the cellular tissue. The ten which had been first "vaccinated" continue alive and well; they have not even shown any adverse symptoms. The other ten have all died of rabies. It remains to say why M. Galtier experimented upon sheep, and not upon dogs and cats, which usually communicate the disease. The incubation of the disease is much more rapid and less capricious in the sheep than in the dog or in man, and hence M. Galtier was able to get his results more certainly within a short period. Having succeeded so far, he is now justified in undertaking the more protracted series of observations which experiments upon the canine species will involve; and this he proposes to do. Experiments of this nature are not without a serious risk, and admiration is almost equally due to the courage and the intelligence of the experimentalist. But what will the anti-vaccinator say?--Pall Mall Gazette.

The two-winged flies, in their behavior to man, stand in a marked contrast to all the other orders of insects. The Lepidoptera, the Coleoptera, the Neuroptera, the Hymenoptera no doubt occasion, in some of their forms at least, much damage to our crops. But none of them are parasitic in or upon our bodies; none of them persistently intrude into our dwellings, hover around us in our walks, and harass us with noise and constant attempts to bite, or at least to crawl upon us. Even the ants, except in a few tropical districts, rarely act upon the offensive. The Hemiptera contain one semi-parasitic species which has attained a "world-wide circulation," and one degraded, purely parasitic group. But the Diptera, among which the fleas are now generally included as a degenerated type, comprise more forms personally annoying to man than all the remaining insect orders put together. These hostile species are, further, incalculably numerous, and occur in every part of the globe. Mosquitoes swarm not merely in the swampy forests of the Orinoco or the Irrawaddy, but in the Tundras of Siberia, en the storm-beaten rocks of the Loffodens, and are even encountered by voyagers in quest of the North Pole. The common house fly was probably at one time peculiar to the Eastern Continent, but it followed the footsteps of the Pilgrim Fathers, and is now as great a nuisance in the United Slates and the Dominion as in any part of Europe. It is curious, but distressing, to note the tendency of evils to become international. We have communicated to America the house-fly and the Hessian fly, the "cabbage-white," the small pox, and the cholera. She, in return, has given us thePhylloxera, a few visitations of yellow fever, theBlatta gigantea, and, climate allowing, may perhaps throw in the Colorado beetle as a make-weight. In this department, at least, free trade reigns undisputed. It is a singular thing that no beautiful, useful, or even harmless species of bird or insect seems capable of acclimatizing itself as do those characterized by ugliness and noisomeness.

But, returning from this digression, we find in the Diptera the habit of obtrusion and intrusion, of coming in actual contact with our food and our persons, combined with another propensity--that of feeding upon carrion, excrement, blood, pus, and morbid matter of all kinds. This is a combination far more serious than is generally imagined. If the fly--which may at any moment settle upon our lips, our eyes, or upon an abraded part of our skin--were cleanly in its habits, we need feel little annoyance at its visits. Or if it were the most eager carrion devourer, but did not, after having dined, think it necessary to seek our company, we might hold it, as is done too hastily by some naturalists, a valuable scavenger. I fear, however, that I have already made too great a concession. So long as very many persons are suffering from disease--so long as many diseases are capable of being transmitted from the sick to the healthy--so long must any creature which is in the habit of flying about, and touching first one person and then another, be a possible medium of infection and death.

Let us take the following case, by no means imaginary, but a generalization from occurrences far too frequent: A healthy man, sitting in his house or walking in the fields, especially in countries where the insectivorous birds have been shot down, suddenly feels a sharp prick on his neck or his cheek. Putting his hand to the place he perhaps crushes, perhaps merely brushes away, a fly which has bitten him so as to draw blood. The man thinks little of so trifling a hurt, but the next morning he finds the puncture exceedingly painful. An inflamed pimple forms, which quickly gets worse, while constitutional symptoms of a feverish kind come on. In alarm he seeks medical advice. The doctor tells him that it is a malignant pustule, and takes at once the most active measures. In spite of all possible skill and care the patient too often succumbs to the bite of amouche charbonneuse, or carbuncle-fly. But has any kind of fly the property of producing malignant pustule by some specific inherent power of its own? Surely not. The antecedent circumstances are these: A sheep or heifer is attacked with the disease known in France ascharbon, in Germany asmilz-brand, and in England assplenic fever. Its blood on examination would be found plentifully peopled with bacteria. If a lancet were plunged into the body of the animal, and were then used to slightly scratch or cut the skin of a man, he would be inoculated with "charbon." The bite of the fly is precisely similar in its action. Its rostrum has been smeared with the poisoned blood, an infinitesimal particle of which is sufficient to inclose several of the disease "germs," and these are then transferred to the blood of the next man or animal which the fly happens to bite. The disease is reproduced as simply and certainly as the spores of some species of fern give rise to their like if scattered upon soil suitable for their growth. But flies which do not bite may transfer infection. Every one must know that if blood be spilt upon the ground a crowd of flies will settle upon and eagerly absorb it. Animals suffering from splenic fever in the later stages of the disease sometimes emit bloody urine. Often they are shot or slaughtered by way of stamping out the plague, and their carcasses are buried deep in the ground. But some loss of blood is sure to happen, and this will mostly be left to soak into the ground. Here again the flies will come, and their feet and mouth will become charged with the contagion. Such a fly, settling upon another animal or a man, and selecting--as it will do by preference, if such exist--a wound, or a place where the skin is broken, will convey the disease.

Again, M. Pasteur has thoughtfully pointed out that if an animal has died of splenic fever, and has been carefully buried, the earth-worms may bring up portions of infectious matter to the surface, so that sheep grazing, or merely being folded over the spot in question, may take the plague and die. Hence be wisely counsels that the bodies of such animals should be buried in sandy or calcareous soils where earth-worms are not numerous. But it is perfectly legitimate to go a step farther. If such worm-borings retain the slightest savor of animal matter, flies will settle upon them and will convey the infectious dust to the most unexpected places, giving wings to the plague.

Now it is very true that no one has seen a fly feasting upon the blood of a heifer or sheep dying or just dead of splenic fever, has then watched it settle upon and bite some person, and has traced the following stages of the disease. But it is positively known that a person has been bitten by a fly, and has then exhibited all the symptoms of charbon, the place of the bite being the primary seat of the infection. We know also, beyond all doubt, the eagerness with which flies will suck up blood, and we likewise know the strange persistence of the disease "germs."

Again, the avidity of flies for purulent matter is not a thing of mere possibility. In Egypt, where ophthalmia is common, and where the "plague of flies" seems never to have been removed, it is reported as almost impossible to keep these insects away from the eyes of the sufferers. The infection which they thus take up they convey to the eyes of persons still healthy, and thus the scourge is continually multiplied.

A third case which seems established beyond question is the agency of mosquitoes in spreading elephantiasis. These so-called sanitary agents suck from the blood of one person the Filariae, the direct cause of the disease, and transfer them to another. The manner in which this process is effected will appear simple enough if we reflect that the mosquito begins operations by injecting a few drops of fluid into its victim, so as to dilute the blood and make it easier to be sucked.

So much being established it becomes in the highest degree probable that every infectious disease may be, and actually is, at times propagated by the agency of flies. Attention turned to this much neglected quarter will very probably go far to explain obscure phenomena connected with the distribution of epidemics and their sudden outbreaks in unexpected quarters. I have seen it stated that in former outbreaks of pestilence flies were remarkably numerous, and although mediaeval observations on Entomology are not to be taken without a grain of salt, the tradition is suggestive. Perhaps the Diptera have their seasons of unusual multiplication and emigration. A wave of the common flea appears to have passed over Maidstone in August, 1880.

We now see the way to some practical conclusions not without importance. Recognizing a very considerable part of the order of Diptera, or two-winged flies, as agents in spreading disease, it surely follows that man should wage war against them in a much more systematic and consistent manner than at present. The destruction of the common house-fly by "papier Moure," by decoctions of quassia, by various traps, and by the so-called "catch 'em alive," is tried here and there, now and then, by some grocer, confectioner, or housewife angry at the spoliation and defilement caused by these little marauders. But there is no concerted continuous action--which after all would be neither difficult nor expensive--and consequently no marked success. Experiments with a view of finding out new modes of fly-killing are few and far between.

Every one must occasionally have seen, in autumn, flies as if cemented to the window-pane, and surrounded with a whitish halo. That in some seasons numbers of flies thus perish--that the phenomenon is due to a kind of fungus, the spores of which readily transfer the disease from one fly to another--we know. But here our knowledge is at fault. We have not learnt why this fly-epidemic is more rife in some seasons than others. We are ignorant concerning the methods of multiplying this fungus at will, and of launching it against our enemies. We cannot tell whether it is capable of destroyingStomoxys calcitram, the blowflies, gadflies, gnats, mosquitoes, etc. Experiment on these points is rendered difficult by the circumstance that the fungus is rarely procurable except in autumn, when some of the species we most need to destroy are not to be found. Another question is whether the fungus, if largely multiplied and widely spread, might not prove fatal to other than Dipterous insects, especially to the Hymenoptera, so many of which, in their character of plant-fertilizers, are highly useful, or rather essential to man.

Another fungus, the so-called "green muscardine" (Isaria destructor), has been found so deadly to insects that Prof. Metschnikoff, who is experimenting upon it, hopes to extirpate thePhylloxera, the Colorado beetle, etc., by its agency.

Coming to better known and still undervalued fly-destroyers, we have interfered most unwisely with the balance of nature. The substitution of wire and railings for live fences in so many fields has greatly lessened the cover both for insectivorous birds and for spiders. The war waged against the latter in our houses is plainly carried too far. Whatever may be the case at the Cape, in Australia, or even in Southern Europe, no British species is venomous enough to cause danger to human beings. Though cobwebs are not ornamental, save to the eye of the naturalist, there are parts of our houses where they might be judiciously tolerated: their scarcity in large towns, even where their prey abounds, is somewhat remarkable.

But perhaps the most effectual phase of man's war against the flies will be negative rather than positive, turning not so much on putting to death the mature individuals as in destroying the matter in which the larvae are nourished. Or if, from other considerations, we cannot destroy all organic refuse, we may and should render it unfit for the multiplication of these vermin. We have, indeed, in most of our large towns and in their suburbs, abolished cesspools, which are admirable breeding-places for many kinds of Diptera, and which sometimes presented one wriggling mass of larvae. We have drained many marshes, ditches, and unclean pools, rich in decomposing vegetable matter, and have thus notably checked the propagation of gnats and midges. I know an instance of a country mansion, situate in one of the best wooded parts of the home counties, which twenty years ago was almost uninhabitable, owing to the swarms of gnats which penetrated into every room. But the present proprietor, being the reverse of pachydermatous, has substituted covered drains for stagnant ditches, filled up a number of slimy ponds as neither useful nor ornamental, and now in most seasons the gnats no longer occasion any annoyance.

But if we have to some extent done away with cesspools and ditches, and have reaped very distinct benefit by so doing, there is still a grievous amount of organic matter allowed to putrefy in the very heart of our cities. The dust bins--a necessary accompaniment of the water-carriage system of disposing of sewage--are theoretically supposed to be receptacles mainly for organic refuse, such as coal-ashes, broken crockery, and at worst the sweepings from the floors. In sober fact they are largely mixed with the rinds, shells, etc., of fruits and vegetables, the bones and heads of fish, egg-shells, the sweepings out of dog-kennels and henhouses, forming thus, in short, a mixture of evil odor, and well adapted for the breeding-place of not a few Diptera.

The uses to which this "dust" is put when ultimately fetched away are surprising: without being freed from its organic refuse it is used to fill up hollows in building-ground, and even for the repair of roads. A few weeks ago I passed along a road which was being treated according to the iniquity of Macadam. Over the broken stones had been shot, to consolidate them, a complex of ashes, cabbage-leaves, egg and periwinkle shells, straw, potato-parings, a dead kitten (over which a few carrion-flies were hovering), and other promiscuous nuisances. The road in question, be it remarked, is highly "respectable," if not actually fashionable. The houses facing upon it are severely rated, and are inhabited chiefly by "carriage people." What, then, may not be expected in lower districts?

Much attention has lately been drawn to the fish trade of London. It hasnot, however, come out in evidence that the fish retailers, if they find a quantity of their perishable wares entering into decomposition, send out late in the evening a messenger, who, watching his opportunity, throws his burden down in some plot of building land, or over a fence. When I say that I have seen in one place, close alongside a public thoroughfare, a heap of about fifty herrings, in most active putrefaction and buzzing with flies, and some days afterward, in another place, some twenty soles, it will be understood that such nuisances can only be occasioned by dealers. To get rid of, or at least greatly diminish, carrion-flies, house-flies, and the whole class of winged travelers in disease, it will be, before all things, essential to abolish such loathsome malpractices. The dustbins must cease being made the receptacle for putrescent and putrescible matter, the destruction of which by fire should be insisted upon.

The banishment of slaughter-houses to some truly rural situation, where the blood and offal could be at once utilized, would be another step toward depriving flies of their pabulum in the larva state. An equally important movement would be the substitution of steam or electricity for horsepower in propelling tram-cars and other passenger carriages, with a view to minimize the number of horses kept within greater London. Every large stable is a focus of flies--Journal of Science.

At the recent Medical Congress in London, Professor Klebs undertook to answer the question: "Are there specific organized causes of disease?"

A short historical review of the various opinions of mankind as to the origin of disease led, the speaker thought, to the presumption that these causes were specific and organized.

If we now, he said, consider the present state of this question, the three following points of view present themselves as those from which the subject may be regarded:

I.--We have to inquire whether the lower organisms, which are found in the diseased body, may arise there spontaneously; or whether even they may be regarded as regular constituents of the body.

II.--The morphological relations of these organisms have to be investigated, and their specific nature in the different morbid processes has to be determined.

III.--We have to inquire into their biological relations, their development inside and outside the body, and the conditions under which they are able to penetrate into the body, and there to set up disease.

First.--With regard to the first question, that of the possibility of spontaneous generation, the speaker gave a decided negative.

Second and third.--There is in microscopic organisms a difference of form corresponding, as a rule, to difference of function. The facts regarding these various lower forms are briefly reviewed.

"Three groups of hyphomycetae, algae, and schizomycetae, have been demonstrated to occur in the animal and human organism in infective diseases. Their significance increases with the increase of their capacity for development in the animal body. This depends partly upon their natural or ordinary conditions of life, but partly also, and that in a very high degree, upon their power of adaptation, which, as Darwin has shown, is a property of all living things, and causes the production of new species with new active functions.

"1. The hyphomycetae, on account of their needing an abundant supply of oxygen, give rise to but few morbid processes, and these run their course on the surface of the body, and are hence relatively of less importance. It will be sufficient here to refer to the forms, achorion, trichophyton, oïdium, aspergillus, and the diseases produced by them, favus, ringworm, and thrush, to show this peculiarity. Nevertheless, we see that these organisms also (as was proved by the older observations of Hannover and Zenker) may, under certain circumstances, penetrate into the interior of the organs. Grawitz, moreover, has recently shown that their faculty of penetrating into the interior of the organism, and there undergoing further development, depends on their becoming accustomed to nitrogenous food.

"2. Only one of the algae, viz., leptothrix, has as yet acquired any importance as a producer of disease. It gives rise to the formation of concretions, and that not only in the mouth, but also, as I have shown, in the salivary ducts and urinary bladder.

"Another alga, the sarcina of Goodsir, may indeed pass through the organism, without, however, producing in its passage either direct or indirect disturbances. It seems more worthy of note that many schizomycetae, and especially the group of bacilli, are evidently nearly allied to the algae in their morphological and vegetative relations--so as to be assigned to this class by several authors, and especially by Cienkowski.

"The schizomycetae furnish, without doubt, by far the most numerous group of infective diseases. We distinguish within this group two widely different series of forms, which we will speak of as bacilli and cocco-bacteria respectively. The former, which was first exhaustively described by Ferdinand Cohn, and the pathological importance of which, especially in relation to the splenic disease of cattle, was first shown by Koch, consist of threads, in the interior of which permanent or resting-spores are developed. These spores becoming free, are able, under suitable conditions of life, again to develop into threads. The whole development of these organisms, and especially the formation of spores, is completed on the surface of the fluids, and under the influence of an abundant supply of oxygen.

"The number of affections in which these organisms have been found, and which may be to a certain extent produced artificially by the introduction of these organisms into healthy animal bodies, has been largely increased since the discovery of Koch, that the bacteria of splenic fever (anthrax) belong to this group. Under this head must be placed the bacillus malarise (Klebs and Tommassi-Crudeli), the bacillus typhi abdominalis (Klebs, Ebert), the bacillus typhi exanthematici (Klebs, observations not yet published), the bacillus of hog-cholera (Klein), and, finally the bacillus leprosus (Neisser). It would exceed the time appointed were I to attempt to describe these forms more minutely. This may, perhaps, be better reserved for discussion and demonstration.

"Alongside of these general infective diseases produced by bacilli, local affections also occur, which indicate the presence of these organisms at the point where disease begins. As an example of these processes, which probably occur in various organs, I would mention gastritis bacillaris, of which I shall show you preparations. In this, we can trace the entrance of the bacilli into the peptic glands, as well as their further distribution in the walls of the stomach, and in the vascular system.

"The second group of the pathogenetic schizomycetae I propose to call, with Billroth, cocco-bacteria, because they consist of collections of micrococci, which are capable of transforming themselves into short rods. The former usually form groups united by zoögloea; by prolongation of the cocci rods are formed, which sprout out, break up by division into chains, and further lead again to the formation of resting masses of cocci. I distinguish, further, in this group, two genera--the microsporina and the monadina; in the former of which the micrococci are collected into spherical lumps, in the latter into layers. The one class is developed in artificial cultivation fluid, the other on the surface. The former requires a medium poor in oxygen, the latter a medium rich in oxygen, for their development.

"Among the affections produced by microsporina, I reckon especially the septic processes, and also true diphtheria. On the other hand, to the processes produced by monadina belong especially a large series of diseases, which according to their clinical and anatomical features, may be characterized as inflammatory processes, acute exanthemata, and infective tumors, or leucocytoses. Of inflammatory processes, those belong here which do not generally lead to suppuration, such as rheumatic affections, including the heart, kidney, and liver affections, which accompany this process, sequelae which, as is well known, lead more especially to formation of connective tissue, and not to suppuration. Here, also, belong croupous pneumonia, the allied disease erysipelas, certain puerperal processes, and finally, parotitis epidemica, or mumps.

"Among the acute exanthemata, the following may, up to the present time, be placed in this group; variola-vaccina, scarlatina, and measles.

"The group of infective tumors is represented by tuberculosis, syphilis, and glanders. Throughout the whole group of cocco-bacteria the demonstration of organisms in the diseased parts encounters difficulties which vary considerably in the different kinds."

The speaker concluded by describing the methods (now well known) by which the powers of the different organisms are tested.

He also referred to Pasteur's, Chauveau's, and Toussaint's recent experiments.

His conclusion was that the specific communicable diseases are produced by specific organisms.


Back to IndexNext