In 1831, there was no means of making a seam except by the laborious process of the hand needle. In 1846, Eldred Walker patented a machine for parsing the basting thread through the gores of umbrellas, a machine that was very ingenious and very simple, but was utterly unlike the present sewing machine, with its eye-pointed needle, using sometimes two threads (the second being put in by a shuttle or by another needle), and making stitches at twenty-fold the rapidity with which the most expert needlewoman could work. By means of the sewing machine not only are all textile fabrics operated upon, but even the thickest leather is dealt with, and as atour de force, but as a matter of fact, sheet-iron plates themselves have been pierced, and have been united by a seam no boilermaker ever contemplated, the piercing and the seam being produced by a Blake sewing machine. I believe all in this section will agree that the use of the sewing machine has been unattended by loss to those who earn their living by the needle; in fact, it would not be too much to say that there has been a positive improvement in their wages.
The next matter I have to touch upon is
In 1831, we had thrashing machines and double plows, and even multiple plows had been proposed, tried, and abandoned. Reaping machines had been experimented with and abandoned; sowing machines were in use, but not many of them; clod crushers and horse rakes were also in use; but as a fact plowing was done by horse power with a single furrow at a time, mowing and reaping were done by the scythe or the sickle, sheaves were bound by hand, hay was tedded by hand-rakes, while all materials and produce were moved about in carts and in wagons drawn by horses. At the present time we have multiple plows, making five or six furrows at a time, these and cultivators also, driven by steam, commonly from two engines on the head lands, the plow being in between, and worked by a rope from each engine, or if by one engine, a capstan on the other head land, with a return rope working the plow backward and forward; or by what is known as the roundabout system, where the engine is fixed and the rope carried round about the field; or else plows and cultivators are worked by ropes from two capstans placed on the two head lands, and driven by means of a quick-going rope, actuated by an engine, the position of which is not changed. And then we have reaping machines, driven at present by horses; but how long it will be before the energy residing in a battery, or that in a reservoir of compressed air, will supersede horse power to drive the reaping machine, I don't know, but I don't suppose it will be very long. The mowing and reaping machines not only cut the crop and distribute it in swaths, or, in the case of the reaping machine, in bundles, but now, in the instance of these latter machines, are competent to bind it into sheaves. In lieu of hand tedding, haymaking machines are employed, tossing the grass into the air, so as to thoroughly aerate it, taking advantage of every brief interval of fine weather; and seed and manure are distributed by machine with unfailing accuracy. The soil is drained by the aid of properly constructed plows for preparing the trenches; roots are steamed and sliced as food for cattle; and the thrashing machine no longer merely beats out the grain, but it screens it, separates it, and elevates the straw, so as to mechanically build it up into a stack. I do not know a better class of machine than the agricultural portable engine. Every part of it is perfectly proportioned and made; it is usually of the locomotive type, and the economy of fuel in its use is extremely great. I cannot help thinking that the improvement in this respect which has taken place in these engines, and the improvement of agricultural machinery generally, is very largely due to the Royal Agricultural Society, one of the most enterprising bodies in England.
I now come to the very last subject I propose to speak upon, and that is
and especially as applied to the printing of newspapers. In 1831, we had the steam press sending out a few hundred copies in an hour, and doing that upon detached sheets, and thus many hours were required for an edition of some thousands. The only way of expediting the matter would have been to have recomposed the paper, involving, however, double labor to the compositors, and a double chance of error. At the present day, we have, by the Walter press, the paper printed on a continuous sheet at a rate per hour at least three times as great as that of the presses of 1831, and, by the aid ofpapier máchémoulds, within five minutes from the starting of the first press, a second press can be got to work from the stereotype plates, and a third one in the next five minutes; and thus the wisdom of our senators, which has been delivered as late as three o'clock in the morning, is able to be transmitted by the newspaper train leaving Euston at 5:15 A.M.
This is the last matter with which I shall trouble the Section. I have purposely omitted telegraphy; I have purposely omitted artillery, textile fabrics, and the milling and preparation of grain. These and other matters I have omitted for several reasons. Some I have omitted because I was incompetent to speak upon them, others because of the want of time, and others because they more properly belong to Section A.
I hope, sir, although your address, dealing with the future, was undoubtedly the right address for a president to deliver, and although it is equally right that we should not content ourselves with merely looking back in a "rest and be thankful" spirit at the various progress which this paper records, it may nevertheless be thought well that there should have been brought before the section, in however cursory a manner, some notice of mechanical development during the past fifty years.
[1]
Paper read in Section G (Mechanical) of the British Association.
Paper read in Section G (Mechanical) of the British Association.
[Continued fromSupplement, No. 311, page 4954.]
In selecting a lathe an amateur may exercise more or less taste, and he may be governed somewhat by the length of his purse; the same is true in the matter of chucks; but when he comes to the selection or making of turning tools he must conform to fundamental principles; he must profit as far as possible by the experience of others, and will, after all, find enough to be learned by practice.
Tools of almost every description may be purchased at reasonable prices, but the practice of making one's own tools cannot be too strongly recommended. It affords a way out of many an emergency, and where time is not too valuable, a saving will be realized. A few bars of fine tool steel, a hammer, and a small anvil, are all that are required, aside from fire and water. The steel should be heated to a low red, and shaped with as little hammering as possible; it may then be allowed to cool slowly, when it may be filed or ground to give it the required form. It may now be hardened by heating it to a cherry red and plunging it straight down into clean cool (not too cold) water. It should then be polished on two of its sides, when the temper may be drawn in the flame of an alcohol lamp or Bunsen gas burner; or, if these are not convenient, a heated bar of iron may be used instead, the tool being placed in contact with it until the required color appears. This for tools to be used in turning steel, iron, and brass may be a straw color. For turning wood it may be softer. The main point to be observed in tempering a tool is to have it as hard as possible without danger of its being broken while in use. By a little experiment the amateur will be able to suit the temper of his tools to the work in hand.
In the engraving accompanying the present article a number of hand turning tools are shown, also a few tools for the slide rest. These tools are familiar to machinists and may be well known to many amateurs; but we give them for the benefit of those who are unacquainted with them and for the sake of completeness in this series of articles.
TURNING TOOLS.
Fig. 1 is the ordinary diamond tool, made from a square bar of steel ground diagonally so as to give it two similar cutting edges. This tool is perhaps more generally useful than any of the others. The manner of using it is shown in Fig. 23; it is placed on the tool rest and dexterously moved on the rest as a pivot, causing the point to travel in a circular path along the metal in the lathe. Of course only a small distance is traveled over before the tool is moved along on the rest. After a little experience it will be found that by exercising care a good job in plain turning may be done with the tool.
Fig. 2 shows a sharp V shaped tool which will be found useful for many purposes. Fig. 3 is a V shaped tool for finishing screw threads. Figs. 4 and 5 are round-nosed tools for concave surfaces; Fig. 6, a square tool for turning convex and plane surfaces. The tool shown in Fig. 7 should be made right and left; it is useful in turning brass, ivory, hard wood, etc. Fig. 8 is a separating tool; Fig. 9 is an inside tool, which should be made both right and left, and its point may be either round, V shaped, or square. Fig. 24 shows the manner of holding an inside tool. Fig. 10 is a tool for making curved undercuts. Fig. 11 is a representative of a large class of tools for duplicating a given form.
These figures represent a series of tools which may be varied infinitely to adapt them to different purposes. The user, if he is wide awake, is not long in discovering what angle to give the cutting edge, what shape to give the point, and what position to give the tool in relation to the work to be done.
Having had experience with hand tools it requires only a little practice and observation to apply the same principles to slide rest tools.
A few examples of this class of tools are given. Fig. 12 is the ordinary diamond pointed tool, which should be made right and left. The cutting edge may have a more or less acute angle, according to the work to be done, and the inclined or front end of the tool may be slightly squared or rounded, according to the work. Fig. 13 is a separating tool, which is a little wider at the cutting edge than any where else, so that it will clear itself as it is forced into the work.
For brass this tool should be beveled downward slightly. By giving the point the form shown in Fig. 3 it will be adapted to screw cutting.
Fig. 14 shows an inside tool for the slide rest; its point may be modified according to the work to be done. Fig. 15 is a side tool for squaring the ends of shafts; Figs. 16, 17, 18, and 19 represent tools for brass, Fig. 16 is a round-nosed tool for brass, Fig. 17 a V shaped tool, Fig. 18 a screw thread tool, and Fig. 19 a side tool. In boring, whether the object is cored or not, it is desirable, where the hole is not too large, to take out the first cut with a drill. The drill for the purpose is shown in Fig. 20, the drill holder in Fig. 21, and the manner of using in Fig 22. The drill holder, B, is held by a mortised post placed in the rest support. The slot of the drill holder is placed exactly opposite the tail center and made secure. The drill, which is flat, is drilled to receive the tail center, and it is kept from turning by the holder, and is kept from lateral movement and chattering by a wrench, C, which is turned so as to bind the drill in the slot of the holder.
The relative position of the tool and work is shown in Figs. 25, 26, 27, and 28; Fig. 25 shows the position for brass; Fig. 26 for iron and steel; Fig. 27 the relative position of the engine rest tool and its work; and Fig. 28 the position of the tool for soft metal and wood.
In all of these cases the point of the tool is above the center of the work. In the matter of the adjustment of the tool, as well as in all other operations referred to, experiment is recommended as the best means of gaining valuable knowledge in the matter of turning metals.
The saving of files, time, materials, and patience, by the employment of such rotary cutters as may be profitably used in connection with a foot lathe, can hardly be appreciated by one who has never attempted to use this class of tools. It is astonishing how much very hard labor may be saved by means of a small circular saw like that shown in Fig. 1. This tool, like many others described in this series of articles, can, in most instances, be purchased cheaper than it can be made, and the chances are in favor of its being a more perfect article. However, it is not so difficult to make as one might suppose. A piece of sheet steel may be chucked upon the face plate, or on a wooden block attached to the face plate, where it may be bored to fit the saw mandrel, and cut in circular form by means of a suitable hand tool. It may then be placed upon the mandrel and turned true, and it is well enough to make it a little thinner in the middle than at the periphery.
Rotary Cutting Tools.
There are several methods of forming the teeth on a circular saw. It may be spaced and filed, or it may be knurled, as shown in Fig. 2, and then filed, leaving every third or fourth tooth formed by the knurl, or it may, for some purposes, be knurled and not filed at all. Another way of forming the teeth is to employ a hub, something like that used in making chasers, as shown in Fig. 3, the difference between this hub and the other one referred to, is that the thread has one straight side corresponding with the radial side of the tooth. The blank from which the saw is made is placed on a stud projecting from a handle made specially for the purpose, and having a rounded end which supports the edge of the blank, as the teeth are formed by the cutters on the hub.
The saw, after the teeth are formed, may be hardened and tempered by heating it slowly until it attains a cherry red, and plunging it straight down edgewise into cool, clean water. On removing it from the water it should be dried, and cleaned with a piece of emery paper, and its temper drawn to a purple, over a Bunsen gas flame, over the flame of an alcohol lamp, or over a hot plate of iron. The small saw shown in Fig. 4 is easily made from a rod of fine steel. It is very useful for slotting sheet brass and tubes, slotting small shafts, nicking screws, etc. Being quite small it has the advantage of having few teeth to keep in order, and it may be made harder than those of larger diameter. A series of them, varying in diameter from one eighth to three eighths of an inch, and varying considerably in thickness, will be found very convenient.
These cutters or saws, with the exception of the smaller one, may be used to the best advantage in connection with a saw table, like that shown in Fig. 8. This is a plane iron table having a longitudinal groove in its face to receive the guiding rib of the carriage, shown in Fig. 9, and a transverse groove running half way across, to receive a slitting gauge, as shown in Fig. 8. The table is supported by a standard or shank, which fits into the tool-rest socket. The saw mandrel is supported between the centers of the lathe, and the saw projects more or less through a slot formed in the table. The gauge serves to guide the work to be slotted, and other kinds of work may be placed on or against the carriage, shown in Fig. 9.
It is a very simple matter to arrange guiding pieces for cutting at any angle, and the saw table may be used for either metal or wood. The saws for wood differ from those used for metal; the latter are filed straight, the former diagonally or fleaming. Among the many uses to which metal saws may be applied we mention the slitting of sheet metals, splitting wires and rods, slotting and grooving, nicking screws, etc. Fig. 10 shows a holder for receiving screws to be nicked. It is used in connection with the saw table, and is moved over the saw against the gauge.
To facilitate the removal of the screws the holder may be split longitudinally and hinged together. Another method of nicking screws is illustrated by Fig. 11. A simple lever, fulcrumed on a bar held by the tool post, is drilled and tapped in the end to receive the screw. After adjusting the tool all that is required is to insert the screw and press down the handle so as to bring the screw head into contact with the saw.
Where a lathe is provided with an engine rest, the cutter shown in Fig. 6, mounted on the mandrel shown in Fig. 5, is very useful; it is used by clamping the work to the slide rest and moving it under the cutter by working the slide rest screw.
To make a cutter of this kind is more difficult than to make a saw, and to do it readily a milling machine would be required. It may be done, however, on a plain foot lathe, by employing a V-shaped cutter and using a holder (Fig. 7) having an angular groove for receiving the cylinder on which the cutting edges are formed. The blank can be spaced with sufficient accuracy, by means of a fine pair of dividers, and after the first groove is cut there will be no difficulty in getting the rest sufficiently accurate, as a nib inserted in the side of the guide enters the first groove and all of the others in succession and regulates the spacing.
One of the best applications of this tool is shown in the small engraving. In this case a table similar to the saw table before described is supported in a vertical position, and arranged at right angles with the cutter mandrel. The mandrel is of the same diameter as the cutter, and serves as a guide to the pattern which carries the work to be operated upon. The principal use of this contrivance is to shape the edges of curved or irregular metal work. The casting to be finished is fastened—by cement if small, and by clamps if large—to a pattern having exactly the shape required in the finished work.
METAL SHAPING.
By moving the pattern in contact with the table and the mandrel, while the latter revolves, the edges of the work will be shaped and finished at the same time. By substituting a conical cutter for a cylindrical one, the work may be beveled; by using both, the edge may be made smooth and square, while the corner is beveled.
The tool shown in Fig. 12 might properly be called a barrel saw. It is made by drilling in the end of a steel rod and forming the teeth with a file. To avoid cracking in tempering a small hole should be drilled through the side near the bottom of the larger hole. To insure the free working of the tool it should be turned so that its cutting edge will be rather thicker than the position behind it. This tool should be made in various sizes.
Tools for gear cutting and also cutters for wood have not been mentioned in this paper; as they are proper subjects for separate treatment.
It is not the intention of the writer to enter largely into the subject of wood working, but simply to suggest a few handy attachments to the foot lathe which will greatly facilitate the operations of the amateur wood worker, and will be found very useful by almost any one working in wood. It is not an easy matter to split even thin lumber into strips of uniform width by means of a handsaw, but by using the circular saw attachment, shown in Fig. 1, the operation becomes rapid and easy, and the stuff may be sawed or slit at any desired angle or bevel. The attachment consists of a saw mandrel of the usual form, and a wooden table supported by a right angled piece, A, of round iron fitted to the toolpost and clamped by a wooden cleat, B, which is secured to the under side of the table, split from the aperture to one end, and provided with a thumbscrew for drawing the parts together. By means of this arrangement the table may be inclined to a limited angle in either direction, the slot through which the saw projects being enlarged below to admit of this adjustment.
WOODWORKING ATTACHMENTS FOR THE FOOT LATHE.
The back of the table is steadied by a screw which rests upon the back end of the tool rest support, and enters a block attached to the under side of the table. The gauge at the top of the table is used in slitting and for other purposes which will be presently mentioned, and it is adjusted by aid of lines made across the table parallel with the saw.
For the purpose of cross cutting or cutting on a bevel a thin sliding table is fitted to slide upon the main table, and is provided with a gauge which is capable of being adjusted at any desired angle. For cutting slots for panels, etc., thick saws may be used, or the saw may be made to wabble by placing it between two beveled washers, as shown in Fig. 2.
The saw table has an inserted portion, C, held in place by two screws which may be removed when it is desired to use the saw mandrel for carrying a sticker head for planing small strips of moulding or reeding. The head for holding the moulding knives is best made of good tough brass or steam metal. The knives can be made of good saw steel about one-eighth inch thick. They may be filed into shape and afterward tempered. They are slotted and held to their places on the head by means of quarter-inch machine screws. It is not absolutely necessary to use two knives, but when only one is employed a counterbalance should be fastened to the head in place of the other. All kinds of moulding, beading, tonguing, and grooving may be done with this attachment, the gauge being used to guide the edge of the stuff. If the boards are too thin to support themselves against the action of the knives they must be backed up by a thick strip of wood planed true. The speed for this cutter head should be as great as possible.
Fig. 5 shows an attachment to be used in connection with the cutter head and saw table for cutting straight, spiral, or irregular flutes on turned work. It consists of a bar, D, carrying a central fixed arm, and at either end an adjustable arm, the purpose of the latter being to adapt the device to work of different lengths. The arm projecting from the center of the bar, D, supports an arbor having at one end a socket for receiving the twisted iron bar, E, and at the other end a center and a short finger or pin. A metal disk having three spurs, a central aperture, and a series of holes equally distant from the center and from each other, is attached by its spurs to the end of the cylinder to be fluted, and the center of the arbor in the arm, D, enters the central hole in the disk while its finger enters one of the other holes. The opposite end of the cylinder is supported by a center screw. A fork attached to the back of the table embraces the twisted iron, E, so that as the wooden cylinder is moved diagonally over the cutter it is slowly rotated, making a spiral cut. After the first cut is made the finger of the arbor is removed from the disk and placed in an adjoining hole, when the second cut is made, and so on.
Figs. 6 and 7 show a convenient and easily made attachment for moulding the edges of irregular work, such as brackets, frames, parts of patterns, etc. It consists of a brass frame, F, supporting a small mandrel turning at the top in a conical bearing in the frame, and at the bottom upon a conical screw. A very small grooved pulley is fastened to the mandrel and surrounded by a rubber ring which bears against the face plate of the lathe, as shown in the engraving. The frame, F, is let into a wooden table supported by an iron rod which is received by the tool rest holder of the lathe. The cutter, G, is made by turning upon a piece of steel the reverse of the required moulding, and slotting it transversely to form cutting edges. The shank of the cutter is fitted to a hole in the mandrel and secured in place by a small set screw. The edge of the work is permitted to bear against the shank of the cutter. Should the face plate of the lathe be too small to give the required speed, a wooden disk may be attached to it by means of screws and turned off.
Figs. 8, 9, and 10 represent a cheaply and easily made scroll saw attachment for the foot lathe. It is made entirely of wood and is practically noiseless. The board, H, supports two uprights, I, between which is pivoted the arm, J, whose under side is parallel with the edge of the board. A block is placed between the uprights, I, to limit the downward movement of the arm, and the arm is clamped by a bolt which passes through it and through the two uprights and is provided with a wing nut.
A wooden table, secured to the upper edge of the board, H, is perforated to allow the saw to pass through, and is provided with an inserted hardwood strip which supports the back of the saw, and which may be moved forward from time to time and cut off as it becomes worn. The upper guide of the saw consists of a round piece of hard wood inserted in a hole bored in the end of the arm, J. The upper end of the saw is secured in a small steel clamp pivoted in a slot in the end of a wooden spring secured to the top of the arm, J, and the lower end of the saw is secured in a similar clamp pivoted to the end of the wooden spring, K. Fig. 10 is an enlarged view showing the construction of clamp.
The relation of the spring, K, to the board, H, and to the other part is shown in Fig. 9. It is attached to the side of the board and is pressed upward by an adjusting screw near its fixed end.
The saw is driven by a wooden eccentric placed on the saw mandrel shown in Figs. 1 and 2, and the spring, K, always pressed upward against the eccentric by its own elasticity, and it is also drawn in an upward direction by the upper spring. This arrangement insures a continuous contact between the spring, K, and the eccentric, and consequently avoids noise. The friction surfaces of the eccentric and spring may be lubricated with tallow and plumbago. The eccentric may, with advantage, be made of metal.
The tension of the upper spring may be varied by putting under it blocks of different heights, or the screw which holds the back end may be used for this purpose.
The saw is attached to the lathe by means of an iron bent twice at right angles, attached to the board, H, and fitted to the tool rest support. The rear end of the sawing apparatus may be supported by a brace running to the lower part of the lathe or to the floor.
The simple attachments above described will enable the possessor to make many small articles of furniture which he would not undertake without them, and for making models of small patterns they are almost invaluable.
The system of keeping drawings now in use at the works of the Southwark Foundry and Machine Company, in Philadelphia, has been found so satisfactory in its operation that it seems worthy of being communicated to the profession.
The method in common use, and which may be called the natural method, is to devote a separate drawer to the drawings of each machine, or of each group or class of machines. The fundamental idea of this system, and its only one, is, keeping together all drawings relating to the same subject matter.
Every draughtsman is acquainted with its practical working. It is necessary to make the drawing of a machine, and of its separate parts, on sheets of different sizes. The drawer in which all these are kept must be large enough to accommodate the largest sheets. The smaller ones cannot be located in the drawer, and as these find their way to one side or to the back, and several of the smallest lie side by side in one course, any arrangement of the sheets in the drawer is out of the question.
The operation of finding a drawing consists in turning the contents of the drawer all up until it is discovered. In this way the smaller sheets get out of sight or doubled up, and the larger ones are torn. No amount of care can prevent confusion.
Various plans have been adopted in different establishments intended to remedy this state of things, but it is believed that none has been hit upon so convenient, in all respects, as the one now to be presented.
The idea of keeping together drawings relating to the same machine, or of classifying them according to subjects in any way, is entirely abandoned, and in place of these is substituted the plan of keeping together all drawings that are made on sheets of the same size, without regard to the subject of them.
Nine sizes of sheets were settled upon, as sufficient to meet our requirements, and on a sheet that will trim to one of these sizes every drawing must be made. They are distinguished by the first nine letters of the alphabet. Size A is the antiquarian sheet trimmed, and the smaller sizes will cut from this sheet, without waste, as follows:
A, 51×30 in.; B, 37×30 in; C, 25×30 in.; D, 17×30 in.; E 12½×30 in.; F, 8½×30 in.; G, 17×15 in.; H, 8½×15 in.; I, 14×25 in.
A, 51×30 in.; B, 37×30 in; C, 25×30 in.; D, 17×30 in.; E 12½×30 in.; F, 8½×30 in.; G, 17×15 in.; H, 8½×15 in.; I, 14×25 in.
The drawers for the different sizes are made one inch longer and wider than the sheets they are to contain, and are lettered as above. Those of the same size, after the first one, are distinguished by a numeral prefixed to the letter. The back part of each drawer is covered for a width of from six to ten inches, to prevent drawings, and especially tracings, from slipping over at the back.
The introduction of the blue printing process has quite revolutionized the drawing office, so far at least as we are concerned. Our drawings are studies, left in pencil. When we can find nothing more to alter, tracings are made on cloth. These become our originals, and are kept in a fire-proof vault. This system is found admirably adapted to the plan of making a separate drawing for each piece. The whole combined drawing is not generally traced, but the separate pieces are picked out from it. All our working copies are blue prints.
Each drawer contains fifty tracings. They are two and a half inches deep, which is enough to hold several times as many, but this number is quite all that it is convenient to keep together. We would recommend for these shallower drawers.
Each drawing is marked in stencil in the lower right hand corner, and also with inverted plates in the upper left hand corner, with the letter and number of the drawer, and its own number in the drawer, as, for example, 3F—31; so that whichever way the sheet is put in the drawer, this appears at the front right hand corner. The drawings in each drawer are numbered separately, fifty being thus the highest number used.
For reference we depend on our indices. Each tracing, when completed, is entered under its letter in the numerical index, and is given the next consecutive number, and laid in its place.
From this index the title and the number are copied into other indices, under as many different headings as possible.
Thus all the drawings of any engine, or tool, or machine whatever, become assembled by their titles under the heading of such particular engine, or tool, or machine. So also the drawings of any particular part, of all sizes and styles, become assembled by their titles under the name of such piece. However numerous the drawings, and however great the variety of their subjects, the location of any one is, by this means, found as readily as a word in a dictionary. The stencil marks copy, of course, on the blue prints, and these when not in use are kept in the same manner as the tracings, except that only twenty-five are placed in one drawer.
We employ printed classified lists of the separate pieces constituting every steam engine, the manufacture of which is the sole business of these works, and on these, against the name of every piece, is given the drawer and number of the drawing on which it is represented. The office copies of these lists afford an additional mode of reference and a very convenient one, used in practice almost exclusively. The foreman sends for the prints by the stencil marks, and these are thus got directly without reference to any index. They are charged in the same way, and reference to the numerical index gives the title of any missing print.
We find the different sizes to be used quite unequal. The method of making a separate tracing of each piece, which we carry to a great extent, causes the smaller sizes to multiply quite rapidly. We are marking our patterns with the stencil of the drawing of the same piece; and also, gauges, templets, and jigs.
It is found best to permit the sheets to be put away by one person only, who also writes up the indices, which are kept in the fire proof.
We were ourselves surprised at the saving of room which this system has effected. Probably less than one-fourth the space is occupied that the same drawings would require if classified according to subjects.
The system is completely elastic. Work of the most diverse character might be undertaken every day, and the drawings of each article, whether few or many, would find places ready to receive them.
[1]
A Paper by Chas. T Porter, read before the American Society of Mechanical Engineers.
A Paper by Chas. T Porter, read before the American Society of Mechanical Engineers.
ELEVATION.PLAN.ACHARD'S ELECTRIC BRAKE—EASTERN RAILWAY OF FRANCE.
The merits of a brake in which electric apparatus is used, that has been adopted by one large railway company, and is about to be used on the State railways, as well as the fact that arrangements are being made to introduce it in England, demand consideration. It may be that modifications will, under different circumstances, be introduced, or that the system will ultimately be found too cumbersome or too delicate, but before criticism it is necessary to know something of the apparatus. We therefore endeavor to give somewhat in detail the arrangement adopted by M.L. Regray, chief engineer of the Chemin de Fer de l'Est, the electrical system being that of M. Achard. An electro-magnet, A, is suspended on a hinged axis, so that the poles of the magnet have for armatures cylinders of metal fixed upon the axle of the carriage. Suppose now the poles, D D, of the magnet brought into contact with the revolving armatures, the friction between them causes the magnet to revolve. The chain attached to the brake is fixed to the extended axle of the magnet, and consequently when that axle revolves is wound up, bringing the brakes upon the wheels. The friction between the poles and the armature depends upon the strength of the magnet, and this can be regulated at will from a maximum to a minimum. But it will be well to trace the whole action. The electric current may be obtained by means of Planté secondary cells charged by Daniell's cells—in other words, one or two Daniell's cells are constantly in action charging three or six Planté cells, and it is the Planté cells that are called into action to electrify the magnet. The battery is carried in a box in the brake van. The engineers, however, seem to prefer that the current be obtained by means of a small Gramme machine, driven direct by a Brotherhood three-cylinder engine, the steam for which is obtained from the locomotive. The velocity and hence the current of the Gramme machine can be regulated, and so the action of the brakes. M. Achard prefers the Planté cells; he informs us that he has tried the Faure battery, but the results obtained were not satisfactory. The regulator, R², consists of a cylinder of wood around which, as shown, wire is wound. The length of this wire in the circuit, increasing as it does the resistance of the circuit, determines the current to the electro-magnet. The action is as follows: When it is necessary to apply the brakes, a simple pressure of a key or the turn of a handle sends the electric current into the wires of the electro-magnet. An attraction immediately takes place, and the poles and armatures are brought into contact. The friction between these causes the revolution of the magnet, the winding of the chain around the axle, and the application of the brakes. The whole of the brakes of the train enter into action at one and the same time. The brakes are taken off by stopping the current, and a small spring pulls and keeps the magnet from the armatures. A frame—also carriages—fitted with this brake, are shown by the Compagnie des Chemins de Fer de l'Est, which company also shows several other pieces of interesting apparatus, one of which is a carriage fitted with elaborate mechanism, in which electricity plays, perhaps, but a subsidiary part, to obtain the traction of the train under varying circumstances, the pressure on the buffers when stopping, and various phenomena connected with the engine.—The Engineer.
In the consideration of this subject it is not my purpose to review the steps of discovery and development of electrical phenomena, but the object of this paper is an effort to explain what electricity is; and having done this, to deduce some reasonable conclusions as to what may be expected of it. And while I am profoundly sensible of the importance of the subject, and the difficulties attending its consideration, still with humble boldness I present this paper and ask for it a serious and careful consideration, hoping that the discussion and investigation resulting therefrom may add to our knowledge of physical science.
It is now a well established fact that matter,per se, is inert, and that its energy is derived from the physical forces; therefore all chemical and physical phenomena observed in the universe are caused by and due to the operations of the physical forces, and matter, of whatever state or condition it may be in, is but the vehicle through or by which the physical forces operate to produce the phenomena.
There are but two physical forces,i.e., the force of attraction and the force of caloric. The force of attraction is inherent in the matter, and tends to draw the particles together and hold them in a state of rest. The force of caloric accompanies the matter and tends to push the particles outward into a state of activity.
The force of attraction being inherent, it abides in the matter continuously and can neither be increased nor diminished; it, however, is present in different elementary bodies in different degrees, and in compound bodies relative to the elements of which they are composed.
The force of caloric is mobile, and is capable of moving from one portion of matter to another; yet under certain conditions a portion of caloric is occluded in the matter by the force of attraction. That portion of caloric which is occluded (known by the misnomer, latent heat) I shall callstatic caloric, and that portion which is in motion,dynamic caloric.
The force of attraction, as I have said, tends to draw the particles of matter together and hold them in a state of rest; but as this force is inherent, the degree of power thus exerted is in an inverse ratio to the distance of the particles from each other. The effective force so exerted is always balanced by an equivalent amount of the force of caloric, and that modicum of caloric so engaged in balancing the effective force of attraction is static, because occluded in that work.
In solid or fluid bodies, where the molecules are held in a local or near relation to each other, the amount of static caloric will be in direct proportion to the effective force of attraction, but in gaseous bodies the static caloric is in an inverse ratio to the effective force of attraction; hence the amount of static caloric present in solid and fluid bodies will be greatest when the molecules are nearest each other, and greatest in gaseous bodies when the molecules are furthest apart.
Caloric, whether static or dynamic, is not phenomenal; therefore the phenomena of light, temperature, incandescence, luminosity, heat, cold, and motion, as well as all other phenomena, are due to the movement of matter caused by the physical forces. Thus we find thattemperature is a phenomenal measure of molecular velocity, as we consider weight to be the measure of matter.
An increase of temperature denotes an increased molecular velocity, and this in solid and liquid bodies unlocks a portion of the static caloric and converts it into dynamic caloric, while an increased temperature of gases occludes additional caloric, thus converting dynamic into static caloric; and a reduction of molecular activity reverses this action. From this we see that a change of temperature either converts static to dynamic or dynamic to static caloric.
Thus we find that the amount of static caloric which a body possesses is in direct relation to its temperature, but, as I have already explained, temperature is a phenomenal indication of molecular velocity, and as increased velocity separates the molecules to a greater distance, which reduces the effective force of attraction and unlocks a portion of caloric, it will be seen that the separation of the molecules from any other cause will have the same effect. I desire now to explain a second method by which the molecules are separated and static caloric is changed to dynamic caloric.
It is not definitely known how much static caloric is occluded in either of the elementary bodies, but it is believed that hydrogen possesses the greatest amount and oxygen the least. Now if we take a molecule of hydrogen containing two atoms, and under proper conditions interpose these atoms between 16 atoms of oxygen (one molecule), the phenomenon of combustion is exhibited, and a molecule of water is formed containing 18 atoms; and if one pound of hydrogen is thus consumed, the atoms of hydrogen are separated from each other to such a distance by the interposing atoms of oxygen as to unlock 34,662 units C. of static, and convert it into dynamic caloric. And if we thus bring a molecule of carbon containing 12 atoms in contact with a molecule of oxygen of 16 atoms, combustion ensues and a molecule of carbonic oxide of 28 atoms is formed, and if we then present another molecule of oxygen, combustion again takes place, and a molecule of carbonic acid, containing 44 atoms, is produced. Now, in the combustion of one pound of carbon in this manner, when the carbon is converted into carbonic oxide (CO), 2,473 units C. of static is converted into dynamic caloric; and when this CO is converted into carbonic acid (CO2) 5,607 additional units C. are unlocked. Thus by the combustion of one pound of carbon to CO2, 8,080 units C. of static caloric are changed to dynamic caloric.
When caloric is thus unlocked from its occlusion it escapes with great velocity until an equilibrium is attained, and in doing so it pushes the particles of matter out of its path. In solid bodies this produces such a high degree of molecular movement as to exhibit the phenomena of incandescence and luminosity, and in liquids increased mobility, while in gases the molecular activity may be so great as to produce the phenomena of sound and light; and the more rapidly combustion takes place the greater will be the volume and velocity of dynamic caloric escaping therefrom; consequently with a slow combustion, the phenomena produced by dynamic caloric will be different from those exhibited at a high degree.
Combustion, as I have before shown, is merely the oxidation of the material; nothing isconsumednor annihilated, and, the phenomena vary with the velocity of oxidation. Now, if we take one pound of zinc and place it in the acid cell of an electric battery, the oxygen of the acid attacks the zinc and oxide of zinc is formed. In this operation the Zn molecule containing 65 atoms is united with one molecule of oxygen of 16 atoms, forming a molecule of oxide of zinc (ZnO) of 81 atoms; and owing to the comparatively small number of oxygen atoms interposed between the 65 atoms of zinc, only 1,301 units C. of static caloric are unlocked to the pound of zinc, and the velocity of oxidation is so low, and the insulation of the vessel so perfect, that the dynamic caloric is caused to flow outward through the copper wire.
Electricity.—What is it? Why, it is dynamic caloric. Now let us take this oxide of zinc (ZnO) and place it with charcoal in a reducing apparatus which stands on an insulated table; the apparatus is then heated, the carbon vaporizes, and this vapor of carbon (C) robs the oxide of zinc (ZnO) of its oxygen, leaving metallic zinc (Zn) and carbonic oxide (CO). Now, for every pound of zinc so formed 1,301 units C. of static caloric are transferred from the charcoal to the zinc and occluded in it. Hence we find that the 1,301 units C. of caloric which we took out of the zinc, and which we call electricity, is nothing else but the 1,301 units of static caloric which was contained in the charcoal and from it set free by oxidation and transferred to the zinc in the smelting process. Let us follow this matter a little further. Charcoal is made by burning wood under such conditions as eliminate the water and hydrogen and leave the carbon as a residuum which we call charcoal. Thus we find that the caloric contained in the charcoal, transferred from the charcoal to the zinc, and from it developed into what we call electricity, was previously embodied in the wood; and if we study the laws of vegetation, we find that the atmosphere being charged with carbonic acid (CO2), the leaves of plants, shrubs, and trees, breathing, take in the CO2, the sun rays decompose the CO2, set free the oxygen, and supply the necessary amount of caloric for the condensed state of the carbon. Thus we find that the force which we term electricity, developed from the oxidation of zinc, or any other matter, by oxidation, primarily comes from the sun rays.
Coal is generally supposed to be of vegetable origin, and the caloric occluded in it is derived from the same source as that embodied in charcoal. Now when we burn coal under a steam boiler, the carbon and hydrogen are oxidized, and the static caloric set free. A portion of this caloric passes through the shell or tubes of the boilers, and increases the molecular velocity of the water; increased activity of the molecules tends to separate them to a greater distance from each other. When the molecular velocity of the water acquires the degree indicated by a temperature of 212 degrees F., the water passes from the fluid to the gaseous state, and in doing so expands to 1,696 times its bulk. Now if the steam so developed be confined under a pressure of 105 pounds to the square inch, the water will not vaporize until a molecular velocity is attained indicated by a temperature of 312° F. (Spons' "Engineering," D2, page 418), and then the expansion is only 253 times its bulk. By using this steam, in a steam engine, the caloric in the steam tends to push the molecules of which it is composed into an ultimate expansion of 1,696 times the bulk of the water from which it was generated, and this force acts upon the piston and does the work. Thus we see that the steam engine is driven by the same force which produces the phenomena accredited to electricity.
I have already shown that in what we term combustion not a particle of the ponderable matter is annihilated. Combustion is but a phenomenon resulting from a rearrangement of the particles, and so it is with the imponderable physical force caloric; it is not consumed when light and heat are produced, nor converted into power, as we are sometimes told. But whatever the phenomena produced, the aggregate amount of static and dynamic caloric is always and ever the same.
If we consider the Ritter-Plant-Faure-Battery, which is mentioned as storing electricity, we find that the phenomena exhibited by the use of this apparatus are produced by the same factor. The battery is composed of two sheets of lead, which are covered with a layer of minium (Pb3O4). The sheets are laid one upon the other with an intervening layer of felt. The pack is then rolled up in a spiral form and placed in a vessel containing acidulated water. One of the plates is connected with the positive, and the other plate with the negative pole of a battery or generator.
When the current of electricity enters the battery, the Pb3O4on the positive plate is reduced to Pb, and the oxygen so set free attacks the Pb3O4on the negative plate, and oxidizes it to PbO2. In this chemical action, caloric is occluded in the Pb and unlocked in the PbO2, but a much greater amount of caloric is locked up than is unlocked, although the amount of oxygen used in both cases is precisely the same, which has been fully explained in the oxidation of carbon.
Now after the battery has been thus charged and the wires disengaged, the chemical action ceases for want of the reducing agent (dynamic caloric), and the apparatus may be held at rest, or transported to any distance required. When it is desired to utilize the force thus stored, the poles are changed by grounding the positive wire, and attaching the other to the conduit through which the electricity is to flow. The chemical action is thus reversed, and the PbO2is reduced to Pb3O4, the oxygen thus set free attacks the Pb on the other plate, oxidizing it to Pb3O4, thus unlocking all the caloric which was occluded by the first action. In a battery of this kind weighing 75 pounds, we are informed by Sir William Thomson, that one million foot pounds of force may be stored, and again set free for use.
Thus we find that the principle upon which the Faure battery is formed is not new, and the prime factor producing the phenomena is the same as has been shown to have caused all other phenomena referred to, and indeed the principle is the same as now employed by the author in the basic dephosphorizing process,i.e., caloric is occluded in phosphorus by smelting in a blast furnace, and unlocked in the converter, for the purpose of securing the fluidity of the metal during treatment. The difference being, that one is done by non-luminous, while the other is by luminous combustion.
If we consider the phenomenon of light, we find that it is due to the same force. As before stated, when we oxidize carbon, or hydrogen, as in the rapid combustion of wood, oil, or coal, the escaping caloric flies off with such great speed as to cause the molecules in the circumambient medium to assume a velocity which exhibits luminosity. Thus the light produced by burning candles, oil, gas, wood, and coal, is caused by the same prime factor, dynamic caloric.
The force of caloric is imponderable and invisible, and is only known by its effects. We do know that it is occluded in metals and other material, because we can unlock it and set it free, or we can transfer it from one body to another, and by measuring its effects, we can determine its quantity. We know that it prefers to travel over one vehicle more than another, and by this knowledge we are able to insulate it, and thus conduct it in any direction desired. The materials through which it passes with the greatest freedom are called conductors, and the materials which most retard its passage, non-conductors; but these terms must be taken in a comparative sense only, as in fact there are no absolute non-conductors of dynamic caloric, or of what we call electricity.
The dynamo-electric generator simply draws the dynamic caloric from the air or earth, or both, and confines it in an insulated path. Now if that path be a No. 10 wire, the conduit may be sufficient to permit the caloric to pass without increasing the molecular velocity of the metal to an appreciable degree, but if we cut the No. 10 wire and insert a piece of No. 40 platinum wire in the path, the amount of caloric flowing through the No. 10 wire cannot pass through the No. 40 wire, and the resistance so caused increases the molecular velocity of the No. 40 wire to such degree as to exhibit the phenomenon of incandescence, and this is the incandescent electric light. And if we consider the carbon light, we find that the current of caloric, in passing from one pencil to the other, produces a molecular velocity of luminosity in the adjoining atmosphere, and in addition a portion of the carbon is consumed, which sets free an additional amount of caloric, at a very high velocity, hence the intensity of the carbon electric light is largely due to the dynamic caloric unlocked from the pencils, and thus we find that the electric light produced by either method is due to the action of dynamic caloric.
Taking this theory based upon physical science, and the facts which we know pertaining to electricity, I conceive that caloric exists in two conditions.Static caloricis what we calllatent heat, anddynamic caloricis what we callelectricity. Therefore what may we expect of it (electricity) is merely a matter of economy in the development and utilization of dynamic caloric; in other words, can we unlock static caloric by non-luminous combustion, and thus developdynamic caloric as a first powermore economically per foot pound than we now do or can hereafter do by luminous combustion? Second, can we utilize water and wind for the production ofdynamic caloric as a first power? Third, can we utilize the differential tension of dynamic caloric in the earth and the atmosphere asa first power? Fourth, will it pay to use luminous combustion as a first power to generate dynamic caloric asa second power?
Let us take the steam engine, and see what we are now doing by luminous combustion. Good Pittsburg coal contains 87 per cent. of carbon, 5 per cent. of hydrogen, 2 per cent. of oxygen and 6 per cent. of ash; we therefore have in one pound of such coal: