ELEMENTS OF ARCHITECTURAL DESIGN.1

Fig. 2Fig.2

During the process of hooping guns it is very important to know how to take into account the value and mode of distribution of the prejudicial stresses in the inner tube, should such exist. Knowing these stresses, it is possible, by regulating the tension of the hoops, to reduce the compression of the metal at the surface of the bore to the proper extent, thus doing away with the previously existing tension, and by that means removing a source of weakness in the tube. In precisely the same way in the shrinkage of gun hoops attention must be paid to the character and value of the stresses which arise in the course of their manufacture; otherwise it will be impossible to hoop the barrel throughout in a proper manner. If prejudicial stresses exist in the metal of a hoop before it is put in its place, then, when the gun is fired, if it had been shrunk on with the degree of tension usually allowed, the layer situated in the internal radius will be extended beyond admissible limits, thereby causing the resistance of the gun to be less than that prescribed.4

It is evident, from what has been said, that in order to determine precisely the resistance of hollow cylinders to internal pressures, and to make the correct calculations for hooping tubes, it is absolutely necessary to know whether internal initial stresses exist in the tube and in the hoops, and to ascertain what their nature and intensity may be—that is to say, whether they are useful or detrimental; yet it is incontestable that in the construction of modern ordnance no attention has been paid to the investigations indicated. If it be possible to ignore these considerations in the manufacture of guns of small caliber, and where the thickness of metal is not sufficiently great to admit of strongly developed internal stresses, such is by no means the case with the colossal and costly weapons of the present day. In these the thickness of metal in the tube and hoops is very great; hence the extreme probability of very considerable internal stresses developing themselves. That the strength of large guns is often far below that anticipated is demonstrated, year by year, by the repeated cases of failure. Consciousness as to the want of strength in such guns is made evident by the precautionary measures as to their use everywhere adopted. The heavy artillery produced in the gun factories of Europe is constructed with all the skill, science, and experience which engineers and artillerists can command, and therefore it would seem that instances of defective strength should not arise. Such cases, however, do occur everywhere, and irresistibly give rise to the suspicion that not only is the system of construction of guns of large caliber faulty, but also that the conditions of their manufacture must be considered as defective. Bearing in mind the enormous sums of money expended by every nation in order to secure an armament of completely trustworthy guns, this question demands speedy and searching investigation. The first step in this direction is the study of the internal stresses inherent in the metal; because, if such exist, and are capable of attaining, under certain conditions, considerable magnitudes, then it is absolutely necessary to take advantage of them in order to increase the resistance of the metal, instead of allowing them to act to its detriment.

The study of natural internal stresses is of importance, not only with reference to gun making, but also in respect of other structures where great resistance is required. All have heard of the sudden failure of crank shafts and piston rods, of the bursting of boiler shells and tubes, of the breaking of tires, etc. In the majority of cases the investigations into the causes of such sudden failures have not led to any definite results. It has usually been found that the metal possessed a satisfactory elastic resistance, and satisfied all the conditions set down in the specifications. Had attention been paid during these investigations to the state of the internal stresses in the metal, the cause of unlooked-for accidents might have been explained, and steps would consequently have been taken to avoid them in future.

We are also familiar with the development of considerable internal stresses in various kinds of steel articles which are subjected to hardening and tempering; for example, as dies, tools of various description, sword blades, and thin plates rolled at a low temperature or subjected to cold hammering. In the foundry the appearance of internal stresses is of still more frequent occurrence. The neglect of certain practical rules in casting, and during the subsequent cooling, leads to the spontaneous breakage of castings after a few hours or days, although taken out of the sand apparently perfectly sound. Projectiles for penetrating armor plate, and made of cast steel, as well as shells which have been forged and hardened, and in which the metal possessed an ultimate resistance of over twelve thousand (12,000) atmospheres, with an elastic limit of more than six or seven thousand atmospheres, will crack to a serious extent, and even break up in the lathe, while the recess for the copper ring is being turned out. In shell of this nature, as well as in chilled cast iron shell, the heads are apt to fly off spontaneously either while they are lying in store or during transport. Such phenomena, it seems to me, demonstrate the existence of internal stresses of considerable magnitude in the metal of the projectiles, and it is highly probable that the manufacture of many articles would have approached nearer to perfection had more attention been bestowed upon the study of the internal stresses which they were liable to. Having thus explained the nature and importance of the subject, I will proceed to describe the experiments which I have made with a view to its illustration.—London Engineer.

[1]

Lame holds that in a homogeneous tube subjected to the action of two pressures, external and internal, the difference between the tension and the compression developed at any point of the thickness of the tube is a constant quantity, and that the sum of these two stresses is inversely proportional to the square of the radius of the layer under consideration. Letr0, R, andrxbe the respective radii,p0,p1, andpxthe corresponding pressures, and T0, T1, and Tx, the tensions, then we have:T0-p0= Tx-px(1)(T0+p0)r02= (Tx+px)rx2(2)Tx-px= T1-p1(3)(Tx+px)rx2= (T1+ P1)R2(4)if the radii are known and p andp1be given, then deducing from the above equations the values T0and T1, and also the variable pressurepx, we determine—Tx=p0r02(R2+rx2) -p1R2(rx2+r02)——————————————(R2+r02)rx2This is the formula of Lame, from which, makingp1=0, we obtain the expression in the text.

Lame holds that in a homogeneous tube subjected to the action of two pressures, external and internal, the difference between the tension and the compression developed at any point of the thickness of the tube is a constant quantity, and that the sum of these two stresses is inversely proportional to the square of the radius of the layer under consideration. Letr0, R, andrxbe the respective radii,p0,p1, andpxthe corresponding pressures, and T0, T1, and Tx, the tensions, then we have:

T0-p0= Tx-px(1)(T0+p0)r02= (Tx+px)rx2(2)Tx-px= T1-p1(3)(Tx+px)rx2= (T1+ P1)R2(4)

if the radii are known and p andp1be given, then deducing from the above equations the values T0and T1, and also the variable pressurepx, we determine—

Tx=p0r02(R2+rx2) -p1R2(rx2+r02)——————————————(R2+r02)rx2

This is the formula of Lame, from which, makingp1=0, we obtain the expression in the text.

[2]

We must, however, remark that in a built-up hollow cylinder the compression of the metal at the surface of the bore may exceed the elastic limit. This cannot occur in the case of natural stresses.

We must, however, remark that in a built-up hollow cylinder the compression of the metal at the surface of the bore may exceed the elastic limit. This cannot occur in the case of natural stresses.

[3]

In certain cases this, of course, may be an advantage, as, for instance, when the inner tube is under injurious initial stresses; but then, in order to be able to apply the necessary shrinkage, we must know the magnitude of these stresses.

In certain cases this, of course, may be an advantage, as, for instance, when the inner tube is under injurious initial stresses; but then, in order to be able to apply the necessary shrinkage, we must know the magnitude of these stresses.

[4]

When the inner tube is strengthened by means of wire, the initial or natural stresses in the latter may be neglected on account of its thinness; but when the thickness of the hoops is reduced, and the number of layers thereby increased, then the value of the initial stresses in these hoops is a very important factor with respect to the decrease or increase Of the powers of resistance of the gun.

When the inner tube is strengthened by means of wire, the initial or natural stresses in the latter may be neglected on account of its thinness; but when the thickness of the hoops is reduced, and the number of layers thereby increased, then the value of the initial stresses in these hoops is a very important factor with respect to the decrease or increase Of the powers of resistance of the gun.

Judging from the nature of the correspondence on architecture and the duty of architects which is frequently seen in the columns of the daily papers, theTimesespecially, it would seem that the popular notion of architecture now is that it is a study mainly of things connected with sanitary engineering—of the best forms of drain pipes and intercepting traps. This is indeed a very important part of sound building, and it is one that has been very much neglected, and has been, in fact, in a comparatively primitive state until very recent times; and therefore it is not surprising that there should be a reaction in regard to it, and that newspapers which follow every movement of public opinion, and try to keep pace with it, should speak as if the drain pipe were the true foundation of architecture. I have a great respect for the drain pipe, and wish to see it as well laid and "intercepted" as possible; but I think, for all that, that there is something in architecture higher than sanitary engineering. I wish to consider it in these lectures as what I think it essentially is, what it has evidently been in the eyes of all those of past days who have produced what we now regard as great architectural monuments, namely, as an intellectual art, the object of which is to so treat the buildings which we are obliged to raise for shelter and convenience as to render them objects of interest and beauty, and not mere utilitarian floors, walls, and roofs to shelter a race who care nothing for beauty, and who only want to have their physical comfort provided for.

Architecture, then, from the point of view from which I am asking you to regard it—and the only point of view in which it is worth the serious regard of thoughtful people—is the art of erecting expressive and beautiful buildings. I say expressiveandbeautiful, and I put expressive first, because it is the characteristic which we can at least realize even when we cannot realize what can fairly be called beauty, and it is the characteristic which comes first in the order of things. A building may be expressive and thereby have interest, without rising into beauty; but it can never be, architecturally speaking, beautiful unless it has expression. And what do we mean by expression in a building? That brings us to the very pith of the matter.

We know pretty well what we mean when we say that a painted or sculptured figure is expressive. We mean that, while correctly representing the structure of the human figure, it also conveys to our minds a distinct idea of a special emotion or sentiment, such as human beings are capable of feeling and expressing by looks and actions. Expression in this sense a building cannot be said to have. It is incapable of emotion, and it has no mobility of surface or feature. Yet I think we shall see that it is capable of expression in more senses than one. It may, in the first place, express or reflect the emotion of those who designed it, or it may express the facts of its own internal structure and arrangement. The former, however, can only, I think, be said to be realized in the case of architecture of the highest class, and when taken collectively as a typical style. For instance, we can all pretty well agree that the mediæval cathedral expresses an emotion of aspiration on the part of its builders. The age that built the cathedrals longed to soar in some way, and this was the way then open to it, and it sent up its soul in spreading vaults, and in pinnacles and spires. So also we can never look at Greek architecture without seeing in it the reflection of a nature refined, precise, and critical; loving grace and finish, but content to live with the graces and the muses without any aspirations that spurned this earth. We can hardly go further than this in attributing emotional expression to architecture. But in a more restricted sense of the wordexpression, a building may express very definitely its main constructive facts, its plan and arrangement, to a certain extent even its purpose, so far at least that we may be able to identify the class of structure to which it belongs. It not only may, but it ought to do this, unless the architecture is to be a mere ornamental screen for concealing the prosaic facts of the structure. There is a good deal of architecture in the world which is in fact of this kind—an ornamental screen unconnected with the constructional arrangement of the building. Nor is such architecture to be entirely scouted. It may be a very charming piece of scenery in itself, and you may even make a very good theoretical defense for it, from a certain point of view. But on the whole, architecture on that principle becomes uninteresting. You very soon tire of it. It is a mask rather than a countenance, and tends to the production of a dull uniformity of conventional design.

For we must remember that architecture, although a form of artistic expression, is not, like painting and sculpture, unfettered by practical considerations. It is an art inextricably bound up with structural conditions and practical requirements. A building is erected first for convenience and shelter; secondly only for appearance, except in the case of such works as monuments, triumphal arches, etc., which represent architectural effect pure and simple, uncontrolled by practical requirements. With such exceptions, therefore, a building ought to express in its external design its internal planning and arrangement; in other words, the architectural design should arise out of the plan and disposition of the interior, or be carried on concurrently with it, not designed as a separate problem. Then a design is dependent on structural conditions also, and if these are not observed, the building does not stand, and hence it is obvious that the architectural design must express these structural conditions. It must not appear to stand or be constructed in a way in which it could not stand (like the modern shops which are supposed to stand on sheets of plate glass), and its whole exterior appearance ought to be in accordance with, and convey the idea of, the manner and principle on which it is constructed. The most important portions of the interior must be shown as such externally by the greater elaboration and emphasis of their architectural treatment. If the general arrangement of the plan is symmetrical, on either side of a center (which, however, it cannot often be except in the largest type of monumental or public buildings), the architectural treatment must be symmetrical. If the building is necessarily arranged, in accordance with the requirements of the plan, unsymmetrically, the architectural treatment must follow suit, and the same principle must be carried out through all the details.

Now this dependence of architectural design upon plan and construction is one of the conditions which is often overlooked by amateurs in forming a judgment upon architectural design; and the overlooking of this is one reason of the uncertainty of opinion about architecture as compared with such arts as sculpture and painting. Few people know or care much about the structure and planning of buildings except those whose business it is to care about this; and consequently they do not realize what it is which they should look for in the architectural design. They like it or do not like it, and they regard this as what is called a mere question of taste, which, according to the proverb, is not to be disputed about. In fact, however, the good or bad taste of an architectural design, say, if you like, its correctness or incorrectness, is to a considerable extent a matter of logical reasoning, of which you must accurately know the premises before you can form a just conclusion. But there is another reason for this prevalent uncertainty and vagueness of opinion, arising out of the very nature of architectural art itself, as compared with the imitative arts. A painting of a figure on a landscape is primarily a direct imitation of the physical facts of nature. I do not for a moment say it is only that, for there is far more involved in painting than the imitation of nature; but the immediate reference to nature does give a standard of comparison which to a certain extent every eye can appreciate. But architecture is not an art which imitates natural forms at all, except as minor decorations, and it then does so, or should do so, only in a conventionalized manner, for reasons which we shall consider later on. Architecture is, like music, a metaphysical art. It deals with the abstract qualities of proportion, balance of form, and direction of line, but without any imitation of the concrete facts of nature. The comparison between architecture and music is an exercise of the fancy which may indeed be pushed too far, but there is really a definite similarity between them which it is useful to notice. For instance, the regular rhythm, or succession of accentuated points in equal times, which plays so important a part in musical form, is discernible in architecture as a rhythm in space. We may treat a cottage type of design, no doubt, with a playful irregularity, especially if this follows and is suggested by an irregularity, of plan. But in architecture on a grand scale, whether it be in a Greek colonnade or a Gothic arcade, we cannot tolerate irregularity of spacing except where some constructive necessity affords an obvious and higher reason for it. Then,again, we find the unwritten law running throughout all architecture that a progress of line in one direction requires to be stopped in a marked and distinct manner when it has run its course, and we find a similarly felt necessity in regard to musical form. The repetition so common at the close of a piece of music of the same chord several times in succession is exactly analogous to the repetition of cross lines at the necking of a Doric column to stop the vertical lines of the fluting, or to the strongly marked horizontal lines of a cornice which form the termination of the height or upward progress of an architectural design. The analogy is here very close. A less close analogy may also be felt between an architectural and a musical composition regarded as a whole. A fugue of Bach's is really a built-up structure of tones (as Browning has so finely put it in his poem, "Abt Vogler"), in accordance with certain ideas of relation and proportion, just as a temple or a cathedral is a built-up structure of lines and spaces in accordance with ideas of relation and proportion. Both appeal to the same sense of proportion and construction in the brain; the one through the ear, the other through the eye. Then, in regard to architecture again, we have further limiting conditions arising not only out of the principle of construction employed, but out of the physical properties of the very material we employ. A treatment that is suitable and expressive for a stone construction is quite unsuitable for a timber construction. Details which are effective and permanent in marble are ineffective and perishable in stone, and so; on and the outcome of all this is that all architectural design has to be judged, not by any easy and ready reference to exterior physical nature, with which it has nothing to do, but by a process of logical reasoning as to the relation of the design to the practical conditions, first, which are its basis, and as to the relation of the parts to each other. Of course beyond all this there is in architecture, as in music, something which defies analysis, which appeals to our sense of delight we know not how or why, and probably we do not want to know; the charm might be dissolved if we did. But up to this point architectural design and expression are based on reasoning from certain premises. The design is good or bad as it recognizes or ignores the logic of the case, and the criticism of it must rest on a similar basis. It is a matter of thought in both cases, and without thought it can neither be designed nor appreciated to any purpose, and this is the leading idea which I wish to urge and to illustrate in these lectures.

You may say: May not a design satisfy all these logical conditions, and yet be cold and uninteresting, and give one no pleasure? Certainly it may. Indeed, we referred just now to that last element of beauty which is beyond analysis. But, if we cannot analyze the result, I rather think we can express what it is which the designer must evince, beyond clear reasoning, to give the highest interest to his architecture. He must have taken an interest in it himself. That seems a little thing to say, but much lies in it. As Matthew Arnold has said of poetry:

"What poets feel not, when they makeA pleasure in creating,The world, in its turn, will not takePleasure in contemplating."

"What poets feel not, when they makeA pleasure in creating,The world, in its turn, will not takePleasure in contemplating."

The truth runs through all art. There are, alas, so many people who do not seem to have the faculty of taking pleasure, and there is so much architecture about our streets which it is impossible to suppose any one took "pleasure in creating." When a feature is put into a design, not because the designer liked it, but because it is the usual thing and it saves trouble, it always proclaims that melancholy truth. But where something is designed because the designer liked doing it, and was trying to please his own fancy instead of copying what a hundred other men have done before, it will go hard but he will give some pleasure to the spectator. It is from this blessed faculty that a design becomes inspired with what is best described as "character." It is not the same thing as style. I have something to say in my next lecture as to what I thinkstylemeans, but it is certain that a building may havestyleand yet wantcharacter, and it may have a good deal ofcharacterand yet be faulty or contradictory instyle. We cannot define "character," but when we feel that it is present we may rely upon it that it is because the designer took interest and pleasure in his work, was not doing it merely scholastically—in short, he put something of his own character into it, which means that he had some to put.

Figs. 1 through 3Figs.1 through 3

Now, coming back to the axiom before mentioned, that architectural design should express and emphasize the practical requirements and physical conditions of the building, let us look a little more in detail into the manner in which this may be done. We will take, to begin with, the very simplest structure we can possibly build—a plain wall (Fig. 1).2Here there is no expression at all; only stones piled one on another, with sufficient care in coursing and jointing to give stability to the structure. It is better for the wall, constructively, however, that it should have a wider base, to give it more solidity of foundation, and that the coping should project beyond the face of the wall, in order to throw the rain off, and these two requirements may be treated so as to give architectural expression to our work (Fig. 2). It now consists of three distinct portions—a plinth, or base, a superficies of wall, and a coping. We will mark the thickening at the base by a moulding, which will give a few horizontal lines (at B), and the coping in the same way. The moulding of the coping must also be so designed as to have a hollow throating, which will act as a drip, to keep the rain from running round the under side of the coping and down the wall. We may then break up the superficies by inserting a band of single ornament in one course of this portion of the wall—not half way, for to divide any portion of a building into mere "halves" has usually a weak and monotonous effect, but about two thirds of the distance from the base line; and this band of ornament not only breaks up the plain surface a little, but also, by carrying another horizontal line along the wall, emphasizes its horizontality. Always emphasize that which is the essential characteristic of your structure. A wall of this kind is essentially a long horizontal boundary. Emphasize its length and horizontality.

If we are millionaires, and can afford to spend a great deal on a wall, we may not only (Fig. 3) carry further the treatment of the coping and base, by giving them ornamental adjuncts as well as mouldings, but we might treat the whole wall superficies as a space for surface carving, not mechanically repeated, but with continual variation of every portion, so as to render our wall a matter of interest and beauty while retaining all its usefulness as a boundary, observing that such surface ornament should be designed so as to fulfill a double object: 1, to give general relief to the surface of the wall; 2, to afford matter of interest to the eye on close inspection and in detail.

That is the double function of nearly all architectural ornament. It is, in the first place, to aid the general expression and balance of the building, and give point and emphasis where needed; and, in the second place, to furnish something to the eye for study on its own account when viewed more closely.

Figs. 4 through 9Figs.4 through 9

We will take another typical and simple erection, a stone pillar to support the ends of two lintels or beams. This may be simply a long squared piece set on end (Fig. 4), and will perform its constructive functions perfectly well in that form; but it is not only absolutely expressionless, but is in one sense clumsy and inconvenient, as taking up more space than need be, presenting an unwieldy-looking mass when viewed at an angle, and shutting out a good deal of light (if that happen to be a matter of practical consequence in the case). Cutting off the angles (Fig. 5) does not weaken it much, and renders it much less unwieldy-looking, besides giving it a certain degree of verticality of expression, and rendering it more convenient as taking up less room and obstructing less light. But though the column is quite strong enough, the octagonal top does not make so good a seat or bearing for the ends of the lintels. We will therefore put a flat square stone on the top of it (Fig. 6), which will serve as a bed for the lintels to rest on securely. But the angles of this bed plate, where they project beyond the face of the column, appear rather weak, and are so actually to some extent—a double defect, for it is not enough in architecture that a thing should be strong enough, it is necessary that it should appear so, architecture having to do with expression as well as with fact. We will, therefore, strengthen this projecting angle, and correct the abruptness of transition between the column and the bed plate, by brackets (Fig. 7) projecting from the alternate faces of the column to the angles of the bed plates. As this rather emphasizes four planes of the octagon column at the expense of the other four, we will bind the whole together just under the brackets by a thin band of ornament constituting a necking, and thus we have something like a capital developed, a definitely designed finish to our column, expressive of its purpose. This treatment of the upper end, however, would make the lower end rising abruptly from the ground seem very bare. We will accordingly emphasize the base of the column, just as we emphasized the base of the wall, by a projecting moulding, not only giving expression to this connection of the column with the ground, but also giving it the appearance, and to some extent the reality, of greater stability, by giving it a wider and more spreading base to rest on. We have here still left the lines of one column vertically parallel, and there is no constructive reason why they should not remain so. There is, however, a general impression to the eye both of greater stability and more grace arising from a slight diminution upward. It is difficult to account for this on any metaphysical principle, but the fact has been felt by most nations which have used a columnar architecture, and we will accept it and diminute (so to speak) our column (Fig. 8). We have here taken a further step by treating the shaft of the column in two heights, keeping the lower portion octagonal and reducing the upper portion to a circle, and we now find it easier to treat the capital so as to have a direct and complete connection with the column, the capital being here merely a spreading out of the column into a bracket form all round, running it into the square of the bed plate.3The spreading portion is emphasized by surface ornament, and the necking is again emphasized, this time more decisively, by a moulding, forming a series of parallel rings round the column. If we wish to give our column an expression of more grace and elegance, we can further reduce the thickness of it (Fig. 9), and give more spread to the capital, always taking care to be sure that the strength of the column is not reduced below what the weight which it has to carry requires. In this case a bracket is shown above the capital, projecting longitudinally only (in the direction of the lintel bearing), a method of giving a larger bearing surface for the ends of the lintels, shortening their actual bearing4(in otherwords, widening the space which can be bridged between column and column) and giving a workmanlike appearance of stability to the construction at this point. The idea of the division of the column into two sections, suggested in Fig. 8, is kept up in Fig. 9 by treating the lower portion up to the same height with incised decorative carving. The dotted lines on each side in Fig. 9 give the outline of the original square column as shown in Fig. 4. The finished column was within that block; it is the business of the architectural designer to get it out.5

Figs. 10Fig.10

Let us see if we can apply the same kind of process of evolving expression in regard to a building. We will take again the very simplest form of building (Fig. 10), a square house with a door in the center and uniform rows of windows. There cannot be said to be any architectural expression in this. There is no base or plinth at all, no treatment of the wall. The slight projection at the eaves is only what is necessary to keep the rain from running down the walls, and facilitate the emptying of the gutters, and the even spacing of the windows is essential for constructive reasons, to keep the masses of wall over each other, and keep the whole in a state of equally balanced pressure. The first thing we should do in endeavoring to give some expression to the building would be to give it a base or plinth (Fig. 11), and to mark that and the cornice a little more decidedly by mouldings and a line of paneling at the plinth.

Figs. 11Fig.11

The house being obviously in three stories, we should give it some echo externally of this division into horizontal stages by horizontal mouldings, or what are called in architectural phraseology "string courses," not necessarily exactly at the floor levels, but so as to convey the idea of horizontal division; observing here, as in the case of the wall and column, that we should take care not to divide the height into equal parts, which is very expressionless. In this case we will keep the lower string close down on the ground floor windows, and keep these rather low, thus showing that the ground floor apartments are not the most important; while the fact that the first floor ones are so is conversely made apparent by keeping these windows rather higher, putting a double string course over them, and a slight extra depth of moulding, forming a kind of cornice over each.

The space left between these and the roof, in which the attic windows are placed, is treated with a series of mullions and panelings, into which the attic windows are worked, as part of the series of openings; this gives a little richness of effect to the top story, and a continuity of treatment, which binds the whole series of windows together. To have treated the whole of the walls and windows in this way would have been merely throwing away labor; what little effect it has consists in the "character" given by the contrast of this top story treatment with the plain wall surfaces below.

The last thing is to emphasize the door, as the principal opening in the walls, and quite distinct in use and meaning from the other openings, by giving it a little architectural frame or setting, which may be done in many ways, but in this case is done by the old fashioned device (not very logical certainly) of putting a little entablature over it, and a column on either side; there is, however, this to be said for it, that the projecting tablature forms a semi-porch, protecting those at the door somewhat from rain; it must be carried in some way, and columns are the readiest and most seemly manner of doing it, and they also form, practically, something of a weather screen; the bases on which they stand also form a framework or inclosing wall for the steps, which are thus made part of the architectural design, instead of standing out as an eyesore, as on Fig. 10. We have now given the house a little general expression, but it still is vague in its design as far as regards the distribution of the interior; we do not know whether the first floor, for instance, is one large room, or two or more rooms, or how they are divided; and the little house is very square and prim in effect.

Let us try grouping the windows a little, and at the same time breaking up the flat surface of the front wall (Fig. 12). Here, as before, we have divided the building by a horizontal string, but only by one main one on the first floor level, keeping the same contrast, however, between a richer portion above and a plainer portion below; we have divided the building vertically, also, by two projecting bays finishing in gables, thus breaking also the skyline of the roof, and giving it a little picturesqueness, and we have grouped the windows, instead of leaving them as so many holes in the wall at equal distances. The contrast between the ground and first floor windows is more emphatic; and it is now the more evident that the upper floor rooms are the best apartments, from their ample windows; it is also pretty evident that the first floor is divided into two main rooms with large bay windows, and a smaller room or a staircase window, between them; the second floor windows are also shifted up higher, the two principal ones going in to the gables, showing that the rooms below them have been raised in height. Windows carried up the full height of these rooms, however, might be too large either for repose internally or for appearance externally, so the wall intervening between the top of these and the sill of the gables is a good field for some decorative treatment, confined to the bays, so as to assist in separating them from the straight wall which forms the background to them.

Fig. 12Fig.12

So far we have treated our building only as a private house. Without altering its general scale and shape we may suggest something entirely different from a private house. On Fig. 13, we have tried to give a municipal appearance to it, as if it were the guild hall of a small country town. The plain basement and the wide principal doorway, and the row of three very large equal-spaced windows above, render it unquestionable that this is a building with a low ground story, and one large room above. A certain "public building" effect is given to it by the large and enriched cornice with balustrade above and paneling below, and by the accentuation of the angles by projecting piers, and by the turrets over them, which give it quite a different character from that of a private house.

Fig. 13Fig.13

If, on the other hand, the building were the free library and reading room of the same small country town, we should have little doubt of this if we saw it as in Fig. 14, with the walls all blank (showing that they are wanted for ranging something against, and cannot be pierced for windows), and windows only in the upper portion. Similarly, if we want to build it as the country bank, we should have to put the large windows on the ground floor, bank clerks wanting plenty of light, and the ground story being always the principal one; and we might indulge the humor of giving it a grim fortress-like strength by a rusticated plinth (i.e., stones left or worked rough and rock-like) and by very massive piers between the windows, and a heavy cornice over them; the residential upper floor forming a low story subordinate to the bank story. It is true this would not satisfy a banker, who always wants classic pilasters stuck against the walls, that being his hereditary idea of bank expression in architecture.

Fig. 14Fig.14

Fig. 15Fig.15

Now if we proceed to take to pieces the idea of architectural design, and consider wherein the problem of it consists, we shall find that it falls into a fourfold shape. It consists first in arranging the plan; secondly, in carrying up the boundary lines of this plan vertically in the shape of walls; thirdly, in the method of covering in the space which we have thus defined and inclosed; and, fourthly, in the details of ornamentation which give to it the last and concluding grace and finish. All building, when it gets beyond the mere wall with which we began, is really a method of covering in a space, or, if we may put it so, a collection of spaces, marked out and arranged for certain purposes. The first thing that the architect has to do is to arrange these spaces on the ground so that they may conveniently meet the necessary requirements of the building. Convenience and practical usefulness come first; but in any building which is worth the name of architecture something more than mere convenience has to be kept in mind, even in the arrangement of the plan upon the site. It is to be a combination of convenience with effectiveness of arrangement. We shall probably find that some one compartment of the plan is of paramount importance. We have to arrange the interior so that this most important compartment shall be the climax of the plan.

The entrance and the other subsidiary compartments must be kept subordinate to it, and must lead up to it in such a manner that the spectator shall be led by a natural gradation from the subsidiary compartments up to the main one, which is the center andraison d'etreof the whole—everything in the lines of the plan should point to that. This is the greatcruxin the planning of complicated public buildings. A visitor to such a building, unacquainted with it previously, ought to have no difficulty in finding out from the disposition of the interior which are the main lines of route, and when he is on the line leading him up to the central feature of the plan. There are public buildings to be found arranged on what may be called the rabbit warren system, in which perhaps a great number of apartments are got upon the ground, but which the visitor is obliged laboriously to learn before he can find his way about them. That is not only inconvenient but inartistic planning, and shows a want of logic and consideration, and, in addition to this, a want of feeling for artistic effect. I saw not long ago, for instance, in a set of competitive designs for an important public building, a design exhibiting a great deal of grace and elegance in the exterior architectural embellishment, but in which the principal entrance led right up to a blank wall facing the entrance, and the spectator had to turn aside to the left and then to the right before finding himself on the principal axis of the plan. That is what I should call inartistic or unarchitectural planning. The building may be just as convenient when you once know its dodges, but it does not appear so, and it loses the great effect of direct vista and climax.

An able architect, who had given much thought to a plan of a large building of this kind, said to me, in showing me his plan, with a justifiable gratification in it, "It has cost me endless trouble, but it is a satisfaction to feel that you have got a plan with backbone in it." That is a very good expression of what is required in planning a complicated building, but few outsiders have any notion of the amount of thought and contrivance which goes to the production of a plan "with backbone;" a plan in which all the subordinate and merely practical departments shall be in the most convenient position in regard to each other, and yet shall all appear as if symmetrically and naturally subordinate to the central and leading feature; and if the public had a little more idea what is the difficulty of producing such a plan, they would perhaps do a little more justice to the labors of the man who contrives the plan, which they think such an easy business; and no doubt it may appear an easy business, because the very characteristic of a really good plan is that it should appear as if it were quite a natural and almost inevitable arrangement.

Just as it is said in regard to literature that easy writing is hard reading, so, in regard to planning, it is the complicated and rabbit warren plans that are the easiest to make, because it is just doing what you please; it is the apparently perfectly simple and natural plan which springs from thought and contrivance. Then there is the next step of raising the walls on the plan, and giving them architectural expression. This must not be thought of as an entirely separate problem, for no truly architectural intellect will ever arrange a plan without seeing generally, in his mind's eye, the superstructure which he intends to rear upon it; but the detailed treatment of this forms a separate branch of the design. Then comes the third and very important problem—the covering in of the space. Next to the plan, this is the most important. All building is the covering over of a space, and the method of covering it over must be foreseen and provided for from the outset. It largely influences the arrangement of the plan. If there were no roofing, you could arrange the walls and carry them up pretty much as you chose, but the roofing of a large space is another matter. It requires extra strength at certain points, where the weight of the roof is concentrated, and it has to be determined whether you will employ a method of roofing which exercises only a vertical pressure on the walls, like the lid of a box, or one which, like an arch, or a vault, or a dome, is abutting against the walls, and requires counterforts to resist the outward thrust of the roof. We shall come upon this subject of the influence of the roof on the design of the substructure more in detail later on. Then, if the plan is convenient and effective, the walls carried up with the architectural expression arising from the placing and grouping of the openings, and the proper emphasizing of the base and the cornice, and the horizontal stages (if any) of the structure, and the roof firmly and scientifically seated on the walls; after all these main portions of the structure are designed logically and in accordance with one another and with the leading idea of the building, then the finishing touches of expression and interest are given by well designed and effective ornamental detail. Here the designer may indulge his fancy as he pleases, as far as the nature of the design is concerned, but not, if you please, as far as its position and distribution are concerned. There the logic of architecture still pursues us.

We may not place ornament anywhere at haphazard on a building simply because it looks pretty. At least, to do so is to throw away great part of its value. For everything in architectural design is relative; it is to be considered in relation to the expression and design of the whole, and ornament is to be placed where it will emphasize certain points or certain features of the building. It must form a part of the grouping of the whole, and be all referable to a central and predominating idea. A building so planned, built, and decorated becomes, in fact, what all architecture—what every artistic design in fact should be—an organized whole, of which every part has its relation to the rest, and from which no feature can be removed without impairing the unity and consistency of the design. You may have a very good, even an expressive, building with no ornament at all if you like, but you may not have misplaced ornament. That is only an excrescence on the design, not an organic portion of it.

I have thought that it would be of use to those who are unacquainted with architectural procedure in delineating architecture by geometrical drawings if I took the opportunity of illustrating very briefly the philosophy of elevations, plans, and sections, which many non-professional people certainly do not understand.

Figs. 16 through 25Figs.16 through 25

A simple model of a building, like that in Fig. 16, will serve the purpose, as the principle is the same in the most complicated as in the simplest building. It must be remembered that the object of architectural drawings on the geometrical system is not to show a picture of the building, but to enable the designer to put together his design accurately in all its parts, according to scale, and to convey intelligible and precise information to those who have to erect the building. A perspective drawing like Fig. 16 is of no use for this purpose. It shows generally what the design is, but it is impossible to ascertain the size of any part by scale from it, except that if the length of one line were given it would be possible, by a long process of projection and calculation, to ascertain the other sizes. Therationaleof the architect's geometrical drawings is that on them each plane of the building (the front, the side, the plan, etc.) is shown separately and without any distortion by perspective, and in such a manner that every portion is supposed to be opposite to the eye at once. Only the width of any object on one side can be shown in this way at one view; for the width of the return side you have to look to another drawing; you must compare the drawings in order to find out those relative proportions which the perspective view indicates to the eye at a glance; but each portion of each side can be measured by reference to a scale, and its precise size obtained, which can only be guessed at roughly from the perspective drawing. Thus the side of the model is shown in Fig. 19, the end in Fig. 17; the two together give the precise size and proportions of everything outside to scale, except the projection of the pilasters. This has to be got at from the plan and section. Everything being drawn on one plane, of course surfaces which are sloping on one elevation are represented as flat in the other. For instance, on No. 17 the raking line of the sloping roof is shown at N. So we know the slope of the roof, but we do not know to what length it extends the other way. This is shown on Fig. 19, where the portion showing the roof is also marked N, and it will be seen that the surface which is sloping in Fig. 17 is seen in the side elevation only as a space between a top and bottom line. We see the length of the roof here, and its height, but for its slope we go to the end elevation. Neither elevation tells us, however, what is inside the building; but the section (Fig. 18) shows us that it has an arched ceiling, and two stories, a lower and a higher one. The section is the building cut in half, showing the end of the walls, the height and depth of the window openings, the thickness of the floor, etc., and as all parts which are opposite the eye are shown in the drawing, the inside of the cross wall at the end of the building is shown as a part of the section drawing, between the sectional walls. In Fig. 23 the section is sketched in perspective, to show more clearly what it means. Another section is made lengthwise of the building (Fig. 20). It is customary to indicate on the plan by dotted lines the portion through which the section is supposed to be made. Thus on the plans the lines A B and C D are drawn, and the corresponding sections are labeled with the same lines. As with the elevation, one section must be compared with another to get the full information from them. Thus in Fig. 18, the ceiling, M, is shown as a semicircle; in Fig. 20, it is only a space between the top and bottom lines. It is, certainly, shaded here to give the effect of rotundity, but that is quite a superfluity. On Fig. 18 the height of the side windows is shown at F, and the thickness of the wall in which they are made. In Fig. 20 (F) their width and spacing are shown. In Fig. 18 some lines drawn across, one over the other, are shown at H. These are the stairs, of which in this section we see only the fronts, or risers, so that they appear merely as lines (showing the edge of each step) drawn one over the other. At H on the plan, Fig. 21, we again see them represented as a series of lines, but here we are looking down on the top of them, and see only the upper surfaces, or "treads," the edges again appearing as a series of lines. At H on the longitudinal section, we see the same steps in section, and consequently their actual slope, which, however, could have been calculated from Figs. 18 and 21, by putting the heights shown in section with the width shown in plan. The plan, Fig. 21, shows the thickness and position on the floor of the pillars, G G. Their height is shown in the sections. The plan of a building is merely a horizontal section, cutting off the top, and looking down on the sectional top of the walls, so as to see all their thicknesses. I have drawn (Fig. 24) a perspective sketch of one end of the plan (Fig. 22) of the building, on the same principle as was done with the section (Fig. 23), in order to show more intelligibly exactly what it is that a plan represents—the building with the upper part lifted off.

Returning for a moment to the subject of the relation between the plan and the exterior design, it should be noted that the plan of a building being practically the first consideration, and the basis of the whole design, the latter should be in accordance with the principle of disposition of the plan. For example, if we have an elevation (shown in diagram) showing two wings of similar design on either side of a center, designed so as to convey the idea of a grand gallery, with a suite of apartments on either side of similar importance—if the one side only of the plan contains such a suite, and the opposite side is in reality divided up into small and inferior rooms, filled in as well as may be behind the architectural design—the whole design is in that case only a blind or screen, giving a false exterior symmetry to a building which is not so planned. This is an extreme case (or might be called so if it were not actually of pretty frequent occurrence); but it illustrates in a broad sense a principle which must be carried out in all cases, if the architecture is to be a real expression of the facts of the building.

In this lecture, which is concerned with general principles, a word may fittingly be said as to the subject ofproportion, concerning which there are many misapprehensions. The word may be, and is, used in two senses, first in regard to the general idea suggested in the words "a well proportioned building." This expression, often vaguely used, seems to signify a building in which the balance of parts is such as to produce an agreeable impression of completeness and repose. There is a curious kind of popular fallacy in regard to this subject, illustrated in the remark which used to be often made about St. Peter's, that it is so well proportioned that you are not aware of its great size, etc.—a criticism which has been slain over and over again, but continues to come to life again. The fact that this building does not show its size is true. But the inference drawn is the very reverse of the truth. One object in architectural design is to give full value to the size of a building, even to magnify its apparent size; and St. Peter's does not show its size, because it isillproportioned, being merely like a smaller building, with all its parts magnified. Hence the deception to the eye, which sees details which it is accustomed to see on a smaller scale, and underrates their actual size, which is only to be ascertained by deliberate investigation. This confusion as to scale is a weakness inherent in the classical forms of columnar architecture, in which the scale of all the parts is always in the same proportion to each other and to the total size of the building so that a large Doric temple is in most respects only a small one magnified. In Gothic architecture the scale is the human figure, and a larger building is treated, not by magnifying its parts, but by multiplying them. Had this procedure been adopted in the case of St. Peter's, instead of merely treating it with a columnar order of vast size, with all its details magnified in proportion, we should not have the fault to find with it that it does not produce the effect of its real size. In another sense, the word "proportion" in architecture refers to the system of designing buildings on some definite geometrical system of regulating the sizes of the different parts. The Greeks certainly employed such asystem, though there are not sufficient data for us to judge exactly on what principle it was worked out. In regard to the Parthenon, and some other Greek buildings, Mr. Watkiss Lloyd has worked out a very probable theory, which will be found stated in a paper in the "Transactions of the Institute of Architects."

Vitruvius gives elaborate directions for the proportioning of the size of all the details in the various orders; and though we may doubt whether his system is really a correct representation of the Greek one, we can have no doubt that some such system was employed by them. Various theorists have endeavored to show that the system has prevailed of proportioning the principal heights and widths of buildings in accordance with geometrical figures, triangles of various angles especially; and very probably this system has from time to time been applied, in Gothic as well as in classical buildings. This idea is open to two criticisms, however. First, the facts and measurements which have been adduced in support of it, especially in regard to Gothic buildings, are commonly found on investigation to be only approximately true. The diagram of the section of the building has nearly always, according to my experience, to be "coaxed" a little in order to fit the theory; or it is found that though the geometrical figure suggested corresponds exactly with some points on the plan or section, these are really of no more importance than other points which might just as well have been taken. The theorist draws our attention to those points in the building which correspond with his geometry, and leaves on one side those which do not. Now it may certainly be assumed that any builders intending to lay out a building on the basis of a geometrical figure would have done so with precise exactitude, and that they would have selected the most obviously important points of the plan or section for the geometrical spacing. In illustration of this point, I have given (Fig. 25) a skeleton diagram of a Roman arch, supposed to be set out on a geometrical figure. The center of the circle is on the intersection of lines connecting the outer projection of the main cornice with the perpendiculars from those points on the ground line. This point at the intersection is also the center of the circle of the archway itself. But the upper part of the imaginary circle beyond cuts the middle of the attic cornice. If the arch were to be regarded as set out in reference to this circle, it should certainly have given the most important line—the top line, of the upper cornice, not an inferior and less important line; and that is pretty much the case with all these proportion theories (except in regard to Greek Doric temples); they are right as to one or two points of the building, but break down when you attempt to apply them further. It is exceedingly probable that many of these apparent geometric coincidences really arise, quite naturally, from the employment of some fixed measure of division in setting out buildings. Thus, if an apartment of somewhere about 30 feet by 25 feet is to be set out, the builder employing a foot measure naturally sets out exactly 30 feet one way and 25 feet the other way. It is easier and simpler to do so than to take chance fractional measurements. Then comes your geometrical theorist, and observes that "the apartment is planned precisely in the proportion of six to five." So it is, but it is only the philosophy of the measuring-tape, after all. Secondly, it is a question whether the value of this geometrical basis is so great as has sometimes been argued, seeing that the results of it in most cases cannot be judged by the eye. If, for instance, the room we are in were nearly in the proportion of seven in length to five in width, I doubt whether any of us here could tell by looking at it whether it were truly so or not, or even, if it were a foot out one way or the other, in which direction the excess lay; and if this be the case, the advantage of such a geometrical basis must be rather imaginary than real.


Back to IndexNext