Sodium chloride 27.059Potassium " 0.766Magnesium " 3.666" bromide 0.029" sulphate 2.296Calcium " 1.406" carbonate 0.033Iodine and ammoniacal salts tracesWater 964.795________1000.000
The chlorides in the--
Irish Sea are about 30 per mille.English Channel are about 31 "Beyond the Eddystone are 32 "
As the requirement for a potable sea water does not arise except in mid-ocean, the proportion of 32 per mille must be taken as the basis of calculation.
This represents as near 20 per mille of chlorine as possible.
From the analysis shown it will be perceived that the chlorides of sodium and magnesium are in great preponderance.
It is to the former of these that the baneful effects of sea water when drunk are to be ascribed, for chloride of sodium or common salt produces thirst probably by its styptic action on the salivary glands, and scurvy by its deleterious action on the blood when taken in excess.
Sodium chloride being the principal noxious element in sea water, and soda in combination with a vegetable or organic acid, such as citric acid, tartaric acid, or malic acid, being innocuous, the conclusion is that the element of evil to be avoided ischlorine.
After describing various experiments, and calling attention to the power of earthy matters in abstracting salts from solutions by which he hoped the process would be perfected, an imperial pint of water from beyond the Eddystone was shown mixed with 960 grains of citrate of silver and 4 grains of the free citric acid.
Each part of the chlorides requires three parts by weight of the silver citrate to throw down the chlorine, thus:
3NaCl + Ag3C6H5O7= Na3.C6H5O7+3AgCl.
The silver chloride formed a dense insoluble precipitate, and the supernatant fluid was decanted and filtered through a rubber tube and handed round as a beverage.
It contained in each fluid ounce by calculation about:
18 grains of citrate of soda.1-1/2 " " magnesia.1/2 " " potash.1 " sulphate of magnesia.1/2 " " lime.1/5 " citric acid.
with less than half a grain of undecomposed chlorides.
To analyze this liquid therapeutically, it may be broadly stated that salts of potash arediuretic, salts of magnesiaaperient, and salts of sodaneutral, except in excessive doses, or in combination with acids of varying medicinal action; thus, soda in nitric acid, nitrate of soda, is adiuretic, following the law of nitrates as nitrate of potash, a most powerful diuretic, nitrous ether, etc.; while soda in combination with sulphuric acid as sulphate of soda isaperient, following the law of sulphates, which increase aperient action, as in sulphate of magnesia, etc.
Thus it would seem that soda holds the scales evenly between potash and magnesia in this medical sense, and that it is weighed, so to speak, on either side by the kind of mineral acid with which it may be combined.
With non-poisonous vegetable acids, and these slightly in excess, there is not such an effect produced.
Sodium is an important constituent of the human body, and citric acid, from its carbon, almost a food. Although no one would advocate saline drinks in excess, yet, under especial circumstances, the solution of it in the form of citrate can hardly be hurtful when used to moisten the throat and tongue, for it will never be used under circumstances where it can be taken in large quantities.
In the converted sea water the bulk of the solids is composed of inert citrate of soda. There is a little citrate of potash, which is a feeble diuretic; a little citrate and sulphate of magnesia, a slight aperient, corrected, however, by the constipatory half grain of sulphate of lime; so that the whole practically is inoperative.
The combination of these salts in nature's proportions would seem to indicate that they must be the best for administration in those ailments to which their use would be beneficial.
Citrate of silver is an almost insoluble salt, and requires to be kept from the light, air, and organic matter, it being very easily decomposed.
A stoppered bottle covered with India-rubber was exhibited as indicating a suitable preserver of the salt, as it affords protection against light, air, and breakage. As one ounce of silver citrate will convert half a pint of sea water into a drinkable fluid, and a man can keep alive upon it a day, then seven ounces of it will keep him a week, and so on, it may not unreasonably be hoped, in proportion.
It is proposed to pack the silver citrate in hermetically sealed rubber covered bottles or tubes, to be inserted under the canisters or thwarts of the life-boats in ocean-going vessels, and this can be done at a simple interest on the first outlay, without any loss by depreciation, as it will always be worth its cost, and be invaluable in case of need.
All wools contain a certain amount of animal oil or grease, which permeates every portion of the fleece. The proportion of oil varies with the breed of sheep. A difference in climate and soil materially affects the yield of oil. This is shown by analyses made of different kinds of wool, both foreign and domestic. Spanish wool was found to have but eight per cent. grease; Australian wool fifteen per cent.; while in some fleeces of Pennsylvania wool as high as forty per cent. was obtained. To extract the oil from the wool, a fleece was put in a tall cylinder and naphtha poured on it. The naphtha on being allowed to drain through slowly dissolved out the grease. This naphtha solution was distilled; the naphtha passing off while grease remained--a dark oil having high specific gravity and remaining nearly solid at the ordinary temperature. I am indebted to Mrs. Richards for this method of extracting the oil. The process is quick and inexpensive, and is applicable to the treatment of large quantities of wool.
The object of these experiments was to find the readiest method of separating wool oil into its bases and acids, and further to identify the various fatty acids. A solution of the oil in naphtha was cooled to 15° C. This caused a separation of the oil into two portions: a white solid fat and a fluid dark oil. The first on examination proved to be a mixture of palmitic and stearic acids existing uncombined in the wool oil. The original wool oil was saponified by boiling with alcoholic potash.
The soap formed was separated into two portions by shaking with ether and water. On standing, the solution separated into two layers, the upper or murial solution containing the bases, the lower or aqueous solution containing the acids. This method of separation is very slow. In one case it worked very well, but as a rule appeared to be almost impracticable. Benzol and naphtha were tried, instead of ether, but the results were less satisfactory. On suggestion of Prof. Ordway, potassium chloride was added to the soap solution partially separated by ether and water. This caused an immediate and complete separation. By the use of potassium chloride it was found possible to effect a separation with benzol and water, also with naphtha and water.
Another means of separation was tried by precipitating the calcium salts, from a solution of the potash soap. From the portion of the calcium salts insoluble in alcohol, a fatty acid was obtained with a melting point and composition almost identical with the melting point and composition of palmitic acid. The aqueous portion of the separation effected by water and ether was examined for the fatty acid. The lead salts of the fatty acids were digested with ether, which dissolved out the lead oleate. From this oleic acid was obtained. This was further purified by forming the Boreum salt of oleic acid. The lead salts not soluble in ether were decomposed by acid. The fatty acids set free were saponified by carbonate of potassium. A fractional precipitation was effected by adding lead acetate in successive portions; each portion sufficient to precipitate one-fourth of all the acids present.
The acid obtained from the first fractionation had the melting point at 75°-76°, indicating an acid either in carbon then stearic or palmitic acids.
The acids obtained from the third fractionation had a melting point of 53°-54° C. This acid in composition and general properties was very similar to that obtained by freezing the naphtha solution of the oil, and is probably a mixture of stearic and palmitic acids. These acids, being in combination with the bases of the oil, would be set free only on saponifying the oil and subsequently decomposing with acid.
In conclusion, I should say that but a small proportion of the fatty acids exist in the wool oil uncombined; that the proportion of oleic acid is small, and can only be obtained in an oxidized condition; that the main portion of the fatty acids is composed of stearic and palmitic acids in nearly equal proportions; that the existence of a fatty acid, containing a higher per cent. of carbon than those mentioned, is not fully established.--N.W. Shedd, M.I.T.
OTTO, BARON V.D. PFORDTEN.--The author makes use of a solution of chromous chloride, which he prepares as follows:
He first heats chromic acid with concentrated hydrochloric acid, so as to obtain a strong green solution of chromic chloride free from chlorine. This is then reduced with zinc and hydrochloric acid. The blue chromous chloride solution thus obtained is poured into a saturated solution of sodium acetate in an atmosphere of carbonic acid. A red precipitate of chromous acetate is formed, which is washed by decantation in water containing carbonic acid. This salt is relatively stable, and can be preserved for an indefinite time in a moist condition in stoppered bottles filled with carbonic acid.
In this process the following precautions are to be observed:
Spongy flocks always separate from the zinc used in the reduction, which float about in the acid liquid for a long time and give off minute gas bubbles. If poured into the solution of sodium acetate, they would contaminate the precipitate; and when dissolved in hydrochloric acid, would occasion a slight escape of hydrogen. The solution of chromous chloride must therefore be freed from the zinc by filtration in the absence of air. For this purpose the reduction is carried on in a flask fitted up like a washing bottle. The long tube is bent down outside the flask, and is here provided with a small bulb tube containing glass wool or asbestos. The hydrogen gas liberated during reduction is at first let escape through this tube; afterward its outer end is closed, and it is pressed down into the liquid. The hydrogen must now pass through the shorter tube (the mouthpiece of the washing bottle), which has an India rubber valve. When the reduction is complete, the blue liquid is driven up in the long tube by introducing carbonic acid through the short tube, so that it filters through the asbestos into the solution of sodium acetate into which the reopened end of the long tube dips. When washing out the red precipitate, at first a little acetic acid is added to dissolve any basic zinc carbonate which has been deposited. In this manner a chromous acetate is obtained perfectly free from zinc.
For the absorption of oxygen the compound just described is decomposed with hydrochloric acid in the following simple washing apparatus: Upon a shelf there are fixed side by side two ordinary preparation glasses, closed with caoutchouc stoppers, each having three perforations. Each two apertures receive the glass tubes used in gas washing bottles, while the third holds a dropping funnel. It is filled with dilute hydrochloric acid, and after the expulsion of the air by a current of gas, plentiful quantities of chromous acetate are passed into the bottles. When the current of gas has been passed in for some time, the hydrochloric acid is let enter, which dissolves the chromous acetate, and thus, in the absence of air, produces a solution of blue chromous chloride. It is advisable to use an excess of chromous acetate or an insufficient quantity of hydrochloric acid, so that there may be no free hydrochloric acid in the liquid. To keep back any free acetic acid which might be swept over by the current of gas, there is introduced after the washing apparatus another washing bottle with sodium carbonate. Also solid potassium carbonate may be used instead of calcium chloride for drying the gas. If the two apertures of the washing apparatus are fitted with small pinch cocks, it is ready for use, and merely requires to be connected with the gas apparatus in action in order to free the gas generated from oxygen. As but little chromous salt is decomposed by the oxygen such a washing apparatus may serve for many experiments.
In this apparatus, which contains but one needle, and has no directing magnet, proportionability between the intensities and deflections is obtained by means of a special form given the frame upon which the wire is wound.
We give herewith a figure of the curve that Mr. Gaiffe has fixed upon after numerous experiments. Upon examination it will be seen that the needle approaches the current in measure as the directing action of the earth increases; and experiment proves that the two actions counterbalance each other, and render the deflections very sensibly proportional to the intensities up to an angle of from 65 to 75 degrees.
Another important fact has likewise been ascertained, and that is that, under such circumstances, the magnetic intensity of the needle may change without the indications ceasing to have the same exactness up to 65 degrees. As well known, Mr. Desains has demonstrated that this occurs likewise in sinus or tangent galvanometers; but these have helices that are very large in proportion to the needle. In medical galvanometers the proportions are no longer the same, and the needle is always very near the directing helix. If this latter is square, or even elliptical, it is found that, beyond an angle of 15 degrees, there are differences of 4 or 5 degrees in the indications given with the same intensity of current by the same needle, according to the latter's intensity of magnetism. This inconvenience is quite grave, for it often happens that a needle changes magnetic intensity, either under the influence of too strong currents sent into the apparatus, or of other magnets in its vicinity, or as a consequence of the bad quality of the steel, etc. It was therefore urgently required that this should be remedied, and from this point of view the new mode of winding the wire is an important improvement introduced into medical galvanometers.--La Lumiere Electrique.
Every one knows that life exists in a latent state in the seeds of plants, and may be preserved therein, so to speak, indefinitely. In 1853, Ridolfi deposited in the Egyptian Museum of Florence a sheaf of wheat that he had obtained from seeds found in a mummy case dating back about 3,000 years. This aptitude of revivification is found to a high degree in animalcules of low order. The air which we breathe is loaded with impalpable dust that awaits, for ages perhaps, proper conditions of heat and moisture to give it an ephemeral life that it will lose and acquire by turns.
In 1707, Spallanzani found it possible, eleven times in succession, to suspend the life of rotifers submitted to desiccation, and to call it back again by moistening this organic dust with water. A few years ago Doyere brought to life some tardigrades that had been dried at a temperature of 150° and kept four weeks in a vacuum. If we ascend the scale of beings, we find analogous phenomena produced by diverse causes. Flies that have been imported in casks of Madeira have been resuscitated in Europe, and chrysalids have been kept in this state for years. Cockchafers drowned, and then dried in the sun, have been revived after a lapse of twenty-four hours, two days, and even five days, after submersion. Frogs, salamanders, and spiders poisoned by curare or nicotine, have returned to life after several days of apparent death.
Cold produces some extraordinary effects. Spallanzani kept several frogs in the center of a lump of ice for two years, and, although they became dry, rigid, almost friable, and gave no external appearance of being alive, it was only necessary to expose them to a gradual and moderate heat to put an end to the lethargic state in which they lay.
Pikes and salamanders have at different epochs been revived before the eyes of Maupertuis and Constant Dumeril (members of the Academy of Sciences) after being frozen stiff. Auguste Dumeril, son of Constant, and who was the reporter of the committee relative to the Blois toad in 1851, published a curious memoir the following year in which he narrates how he interrupted life through congelation of the liquids and solids of the organism. Some frogs, whose internal temperature had been reduced to -2° in an atmosphere of -12°, returned to life before his eyes, and he observed their tissues regain their usual elasticity and their heart pass from absolute immobility to its normal motion.
There is therefore no reason for doubting the assertions of travelers who tell us that the inhabitants of North America and Russia transport fish that are frozen stiff, and bring them to life again by dipping them into water of ordinary temperature ten or fifteen days afterward. But I think too much reliance should not be put in the process devised by the great English physiologist, Hunter, for prolonging the life of man indefinitely by successive freezings. It has been allowed to no one but a romancer, Mr. Edmond About, to be present at this curious operation.
Among the mammifera we find appearances of death in their winter sleep; but these are incomplete, since the temperature of hibernating animals remains greater by one degree than that of the surrounding air, and the motions of the heart and respiration are simply retarded. Dr. Preyer has observed that a hamster sometimes goes five minutes without breathing appreciably after a fortnight's sleep.
In man himself a suspension of life, or at least phenomena that seem inseparable therefrom, has been observed many times. In theJournal des Savantsfor 1741 we read that a Col. Russel, having witnessed the death of his wife, whom he tenderly loved, did not wish her buried, and threatened to kill any one who should attempt to remove the body before he witnessed its decomposition himself. Eight days passed by without the woman giving the slightest sign of life, "when, at a moment when he was holding her hand and shedding tears over her, the church bell began to ring, and, to his indescribable surprise, his wife sat up and said, 'It is the last stroke, we shall be too late.' She recovered."
At a session of the Academy of Sciences, Oct. 17, 1864, Mr. Blaudet communicated a report upon a young woman of thirty summers who, being subject to nervous attacks, fell, after her crises, into a sort of lethargic sleep which lasted several weeks and sometimes several months. One of her sleeps, especially, lasted from the beginning of the year 1862 until March, 1863.
Dr. Paul Levasseur relates that, in a certain English family, lethargy seemed to have become hereditary. The first case was exhibited in an old lady who remained for fifteen days in an immovable and insensible state, and who afterward, on regaining her consciousness, lived for quite a long time. Warned by this fact, the family preserved a young man for several weeks who appeared to be dead, but who came to life again.
Dr. Pfendler, in an inaugural thesis (Paris, 1833), minutely describes a case of apparent death of which he himself was a witness. A young girl of Vienna at the age of 15 was attacked by a nervous affection that brought on violent crises followed by lethargic states which lasted three or four days. After a time she became so exhausted that the first physicians of the city declared that there was no more hope. It was not long, in fact, before she was observed to rise in her bed and fall back as if struck with death. "For four hours she appeared to me," says Dr. Pfendler, "completely inanimate. With Messrs. Franck and Schaeffer, I made every possible effort to rekindle the spark of life. Neither mirror, nor burned feather, nor ammonia, nor pricking succeeded in giving us a sign of sensibility. Galvanism was tried without the patient showing any contractility. Mr. Franck believed her to be dead, but nevertheless advised me to leave her on the bed. For twenty-eight hours no change supervened, although it was thought that a little putrefaction was observed. The death bell was sounded, the friends of the girl had dressed her in white and had crowned her with flowers, and all was arranged for her burial. Desiring to convince myself of the course of the putrefaction, I visited the body again, and found that no further advance had been made than before. What was my astonishment when I believed that I saw a slight respiratory motion. I looked again, and saw that I was not mistaken. I at once used friction and irritants, and in an hour and a half the respiration increased. The patient opened her eyes, and, struck with the funereal paraphernalia around her, returned to consciousness, and said, 'I am too young to die.'" All this was followed by a ten hours' sleep. Convalescence proceeded rapidly, and the girl became free from all her nervous troubles. During her crisis she heard everything. She quoted some Latin words that Mr. Franck had used. Her most fearful agony had been to hear the preparations for her burial without being able to get rid of her torpor. Medical dictionaries are full of anecdotes of this nature, but I shall cite but two more.
On the 10th of November, 1812, during the fatal retreat from Russia, Commandant Tascher, desiring to bring back to France the body of his general, who had been killed by a bullet, and who had been buried since the day before, disinterred him, and, upon putting him into a landau, and noticing that he was still breathing, brought him to life again by dint of care. A long time afterward this same general was one of the pall bearers at the funeral obsequies of the aide-de-camp who had buried him. In 1826 a young priest returned to life at the moment the bishop of the diocese was pronouncing theDe Profundisover his body. Forty years afterward, this priest, who had become Cardinal Donnett, preached a feeling sermon upon the danger of premature burial.
I trust I have now sufficiently prepared the mind of the reader for an examination of the phenomena of the voluntary suspension of life that I shall now treat of.
The body of an animal may be compared to a machine that converts the food that it receives into motion. It receives nothing, it will produce nothing; but there is no reason why it should get out of order if it is not deteriorated by external agents. The legendary rustic who wanted to accustom his ass to go without food was therefore theoretically wrong only because he at the same time wanted the animal to work. The whole difficulty consists in breaking with old habits. To return to the comparison that we just made, we shall run the risk of exploding the boiler of a steam engine if we heat it or cool it abruptly, but we can run it very slowly and for a very long time with but very little fuel. We may even preserve a little fire under the ashes, and this, although it may not be capable of setting the parts running, will suffice later on to revivify the fireplace after it has been charged anew with fuel.
We have recently had the example of Dr. Tanner, who went forty days without any other nourishment than water. Not very long ago Liedovine de Schiedam, who had been bedridden for twenty years, affirmed that she had taken no food for eight of them. It is said that Saint Catharine of Sienna gradually accustomed herself to do without food, and that she lived twenty years in total abstinence. We know of several examples of prolonged sleep during which the sleeper naturally took no nourishment. In his Magic Disquisitions, Delvis cites the case of a countryman who slept for an entire autumn and winter. Pfendler relates that a certain young and hysterical woman fell twice into a deep slumber which each time lasted six months. In 1883 anenceintewoman was found asleep on a bench in the Grand Armee Avenue. She was taken to the Beaujon Hospital, where she was delivered a few days after while still asleep, and it was not till the end of three months that she could be awakened from her lethargy. At this very moment, at Tremeille, a woman named Marguerite Bouyenvalle is sleeping a sleep that has lasted nearly a year, during which the only food that she has had is a few drops of soup daily.
What is more remarkable, Dr. Fournier says in his Dictionary of Medical Sciences that he knew of a distinguished writer at Paris, who sometimes went for months at a time without taking anything but emollient drinks, while at the same time living along like other people.
Respiration is certainly more necessary to life than food is; but it is not absolutely indispensable, as we have seen in the cases of apparent death cited in our previous article. It is possible, through exercise, for a person to accustom himself, up to a certain point, to abstinence from air as he can from food. Those who dive for pearls, corals, or sponges succeed in remaining from two to three minutes under water. Miss Lurline, who exhibited in Paris in 1882, remained two and a half minutes beneath the water of her aquarium without breathing. In his treatise De la Nature, Henri de Rochas, physician to Louis XIII., gives six minutes as the maximum length of time that can elapse between successive inspirations of air. It is probable that this figure was based upon an observation of hibernating animals.
In his Encyclopedic Dictionary, Dr. Dechambre relates the history of a Hindoo who hid himself in the waters of the Ganges where women were bathing, seized one of them by the legs, drowned her, and then removed her jewels. Her disappearance was attributed to crocodiles. One woman who succeeded in escaping him denounced the assassin, who was seized and hanged in 1817.
A well known case, is that of Col. Townshend, who possessed the remarkable faculty of stopping at will not only his respiration, but also the beating of his heart. He performed the experiment one day in the presence of Surgeon Gosch, who cared for him in his old age, two physicians, and his apothecary, Mr. Shrine. In their presence, says Gosch, the Colonel lay upon his back, Dr. Cheyne watched his pulse, Dr. Baynard put his hand upon his heart, and Mr. Shrine held a mirror to his mouth. After a few seconds no pulse, movement of the heart, or respiration could be observed. At the end of half an hour, as the spectators were beginning to get frightened, they observed the functions progressively resuming their course, and the Colonel came back to life.
The fakirs of India habituate themselves to abstinence from air, either by introducing into the nostrils strings that come out through the mouth, or by dwelling in subterranean cells that air and light never enter except through narrow crevices that are sometimes filled with clay. Here they remain seated in profound silence, for hours at a time, without any other motion than that of the fingers as the latter slowly take beads from a chaplet, the mind absorbed by the mental pronunciation of OM (the holy triune name), which they must repeat incessantly while endeavoring to breathe as little as possible. They gradually lengthen the intervals between their inspirations and expirations, until, in three or four months, they succeed in making them an hour and a half. This is not the ideal, for one of their sacred books says, in speaking of a saint: "At the fourth month he no longer takes any food but air, and that only every twelve days, and, master of his respiration he embraces God in his thought. At the fifth he stands as still as a pole; he no longer sees anything but Baghavat, and God touches his cheek to bring him out of his ecstasy."
It will be conceived that by submitting themselves to such gymnastics from infancy, certain men, already predisposed by atavism or a peculiar conformation, might succeed in doing things that would seem impossible to the common run of mortals. Do we not daily see acrobats remaining head downward for a length of time that would suffice to kill 99 per cent, of their spectators through congestion if they were to place themselves in the same posture? Can the savage who laboriously learns to spell, letter by letter, comprehend how many people get the general sense of an entire page at a single glance?
There is no reason, then,a priori, for assigning to the domain of legerdemain the astonishing facts that are told us by a large number of witnesses, worthy of credence, regarding a young fakir who, forty years ago, was accustomed to allow himself to be buried, and resuscitated several months afterward.
An English officer, Mr. Osborne, gives the following account of one of these operations, which took place in 1838 at the camp of King Randjet Singh:
"After a few preparations, which lasted some days, and that it would prove repugnant to enumerate, the fakir declared himself ready to undergo the ordeal. The Maharajah, the Sikhs chiefs, and Gen. Ventura, assembled near a masonry tomb that had been constructed expressly to receive him. Before their eyes, the fakir closed with wax all the apertures in his body (except his mouth) that could give entrance to air. Then, having taken off the clothing that he had on, he was enveloped in a canvas sack, and, according to his wish, his tongue was turned back in such a way as to close the entrance to his windpipe. Immediately after this he fell into a sort of trance. The bag that held him was closed and a seal was put upon it by the Maharajah. The bag was then put into a wooden box, which was fastened by a padlock, sealed, and let down into the tomb. A large quantity of earth was thrown into the hole and rammed down, and then barley was sown on the surface and sentinels placed around with orders to watch day and night.
"Despite all such precautions, the Maharajah had his doubts; so he came twice in the space of ten months (the time during which the fakir was buried), and had the tomb opened in his presence. The fakir was in the bag into which he had been put, cold and inanimate. The ten months having expired, he was disinterred, Gen. Ventura and Capt. Ward saw the padlock removed, the seals broken, and the box taken from the tomb. The fakir was taken out, and no pulsation either at the heart or pulse indicated the presence of life. As a first measure for reviving him, a person introduced a finger gently into his mouth and placed his tongue in its natural position. The top of his head was the only place where there was any perceptible heat. By slowly pouring warm water over his body, signs of life were gradually obtained, and after about two hours of care the patient got up and began to walk.
"This truly extraordinary man says that during his burial he has delightful dreams, but that the moment of awakening is always very painful to him. Before returning to a consciousness of his existence he experiences vertigoes. His nails and hair cease to grow. His only fear is that he may be harmed by worms and insects, and it is to protect himself from these that he has the box suspended in the center of the tomb."
This sketch was published in theMagasin Pittoresquein 1842 by a writer who had just seen Gen. Ventura in Paris, and had obtained from him a complete confirmation of the story told by Capt. Wade.
Another English officer, Mr. Boileau, in a work published in 1840, and Dr. MacGregor, in his medical topography of Lodhiana, narrate two analogous exhumations that they separately witnessed. The question therefore merits serious examination.--A. de Rochas, in La Nature.
Some experiments recently made by M. Olszewsky appear to show that liquid oxygen is one of the best of refrigerants. He found that when liquefied oxygen was allowed to vaporize under the pressure of one atmosphere, a temperature as low as -181.4° C. was produced. The temperature fell still further when the pressure on the liquid oxygen was reduced to nine millimeters of mercury. Though the pressure was reduced still further to four millimeters of mercury, yet the oxygen remained liquid. Liquefied nitrogen, when allowed to evaporate under a pressure of sixty millimeters of mercury, gave a temperature of -214° C., only the surface of the liquid gas became opaque from incipient solidification. Under lower pressures the nitrogen solidified, and temperatures as low as -225° C. were recorded by the hydrogen thermometer. The lowest temperature obtained by allowing liquefied carbonic oxide to vaporize was -220.5° C.
.
Cnovallaria Majalis is a stemless perennial plant, found in both the eastern and western hemispheres, with two elliptic leaves and a one-sided raceme bearing eight or ten bell-shaped flowers. The flowers are fragrant, and perfumes called "Lily of the Valley" are among the popular odors.
Both leaves and flowers have been used in medicine, but the rhizome is the part most frequently used.
CONVALLARIA.
CONVALLARIA.
The fresh rhizome is a creeping, branching rhizome of a pale yellowish white color, which, on drying, darkens to a straw color, or even a brown in places. When dry it is about the thickness of a thick knitting needle, swelling to the thickness of a quill when soaked in water. It is of uniform thickness, except near the leaf-bearing ends, which are thicker marked with numerous leafscars, or bare buds covered with scales, and often having attached the tattered remains of former leaves. Fig. A shows a portion of rhizome, natural size, and Fig. B shows another piece enlarged to double linear size.
The internodes are smooth, the rootlets being attached at the nodes. The rootlets are filiform, and darker in color.
The rhizome is covered by an epidermis, composed of muriform cells of a bright yellow color, after having been treated with liquor potassæ to clear up the tissues. These cells are shown in Fig. G. An examination of the transverse section shows us the endogenous structure, as we find it also in various other drugs (sarsaparilla, etc.), namely, a nucleus sheath, inclosing the fibrovascular bundles and pith, and surrounded by a peri-ligneous or peri-nuclear portion, consisting of soft-walled parenchyma cells, loosely arranged with many small, irregularly triangular, intercellular spaces in the tranverse section. Some of these cells contain bundles of raphides (Fig. 2), one of which bundles is shown crushed in Fig. J. Sometimes these crystals are coarser and less needle-like, as in Fig. K. Fig. C shows a transverse section through the leaf-bearing portion of the rhizome (at a), and is rather irregular on account of the fibrovascular bundles diverging into the base of the leaves of flower-stalks. A more regular appearance is seen in Fig. D, which is a section through the internode (b). In it we see the nuclear sheath, varying in width from one to three cells, and inclosing a number of crescent-shaped fibrovascular bundles, with their convexities toward the center and their horns toward the nuclear sheath. There are also from two to four or five free closed fibrovascular bundles in the central pith.
These fibrovascular bundles consist mainly of dotted or reticulated ducts (Fig. F), but all gradations from, this to the spiroids, or even true spiral ducts (Fig. E). may be found, though the annular and spiral ducts are quite rare. These ducts are often prismatically compressed by each other. The fibrovascular bundles also contain soft-walled prosenchyma cells. The peri-nuclear portion consists of soft-walled parenchyma, smaller near the nuclear sheath and the epidermis, and larger about midway between, and of the same character as the cells of the pith. In longitudinal section they appear rectangular, similar to the walls of the epidermis (G), but with thinner walls.
All parts of the plant have been used in medicine, either separately or together, and according to some authorities the whole flowering plant is the best form in which to use this drug.
The active principles areconvallaraminandconvallarin.
It is considered to act similarly to digitalis as a heart-stimulant, especially when the failure of the heart's action is due to mechanical impediments rather than to organic degeneration. It is best given in the form of fluid extract in the dose of 1 to 5 cubic centimeters (15 to 75 minims), commencing with the smaller doses, and increasing, if necessary, according to the effects produced in each individual case.--The Pharmacist.
During my visit to the Southern States of America, I have had several opportunities of watching, under favorable conditions, the flight of the buzzard, the scavenger of Southern cities. Although in most respect this bird's manner of flight resembles that of the various sea-birds which I have often watched for hours sailing steadily after ocean steamships, yet, being a land bird, the buzzard is more apt to give examples of that kind of flight in which a bird remains long over the same place. Instead of sailing steadily on upon outstretched pinions, the buzzard often ascends in a series of spirals, or descends along a similar course. I have not been able to time the continuance of the longest flights during which the wings have not once been flapped, for the simple reason that, in every case where I have attempted to do so, the bird has passed out of view either by upward or horizontal traveling. But I am satisfied that in many cases the bird sweeps onward or about on unflapping wings for more than half an hour.
Now, many treat this problem of aerial flotation as if it were of the nature of a miracle--something not to be explained. Explanations which have been advanced have, it is true, been in many cases altogether untenable. For instance, some have asserted that the albatross, the condor, and other birds which float for a long time without moving their wings--and that, too, in some cases, at great heights above the sea-level, where the air is very thin--are supported by some gas within the hollow parts of their bones, as the balloon is supported by the hydrogen within it. The answer to this is that a balloon isnotsupported by the hydrogen within it, but by the surrounding air, and in just such degree as the air is displaced by the lighter gas. The air around a bird is only displaced by the bird's volume, and the pressure of the air corresponding to this displacement is not equivalent to more than one five-hundredth part of the bird's weight. Another idea is that when a bird seems to be floating on unmoving wings there is really a rapid fluttering of the feathers of the wings, by which a sustaining power is obtained. But no one who knows anything of the anatomy of the bird will adopt this idea for an instant, and no one who has ever watched with a good field-glass a floating bird of the albatross or buzzard kind will suppose they are fluttering their feathers in this way, even though he should be utterly ignorant of the anatomy of the wings. Moreover, any one acquainted with the laws of dynamics will know that there would be tremendous loss of power in the fluttering movement imagined as compared with the effect of sweeping downward and backward the whole of each wing.
There is only one possible way of explaining the floating power of birds, and that is by associating it with the rapid motion acquired originally by wing flapping, and afterward husbanded, so to speak, by absolutely perfect adjustment and balancing. To this the answer is often advanced that it implies ignorance of the laws of dynamics to suppose that rapid advance can affect the rate of falling, as is implied by the theory that it enables the bird to float.
Now, as a matter of fact, a slight slope of the wings would undoubtedly produce a raising power, and so an answer is at one obtained to this objection. But I venture to assert, with the utmost confidence, that a perfectly horizontal plane, advancing swiftly in a horizontal direction at first, will not sink as quickly, or anything like as quickly, as a similar plane let fall from a position of rest. A cannon-ball, rushing horizontally from the mouth of a cannon, begins to fall just as if it were simply dropped. But the case of a horizontal plane is altogether different. If rapidly advancing, it passes continually over still air; if simply let fall, the air beneath it yields, and presently currents are set up which facilitate the descent of the flat body; but there is no time to set up these aerial movements as the flat body passes rapidly over still air.
As a matter of fact, we know that this difference exists, from the difference in the observed behavior of a flat card set flying horizontally through the air and a similar card held horizontally and then allowed to fall.
I believe the whole mystery of aerial flotation lies here, and that as soon as aerial floating machines are planned on this system, it will be found that the problem of aerial transit--though presenting still many difficulties of detail--is, nevertheless, perfectly soluble.--R.A. Proctor, in Newcastle Weekly Chronicle.
There was exhibited at the last meeting of the Numismatic and Antiquarian Society, in Philadelphia, on May 7, an object of great interest to archæologists, with which, saysThe Church, is also connected a very curious history.
It appears that about forty years ago a young American minister, Rev. W.F. Williams, went as a missionary to Syria, and he visited among places of interest the site of ancient Nineveh about the time that Austin Henry Layard was making his famous explorations and discoveries; he wrote to a friend in Philadelphia that he had secured for him a fine piece of Assyrian sculpture from one of the recently opened temples or palaces, representing a life size figure of a king, clad in royal robes, bearing in one hand a basket and in the other a fir cone. One portion of the stone was covered with hieroglyphics, and was as sharply cut as though it had been carved by a modern hand instead of by an artist who was sleeping in his grave when Nebuchadnezzar, King of Babylon, was yet an infant.
The letter describing this treasure arrived duly, but the stones did not come. It appears that the caravan bringing them down to Alexandretta, from whence they were to be shipped to Philadelphia, was attacked by robbers, and the sculptured stones were thrown upon the desert as useless, and there they remained for some years. Finally they were recovered, shipped to this country (about twenty-five years ago), and arriving at their destination during the absence of the consignee, were deposited temporarily in a subterranean storeroom at his manufactory. In some way they were overlooked, and here they have remained unopened until they were rediscovered a few days ago; meanwhile the missionary and his friend have both passed away, ignorant of the fact that the rare gift had finally reached its destination and had become again lost.
The cuneiform inscription is now being translated by an Assyrian scholar (Rev. Dr. J.P. Peters, of the Divinity School), and its identity is established; it came from the temple of King Assur-nazir-pal, a famous conqueror who reigned from 883 to 859 B.C.
The slab was cut into three sections, 3x3½ feet each, for convenience of transportation, and they have been somewhat broken on the journey; fortunately, however, this does not obliterate the writing.
Mr. Tolcott Williams, a son of the late missionary, was present at the meeting of the Society, and gave an interesting account of the classic ground from which the slab was obtained. It was one of a number lining the walls of the palace of Assur-nazir-pal. The inscriptions, as translated by Dr. Peters, indicate that this particular slab was carved during the first portion of this king's reign, and some conception of its great antiquity may be gained when it is stated that he was a contemporary of Ahab and Jehosaphat; he was born not more than a century later than Solomon, and he reigned three centuries before Nebuchadnezzar, King of Babylon. After the slabs were procured, it was necessary to send them on the backs of camels a journey of eight hundred miles across the Great Desert, through a region which was more or less infested at all seasons with roving bands of robbers. Mr. Williams well remembered the interview between his father and the Arab camel owner, who told several conflicting stories by way of preliminary to the confession of the actual facts, in order to account for the non-arrival of the stones at Alexandretta, the sea coast town from whence they were to be shipped to Philadelphia.
Mr. A.E. Outerbridge, Jr., gave a brief account of the finding of these stones in the subterranean storeroom where they had reposed for a period of a quarter of a century. The space between the slabs and the boxes had been packed with camels' hair, which had in progress of time become eaten by insects and reduced to a fine powder. The nails with which the cases were fastened were remarkable both for their peculiar shape and for the extraordinary toughness of the iron, far excelling in this respect the wrought iron made in America to day.
The Rev. Dr. J.P. Peters gave a very instructive exposition of the chronology of the kings of Assyria, their social and religious customs and ceremonies, their methods of warfare, their systems of architecture, etc. He stated that the finest Assyrian bass-reliefs in the British Museum came from the same palace as this specimen, the carving of which is not excelled by any period of the ancient glyptic art. The particular piece of alabaster selected by the artist for this slab was unusually fine, being mottled with nodules of crystallized gypsum.
The cuneiform inscription is not unlike the Hebrew in its character, resembling it about as closely as the Yorkshire dialect resembles good English. The characters are so large and clearly cut that it is a pleasure to read them after the laborious scrutiny of the minute Babylonish clay tablets. The inscription on this slab is identical with a portion of that of the great "Standard Monolith," on which this king subsequently caused to be transcribed the pages, as it were, from the different slabs which were apparently cut at intervals in his reign.
Translation of a Portion of the Cuneiform, Inscription.--"The palace of Assur-nazir-pal, servant of Assur, servant of the god Beltis, the god Ninit, the shining one of Anu and Dagon, servant of the Great Gods, Mighty King, king of hosts, king of the land of Assyria; son of Bin-nirari, a strong warrior, who in the service of Assur his Lord marched vigorously among the princes of the four regions, who had no equal, a mighty leader who had no rival, a king subduing all disobedient to him; who rules multitudes of men; crushing all his foes, even the masses of the rebels.... The city of Calah, which my predecessor, Shalmanezer, King of Assyria had built had fallen into decay: His city I rebuilt; a palace of cedar, box, cypress, for the seat of my royalty, for the fullness of my princedom, to endure for generations, I placed upon it. With plates of copper I roofed it, I hung in its gates folding doors of cedar wood, silver, gold, copper, and iron which my hands had acquired in the lands which I ruled, I gathered in great quantities, and placed them in the midst thereof." O.
To those interested in the electro deposition of nickel upon zinc, the formula given below for a solution and a brief explanation of its use will be of service.
The first sample of this solution was made as an experiment to see what substances could be added to a solution of the double sulphate of nickel and ammonium without spoiling it.
In addition to several other combinations and mixtures of solutions from which I succeeded in obtaining a good deposit, I found that the solution here given would plate almost anything I put into it, and worked especially well upon zinc. In its use no "scraping" or rescouring or any of the many operations which I have seen recommended for zinc needs be resorted to, as the metal "strikes" at once and is deposited in a continuous adherent film of reguline metal, and can be laid on as heavily as nickel is deposited generally.
I believe that the addition of the ammonium chloride simply reduces the resistance of the double sulphate solution, but the office of the potassium chloride is not so easily explained. At least, I have never been able to explain it satisfactorily to myself. It is certain, however, that the solution does not work as well without it, nor does the addition of ammonium chloride in its stead give as fine a result.
Some care is necessary in the management of the current, which should have a density of about 17 amperes per square foot of surface--not much above or below. This may seem a high figure, especially when it is discovered that there is a considerable evolution of gas during the operation.
I have repeatedly used this solution for coating articles of zinc, and always with good success. I have exhibited samples of zinc plated in this solution to those conversant with the deposition of nickel, and they have expressed surprise at the appearance of the work. Some strips of sheet-zinc in my possession have been bent and cut into every conceivable shape without a sign of fracture or curling up at the edges of the nickel coating.
The solution is composed of--