AN ENGLISH RAILWAY FERRY BOAT.

Short diam. rough nut or head=11/2 diam. of bolt + 1/8.Short diam. finished nut or head=11/2 diam. of bolt + 1/16.Thickness rough nut=diameter of bolt.Thickness finished nut=diameter of bolt - 1/16.Thickness rough head=1/2 short diameter.Thickness finished head=diameter of bolt - 1/16.

AN ENGLISH RAILWAY FERRY BOAT.AN ENGLISH RAILWAY FERRY BOAT.

The illustrations above represent a double screw steam ferry boat for transporting railway carriages, vehicles, and passengers, etc., designed and constructed by Messrs. Edwards and Symes, of Cubitt Town, London. The hull is constructed of iron, and is of the following dimensions: Length 60 ft.; beam 16 ft.; over sponsons 25 ft. The vessel was fitted with a propeller, rudder, and steering gear at each end, to enable it to run in either direction without having to turn around. The boat was designed for the purpose of working the train service across the bay of San Juan, in the island of Puerto Rico, and for this purpose a single line of steel rails, of meter gauge, is laid along the center of the deck, and also along the hinged platforms at each end. In the engraving these platforms are shown, one hoisted up, and the other lowered to the level of the deck. When the boat is at one of the landing stages, the platform is lowered to the level of the rails on the pier, and the carriages and trucks are run on to the deck by means of the small hauling engine, which works an endless chain running the whole length of the deck. The trucks, etc., being on board, the platform is raised by means of two compact hand winches worked by worm and worm-wheels in the positions shown; thus these two platforms form the end bulwarks to the boat when crossing the bay. On arriving at the opposite shore the operation is repeated, the other platform is lowered, and the hauling engine runs the trucks, etc., on to the shore. With a load of 25 tons the draught is 4 ft.

The seats shown on the deck are for the convenience of foot passengers, and the whole of the deck is protected from the sun of that tropical climate by a canvas awning. The steering of the vessel is effected from the bridge at the center, which extends from side to side of the vessel, and there are two steering wheels with independent steering gear for each end, with locking gear for the forward rudder when in motion. The man at the wheel communicates with the engineer by means of a speaking tube at the wheel. There is a small deck house for the use of deck stores, on one side of which is the entrance to the engine room. The cross battens, shown between the rails, are for the purpose of horse traffic, when horses are used for hauling the trucks, or for ordinary carts or wagons. The plan below deck shows the arrangement of the bulkheads, with a small windlass at each end for lifting the anchors, and a small hatch at each side for entrance to these compartments. The central compartment contains the machinery, which consists of a pair of compound surface condensing engines, with cylinders 11 in. and 20 in. in diameter; the shafting running the whole length of the vessel, with a propeller at each end. Steam is generated in a steel boiler of locomotive form, so arranged that the funnel passes through the deck at the side of the vessel; and it is designed for a working pressure of 100 lb. per square inch. This boiler also supplies steam for the small hauling engine fixed on the bulkhead. Light to this compartment is obtained by means of large side scuttles along each side of the boat and glass deck lights, and the iron grating at the entrance near the deck house. This boat was constructed in six pieces for shipment, and the whole put together in the builders' yard. The machinery was fixed, and the engine driven by steam from its own boiler, then the whole was marked and taken asunder, and shipped to the West Indies, where it was put together and found to answer the purpose intended.—Engineering.

[ForThe Scientific American.]

As a result of reading the various communications to theScientific AmericanandSupplement, andVan Nostrand's Engineering Magazine, including descriptions of proposed and tested machines, and the reports of the British Aeronautical Society, the writer of the following concludes:

That, as precedents for the construction of a successful flying machine, the investigation of some species of birds as a base of the principles of all is correct only in connection with the species and habits of the bird; that thegeneral mechanical principlesof flight applicable to theoperationof thesame unitof wing inallspecies are alone applicable to the flying machine.

That these principles ofoperationdo not demand the principles ofconstructionof the bird.

That as the wing is in its stroke an arc of a screw propeller's operation, and in its angle a screw propeller blade, its animal operation compels its reciprocation instead of rotation.

That the swifter the wing beat, the more efficient its effect per unit of surface, the greater the load carried, and the swifter the flight.

That the screw action being, in full flight, that of a screw propeller whose axis of rotation forms a slight angle with the vertical, the distance of flight per virtual "revolution" of "screw" wing far exceeds the pitch distance of said "screw."

That consequently a bird's flight answers to an iceboat close hauled; the wingforceanswering to thewind, the wingangleto thesail, the bird'sweightto the leeway fulcrum of theice, and the passage across direction of thewingflop to the freshmoving"inertia" of the wind, both yielding a maximum of force to bird or iceboat.

That the speed ofreciprocationof a fly'swingbeing equivalent to ascrew rotationof 9,000 per minute, proves that ascrewmay be run at this speed without losing efficiency by centrifugal vacuum.

That as theobjectof wing or screw is to mount upon the inertia of the particles of a mobile fluid, and as the rotation of steamship propellers in water—a fluid of many times the inertia of air—isalreadyinexcessof the highest speed heretofore tried in the propellers of moderately successful flying machines, it is plain that the speed employed inwatermust be many times exceeded inair.

That with asufficientspeed of rotation, the supporting power of the inertia of air mustequalthat ofwater.

That as mere speed of rotation of propellershaft, minus blades, must absorb but a small proportion of power of engine, the addition of blades will not cause more resistance than that actually encountered from inertia of air.

That this must be the measure of load lifted.

That withoutslipof screw, the actualpowerexpended, will be little inexcessof that required to support the machine inwater, with a slower rotation of screw.

That in case the samepoweris expended in water or air, the only difference will lie in the sizes and speed of engines or screws.

That thegreaterthe speed, thelessweight of engine, boiler, and screw must be, and the stronger their construction.

That, in consequence, solid metal worked down, instead of bolts and truss work, must be used.

That as the bird wing is a screw in action, and actsdirectlybetween the inertias of the load and the air, the position and operation of the screw, to the load, must imitate it.

That, in consequence, machines having wing planes, drivenagainstone inertia of air by screws acting in the line, of flight against another inertia of air, lose fifty per cent. of useful effect, besides exposing to a head wind the cross section of the stationary screw wing planes and the rotating screw discs; and supporting the dead weight of the wing planes, and having all the screw slip in the line of flight, and carrying slow and heavy engines.

That as a result of these conclusions, the supporting and propelling power should be expressed in the rotation of screws combining both functions, the position of whose planes of rotation to a fixed horizontal line of direction determines the progress and speed of machine upon other lines.

That the whole weight carried by the screws should be at all times exactly below the center of gravity of the plane of support, whether it be horizontal or inclined.

That while thepermanentlypositioned weight, such as the engines, frame, holding screws, etc., may be rigidly connected to or around the screw plane of support, the variable positioned weight, such as the passenger and the car, should be connected by aflexible jointto the said plane of support.

Consequently, the car may oscillate without altering its weight position under center of supporting plane, thus avoiding an involuntary alteration of speed or direction of flight.

That to steer a machine so constructed, it is merely necessaryto move the point of attachment of car tomachineproper, out of the center of plane of support in the desired direction, and thus cause the plane of support or rotation of propellers to incline in that direction.

That the reservoir of power, the boiler, etc., should be placed in thecar, and steam carried to engines through joint connecting car with machine.

That at present material exists, and power also, of sufficient lightness and strength to admit of a machine construction capable of a limited successful flight in any fair wind and direction.

That suchmachineonce built, the finding of apowerfor long flights will be easy, if not already close at hand inelectricity.

That theeasiestdesign for suchactual machineshould be adopted, leaving the adaptation of the principles involved to the making of more perfect machines, to a time after the success of thefirst.

That such design may be a propeller, and its engine at each end of a steel frame tube, supporting tube horizontally, a car to be supported by a universal joint from center of said tube, and the joint apparatus movable along the tube or a short distance transverse to it, to alter position of center of gravity.

That the machine so built might traverse the water as well as air.

Pointers are trained to search for game, and to indicate that they have found the same by standing motionless in front of it, and, when it has been shot, to carry the game to the huntsman. Several kinds of pointers are known, such as smooth, longhaired, and bushyhaired pointers. The smoothhaired pointers are better for hunting on high land, whereas the longhaired or bushyhaired dogs are better for low, marshy countries, crossed by numerous streams, etc. Mylord, the dog represented in the annexed cut taken from theIllustrirte Zeitung, is an excellent specimen of the longhaired pointer, and is owned by Mr. G. Borcher, of Braunschweig, Germany.

THE LONGHAIRED POINTER, "MYLORD."THE LONGHAIRED POINTER, "MYLORD."

The longhaired pointer is generally above the medium size, powerful, somewhat longer than the normal dog, the body is narrower and not quite as round as that of the smoothhaired dog, and the muscles of the shoulders and hind legs are not as well developed and not as prominent. The head and neck are erect, the head being specially long, and the tail is almost horizontal to the middle, and then curves upward slightly. The long hair hangs in wavy lines on both sides of his body. The expression of his face is intelligent, bright, and good-natured, and his step is light and almost noiseless.

The pointer is specially valuable, as it can be employed for many different purposes; he is an excellent dog for the woods, for the woodsman and hunter who uses only one dog for different kinds of game. The intelligence of the German pointer is very great, but he does not develop as rapidly as the English dog, which has been raised for generations for one purpose only. The German pointer hunts very slowly, but surely. It is not difficult to train this dog, but he cannot be trained until he has reached a certain age.

One of the most interesting inquiries relating to the moon is that which deals with the heat she sends us, and the probable temperature of her surface. The problem seems to have been first attacked by Tschirnhausen and La Hire, about 1700; and they both found, that even when the moon's rays were concentrated by the most powerful burning-lenses and mirrors they could obtain, its heat was too small to produce the slightest perceptible effect on the most delicate thermometers then known. For more than a hundred years, this was all that could be made out, though the experiment was often repeated.

It was not until 1831 that Melloni, with his newly-invented "thermopile,"1succeeded in making the lunar heat sensible; and in 1835, taking his apparatus to the top of Vesuvius, he obtained not only perceptible, but measurable, results, getting a deviation of four or five divisions of his galvanometer.

Others repeated the experiment several times between this time and 1856, with more or less success; but, so far as I know, the first quantitative result was that obtained in 1856 by Piazzi Smyth during his Teneriffe expedition. On the top of the mountain, at an elevation of ten thousand feet, he found that the moon's rays affected his thermopile to the same extent as a standard candle ten feet away. Marie Davy has since shown that this corresponds to a heating effect of about 1/1300 of a Centigrade degree.

The subject was resumed in 1868 by Lord Rosse in Ireland; and a long series of observations, running through several years, was made by the aid of his three-foot reflector (not the greatsix-foot instrument, which is too unwieldy for such work). The results of his work have, until very recently, been accepted as authoritative. It should be mentioned that, at about the same time, observations were also made at Paris by Marie Davy and Martin; but they are generally looked upon merely as corroborative of Rosse's work, which was more elaborate and extensive. Rosse considered that his results show that the heat from the moon is mainlyobscure, radiatedheat; thereflectedheat, according to him, being much less in amount.

A moment's thought will show that the moon's heat must consist of two portions. First, there will bereflected solar heat. The amount and character of this will depend in no way upon the temperature of the moon's surface, but solely upon its reflecting power. And it is to be noted that moon-lightis only a part of this reflected radiant energy, differing from the invisible portion of the same merely in having such a wave-length and vibration period as to bring it within the range of perception of the human eye.

The second portion of the heat sent us by the moon is that which she emits on her own account as a warm body—warmed, of course, mainly, if not entirely, by the action of the sun. The amount ofthisheat will depend upon the temperature of the moon's surface and its radiating power; and the temperature will depend upon a number of things (chiefly heat-absorbing power of the surface, and the nature and density of the lunar atmosphere, as well as the supply of heat received from the sun), being determined by a balance between give and take. So long as more heat is received in a second than is thrown off in the same time, the temperature will rise, andvice versa.

It is to be noted, further, that this second component of the moon's thermal radiance must be mainly what is called "obscure" or dark heat, like that from a stove or teakettle, and characterized by the same want of penetrative power. No one knows why at present; but it is a fact that the heat-radiations from bodies at a low temperature—radiations of which the vibrations are relatively slow, and the wave-length great—have no such power of penetrating transparent media as the higher-pitched vibrations which come from incandescent bodies. A great part, therefore, of this contingent of the lunar heat is probably stopped in the upper air, and never reaches the surface of the earth at all.

Now, the thermopile cannot, of course, discriminate directly between the two portions of the lunar heat; but to some extent it does enable us to do so indirectly, since they vary in quite a different way with the moon's age. The simplereflectedheat must follow the same law as moonlight, and come to its maximum at full moon. Theradiatedheat, on the other hand, will reach its maximum when the average temperature of that part of the moon's surface turned toward the earth is highest; and this must be some time after full moon, for the same sort of reasons that make the hottest part of a summer's day come two or three hours after noon.

The conclusion early reached by Lord Rosse was that nearly all the lunar heat belonged to the second category—dark heatradiatedfrom the moon's warmed surface, thereflectedportion being comparatively small—and he estimated that the temperature of the hottest parts of the moon's surface must run as high as 500° F.; well up toward the boiling-point of mercury. Since the lunar day is a whole month long, and there are never any clouds in the lunar sky, it is easy to imagine that along toward two or three o'clock in the lunar afternoon (if I may use the expression), the weather gets pretty hot; for when the sun stands in the lunar sky as it does at Boston at two P.M., it has been shining continuously for more than two hundred hours. On the other hand, the coldest parts of the moon's surface, when the sun has only just risen after a night of three hundred and forty hours, must have a temperature more than a hundred degrees below zero.

Lord Rosse's later observations modified his conclusions, to some extent, showing that he had at first underestimated the percentage of simple reflected heat, but without causing him to make any radical change in his ideas as to the maximum heat of the moon's surface.

For some time, however, there has been a growing skepticism among astronomers, relating not so much to the correctness of his measures as to the computations by which he inferred the high percentage of obscure radiated beat compared with the reflected heat, and so deduced the high temperature of lunar noon.

Professor Langley, who is now engaged in investigating the subject, finds himself compelled to believe that the lunar surface never gets even comfortably warm—because it has no blanket. It receives heat, it is true, from the sun, and probably some twenty-five or thirty per cent. more than the earth, since there are no clouds and no air to absorb a large proportion of the incident rays; but, at the same time, there is nothing to retain the heat, and prevent the radiation into space as soon as the surface begins to warm. We have not yet the data to determine exactly how much the temperature of the lunar rocks would have to be raised above the absolute zero (-273° C. or -459° F.) in order that they might throw off into space as much heat in a second as they would get from the sun in a second. But Professor Langley's observations, made on Mount Whitney at an elevation of fifteen thousand feet, when the barometer stood at seventeen inches (indicating that about fifty-seven per cent. of the air was still above him), showed that rocks exposed to the perpendicular rays of the sun were not heated to any such extent as those at the base of the mountain similarly exposed; and the difference was so great as to make it almost certain that a mass of rock not covered by a reasonably dense atmosphere could never attain a temperature of even 200° or 300° F. under solar radiation, however long continued.

It must, in fact, be considered at present extremely doubtful whether any portion of the moon's surface ever reaches a temperature as high as -100°.

The subject, undoubtedly, needs further investigation, and it is now receiving it. Professor Langley is at work upon it with new and specially constructed apparatus, including a "bolometer" so sensitive that, whereas previous experimenters have thought themselves fortunate if they could get deflections of ten or twelve galvanometric divisions to work with, he easily obtains three or four hundred. We have no time or space here to describe Professor Langley's"bolometer;" it must suffice to say that it seems to stand to the thermopile much as that does to the thermometer. There is good reason to believe that its inventor will be able to advance our knowledge of the subject by a long and important step; and it is no breach of confidence to add that so far, although the research is not near completion yet, everything seems to confirm the belief that the radiated heat of the moon, instead of forming the principal part of the heat we get from her, is relatively almost insignificant, and that the lunar surface now never experiences athawunder any circumstances.

Since the superstition as to the moon's influence upon the wind and weather is so widespread and deep seated, a word on that subject may be in order. In the first place, since the total heat received from the moon, even according to the highest determination (that of Smyth), is not so much as 0.00001 of that received from the sun, and since the only hold the moon has on the earth's weather is through the heat she sends us (I ignore here the utterly insignificant atmospherictide), it follows necessarily that her influencemustbe very trifling. In the next place, all carefully collated observations show that itisso, and not only trifling, but generally absolutely insensible.

For example, different investigators have examined the question of nocturnal cloudiness at the time of full moon, there being a prevalent belief that the full moon "eats up" light clouds. On comparing thirty or forty years' observations at each of several stations (Greenwich. Paris, etc.), it is found that there is no ground for the belief. And so in almost every case of imagined lunar meteorological influence. As to the coincidence of weather changes with changes of the moon, it is enough to say that the idea is absolutely inconsistent with that progressive movement of the "weather" across the country from west to east, with which the Signal Service has now made us all so familiar.

Princeton, April 12, 1884.

[1]

Probably most of our readers know that the thermopile consists of a number of little bars of two different metals, connected in pairs, and having the ends joined in a conducting circuit with a galvanometer. If, now, one set of the junctures is heated more than the other set, a current of electricity will be generated, which will affect the galvanometer. The bars are usually made of bismuth and antimony though iron and German silver answer pretty well. They are commonly about half or three-quarters of an inch long, and about half as large as an ordinary match. The "pile" is made of from fifty to a hundred such bars packed closely, but insulated by thin strips of mica, except just at the soldered junctions. With an instrument of this kind and a very delicate galvanometer, Professor Henry found that the heat from a person's face could be perceived at a distance of several hundred feet. There is however, some doubt whether he was not mistaken in respect to this extreme sensitiveness.

Probably most of our readers know that the thermopile consists of a number of little bars of two different metals, connected in pairs, and having the ends joined in a conducting circuit with a galvanometer. If, now, one set of the junctures is heated more than the other set, a current of electricity will be generated, which will affect the galvanometer. The bars are usually made of bismuth and antimony though iron and German silver answer pretty well. They are commonly about half or three-quarters of an inch long, and about half as large as an ordinary match. The "pile" is made of from fifty to a hundred such bars packed closely, but insulated by thin strips of mica, except just at the soldered junctions. With an instrument of this kind and a very delicate galvanometer, Professor Henry found that the heat from a person's face could be perceived at a distance of several hundred feet. There is however, some doubt whether he was not mistaken in respect to this extreme sensitiveness.

The apple tree borers have destroyed thousands of trees in New England, and are likely to destroy thousands more. There are three kinds of borers which assail the apple tree. The round headed or two striped apple tree borer,Saperda candida, is a native of this country, infesting the native crabs, thorn bushes, and June berry. It was first described by Thomas Say, in 1824, but was probably widely distributed before that. In his "Insects Injurious to Fruit," Prof. Saunders thus describes the borer:

"In its perfect state it is a very handsome beetle, about three-quarters of an inch long, cylindrical in form, of a pale brown color, with two broad, creamy white stripes running the whole length of its body; the face and under surface are hoary white, the antennæ and legs gray. The females are larger than the males, and have shorter antennæ. The beetle makes its appearance during the months of June and July, usually remaining in concealment during the day, and becoming active at dusk. The eggs are deposited late in June and during July, one in a place, on the bark of the tree, near its base. Within two weeks the young worms are hatched, and at once commence with their sharp mandibles to gnaw their way through the outer bark to the interior. It is generally conceded that the larvæ are three years in reaching maturity. The young ones lie for the first year in the sapwood and the inner bark, excavating flat, shallow cavities, about the size of a silver dollar, which are filled with their sawdust-like castings. The holes by which they enter being small are soon filled up, though not until a few grains of castings have fallen from them. Their presence may, however, often be detected in young trees from the bark becoming dark colored, and sometimes dry and dead enough to crack."

On the approach of winter, it descends to the lower part of its burrow, where it remains inactive until spring. The second season it continues its work in the sapwood, and in case two or three are at work in the same tree may completely girdle it, thus destroying it. The third year it penetrates to the heart of the tree, makes an excavation, and awaits its transformation. The fourth spring it comes forth a perfect beetle, and lays its eggs for another generation.

The flat-headed apple tree borer,Chrysobothris femorata, is also a native of this country. It is a very active insect, delights to bask in the hot sunshine; runs up and down the tree with great rapidity, but flies away when molested. It is about half an inch in length. "It is of a flattish, oblong form, and of a shining, greenish black color, each of its wing cases having three raised lines, the outer two interrupted by two impressed transverse spots of brassy color dividing each wing cover into three nearly equal portions. The under side of the body and legs shine like burnished copper; the feet are shining green." This beetle appears in June and July, and does not confine its work to the base of the tree, but attacks the trunk in any part, and sometimes the larger branches. The eggs are deposited in cracks or crevices of the bark, and soon hatch. The young larva eats its way through the bark and sapwood, where it bores broad and flat channels, sometimes girdling and killing the tree. As it approaches maturity, it bores deeper into the tree, working upward, then eats out to the bark, but not quite through the bark, where it changes into a beetle, and then cuts through the bark and emerges to propagate its kind. This insect is sought out when just beneath the bark, and devoured by woodpeckers and insect enemies.

Another borer, the long-horned borer,Leptostylus aculifer, is widely distributed, but is not a common insect, and does not cause much annoyance to the fruit grower. It appears in August, and deposits its eggs upon the trunks of apple trees. The larvæ soon hatch, eat through the bark, and burrow in the outer surface of the wood just under the bark.

The practical point is, What remedies can be used to prevent the ravages of the borers? The usual means of fighting the borers is, to seek after them in the burrows, and try to kill them by digging them out, or by reaching them with a wire. This seems to be the most effectual method of dealing with them after they have once entered the tree, but the orchardist should endeavor to prevent the insects from entering the tree. For this purpose, various washes have been recommended for applying to the tree, either for destroying the young larvæ before they enter the bark, or for preventing the beetles depositing their eggs. It has been found that trees which have been coated with alkaline washes are avoided by beetles when laying their eggs. Prof. Saunders recommends that soft soap be reduced to the consistency of a thick paint, by the addition of a strong solution of washing soda in water, and be applied to the bark of the tree, especially about the base or collar, and also extended upward to the crotches where the main branches have their origin. It should be applied in the evening of a warm day, so that it may dry and form a coating not easily dissolved by the rain. This affords a protection against all three kinds of borers. It should be applied early in June, before the beetles begin to lay their eggs, and again in July, so as to keep the tree well protected.

Hon. T.S. Gold, of Connecticut, at a meeting of the Massachusetts State Board of Agriculture, in regard to preventing the ravages of the borer, said:

"A wash made of soap, tobacco water, and fresh cow manure mingled to the consistency of cream, and put on early with an old broom, and allowed to trickle down about the roots of the tree, has proved with me a very excellent preventive of the ravages of the borer, and a healthful wash for the trunk of the tree, much to be preferred to the application of lime or whitewash, which I have often seen applied, but which I am inclined to think is not as desirable an application as the potash, or the soda, as this mixture of soft soap and manure."

J.B. Moore, of Concord, Mass., at the same meeting said, in regard to the destruction of the borer:

"I have found, I think, that whale oil soap can be used successfully for the destruction of that insect. It is a very simple thing; it will not hurt the tree if you put it on its full strength. You can take whale oil soap and dilute until it is about as thick as paint, and put a coating of it on the tree where the holes are, and I will bet you will never see a borer on that tree until the new crop comes. I feel certain of it, because I have done it."

For borers, tarred paper 1 or 2 feet wide has been recommended to be wrapped about the base of the trunk of the tree, the lower edge being 1 or 2 inches below the surface of the soil. This prevents the two-striped borer from laying its eggs in the tree, but would not be entirely effectual against the flat-headed borer, which attacks any part of the trunk and the branches. By the general use of these means for the prevention of the ravages of the borers, the damages done by these insects could be brought within very narrow limits, and hundreds of valuable apple trees saved.

H. REYNOLDS, M.D.

Livermore Falls, Me.

The apparatus represented in the annexed cut is designed to show the quality of various commercial seeds, and make known any fraudulent adulterations that they may have undergone. It is based upon a direct observation, of the germination of the seeds to be studied.

KEFFEL'S GERMINATING APPARATUS.KEFFEL'S GERMINATING APPARATUS.

The apparatus consists of a cylindrical vessel containing water to the height of 0.07 m. Above the water is a germinating disk containing 100 apertures for the insertion of the seeds to be studied, the germinating end of the latter being directed toward the water. After the seeds are in place the disk is filled with damp sand up to the top of its rim, and the apparatus is closed with a cover which carries in its center a thermometer whose bulb nearly reaches the surface of the water.

The apparatus is then set in a place where the temperature is about 18°, and where there are no currents of air. An accurate result is reached at the end of about twenty or twenty-four hours. As the germinating disk contains 100 apertures for as many seeds, it is only necessary to count the number of seeds that have germinated in order to get the percentage of fresh and stale ones.

The aqueous vapor that continuously moistens all the seeds, under absolutely identical conditions for each, brings about their germination under good conditions for accuracy and comparison. If it be desired to observe the starting of the leaves, it is only necessary to remove the cover after the seeds have germinated.

This ingenious device is certainly capable of rendering services to brewers, distillers, seedsmen, millers, farmers, and gardeners, and it may prove useful to those who have horses to feed, and to amateur gardeners, since it permits of ascertaining the value and quality of seeds of every nature.—La Nature.

The season is now at hand when farmers who have light lands, and who may possibly find themselves short of fodder for next winter feeding, should prepare for a crop of millet. This is a plant that rivals corn for enduring a drought, and for rapid growth. There are three popular varieties now before the public, besides others not yet sufficiently tested for full indorsement—the coarse, light colored millet, with a rough head, Hungarian millet, with a smooth, dark brown head, yielding seeds nearly black, and a newer, light colored, round seeded, and later variety, known as the golden millet.

Hungarian millet has been the popular variety with us for many years, although the light seeded, common millet is but slightly different in appearance or value for cultivation. They grow in a short time, eight weeks being amply sufficient for producing a forage crop, though a couple of weeks more would be required for maturing the seed. Millet should not be sown in early spring, when the weather and ground are both cold. It requires the hot weather of June and July to do well; then it will keep ahead of most weeds, while if sown in April the weeds on foul land would smother it.

Millet needs about two months to grow in, but if sowed late in July it will seem to "hurry up," and make a very respectable showing in less time. We have sown it in August, and obtained a paying crop, but do not recommend it for such late seeding, as there are other plants that will give better satisfaction. Golden millet has been cultivated but a few years in this country, and as yet is but little known, but from a few trials we have been quite favorably impressed with it. It is coarser than the other varieties, but cattle appear to be very fond of it nevertheless. It resembles corn in its growth nearly as much as grass, and, compared with the former, it is fine and soft, and it cures readily, like grass, and may be packed away in hay mows with perfect safety. It is about two weeks later than the other millets, and consequently cannot be grown in quite so short a time, although it may produce as much weight to the acre, in a given period, as either of the other more common varieties. A bushel of seed per acre is not too much for either variety of millet.—N.E. Farmer.

ACataloguecontaining brief notices of many important scientific papers heretofore published in theSupplement, may be had gratis at this office.

PUBLISHED WEEKLY.

Terms of Subscription, $5 a Year.

Sent by mail, postage prepaid, to subscribers in any part of the United States or Canada. Six dollars a year, sent, prepaid, to any foreign country.

All the back numbers ofThe Supplement, from the commencement, January 1, 1876, can be had. Price, 10 cents each.

All the back volumes ofThe Supplementcan likewise be supplied. Two volumes are issued yearly. Price of each volume, $2.50, stitched in paper, or $3.50 bound in stiff covers.

Combined Rates—One copy ofScientific Americanand one copy ofScientific American Supplement, one year, postpaid, $7.00.

A liberal discount to booksellers, news agents, and canvassers.

MUNN & CO., Publishers,

361 Broadway, New York, N.Y.

In connection with theScientific American, Messrs MUNN & Co. are Solicitors of American and Foreign Patents, have had 39 years' experience, and now have the largest establishment in the world. Patents are obtained on the best terms.

A special notice is made in theScientific Americanof all Inventions patented through this Agency, with the name and residence of the Patentee. By the immense circulation thus given, public attention is directed to the merits of the new patent, and sales or introduction often easily effected.

Any person who has made a new discovery or invention can ascertain, free of charge, whether a patent can probably be obtained, by writing to MUNN & Co.

We also send free our Hand Book about the Patent Laws, Patents, Caveats, Trade Marks, their costs, and how procured. Address

MUNN & CO.,361 Broadway, New York.

Branch Office, cor. F and 7th Sts., Washington, D.C.


Back to IndexNext