[1]Paper lately read before the Civil and Mechanical Engineers' Society.
[1]
Paper lately read before the Civil and Mechanical Engineers' Society.
Paper lately read before the Civil and Mechanical Engineers' Society.
[Continued fromSupplement, No. 646, p. 10319.]
The Romans, in their arched constructions, habitually strengthened the point against which the vault thrust by adding columnar features to the walls, as shown in Fig. 108; thus again making a false use of the column in a way in which it was never contemplated by those who originally developed its form. In Romanesque architecture the column was no longer used for this purpose; its place was taken by a flat pilaster-like projection of the wall (plan and section, Fig. 109), which gave sufficient strength for the not very ambitious vaulted roofs of this period, where often in fact only the aisles were vaulted, and the center compartment covered with a wooden roof. At first this pilaster-like form bore a reminiscence of a classic capital as its termination; a moulded capping under the eaves of the building. Next this capping was almost insensibly dropped, and the buttress became a mere flat strip of wall. As the vaulting became bolder and more ambitious, the buttress had to be made more massive and of greater projection, to afford sufficient abutment to the vault, more especially toward the lower part, where the thrust of the roof is carried to the ground. Hence arose the tendency to increase the projection of the buttress gradually downward, and this was done by successive slopes or "set-offs," as they are termed, which assisted (whether intentionally or not in the first instance) in further aiding the correct architectural expression of the buttress. Then the vaulting of the center aisle was carried so high and treated in so bold a manner, with a progressive diminution of the wall piers (as the taste for large traceried windows developed more and more), that a flying buttress (see section, Fig. 110) was necessary to take the thrust across to the exterior buttresses, and these again, under this additional stress, were further increased in projection, and were at the same time made narrower (to allow for all the window space that was wanted between them), until the result was that the masses of wall, which in the Romanesque building were placed longitudinally and parallel to the axis of the building, have all turned about (Fig. 110, plan) and placed themselves with their edges to the building to resist the thrust of the roofing. The same amount of wall is there as in the Romanesque building, but it is arranged in quite a new manner, in order to meet the new constructive conditions of the complete Gothic building.
Figs. 108-114.Figs.108-114.
It will be seen thus how completely this important and characteristic feature of Gothic architecture, the buttress, is the outcome of practical conditions of construction. It is treated decoratively, but it is itself a necessary engineering expedient in the construction. The application of the same principle, and its effect upon architectural expression, may be seen in some other examples besides that of the buttress in its usual shape and position. The whole arrangement and disposition of an arched building is affected by the necessity of providing counterforts to resist the thrust of arches. The position of the central tower, for instance, in so many cathedrals and churches, at the intersection of the nave and transepts, is not only the result of a feeling for architectural effect and the centralizing of the composition, it is the position in which also the tower has the cross walls of nave and transepts abutting against it in all four directions: if the tower is to be placed over the central roof at all, it could only be over this point of the plan. In the Norman buildings, which in some respects were finer constructions than those of later Gothic, the desire to provide a firm abutment for the arches carrying the tower had a most marked effect on the architectural expression of the interior. At Tewkesbury, for instance, while the lower piers are designed in the usual way toward the north and south sides (viz., as portions of a pier of nearly square proportion standing under the angle of the tower), in the east and west direction the tower piers run out into great solid masses of wall, in order to insure a sufficient abutment for the tower arches. On the north and south sides the solid transept walls were available immediately on the other side of the low arch of the side aisle, but on the east and west sides there were only the nave and choir arcades to take the thrust of the north and south tower arches, and so the Normans took care to interpose a massive piece of wall between, in order that the thrust of the tower arches might be neutralized before it could operate against the less solid arcaded portions of the walls. This expedient, this great mass of wall introduced solely for constructive reasons, adds greatly to the grandeur of the interior architectural effect. The true constructive and architectural perception of the Normans in this treatment of the lower piers is illustrated by the curious contrast presented at Salisbury. There the tower piers are rather small, the style is later, and the massive building of the Normans had given way to a more graceful but less monumental manner of building. Still the abutment of the tower arches was probably sufficient for the weight of the tower as at first built; but when the lofty spire was put on the top of this, its vertical weight, pressing upon the tower arches and increasing their horizontal thrust, actually thrust the nave and choir arcades out of the perpendicular toward the west and east respectively, and there they are leaning at a very perceptible angle away from the center of the church—the architectural expression, in a very significant form, of the neglect of balance of mass in construction.
But while the buttress in Gothic architecture has been in process of development, what has the vault been doing? We left it (Fig. 92) in the condition of a round wagon vault, intersected by another similar vault at right angles. By that method of treatment we got rid of the continuous thrust on the walls. But there were many difficulties to be faced in the construction of vaulting after this first step had been taken, difficulties which arose chiefly from the rigid and unmanageable proportions of the circular arch, and which could not be even partially solved till the introduction of the pointed arch. The pointed arch is the other most marked and characteristic feature of Gothic architecture, and, like the buttress, it will be seen that it arose entirely out of constructive difficulties.
These difficulties were of two kinds; the first arose from the tendency of the round arch, when on a large scale and heavily weighted, to sink at the crown if there is even any very slight settlement of the abutments. If we turn again to diagram 77, and observe the nearly vertical line formed there by the joints of the keystone, and if we suppose the scale of that arch very much increased without increasing the width of each voussoir, and suppose it built in two or three rings one over the other (which is really the constructive method of a Gothic arch), we shall see that these joints in the uppermost portion of the arch must in that case become still more nearly vertical; in other words, the voussoirs almost lose the wedge shape which is necessary to keep them in their places, and a very slight movement or settlement of the abutments is sufficient to make the arch stones lose some of their grip on each other and sink more or less, leaving the arch flat at the crown. There can be no doubt that it was the observance of this partial failure of the round arch (partly owing probably to their own careless way of preparing the foundations for their piers—for the mediæval builders were very bad engineers in that respect) which induced the builders of the early transitional abbeys, such as Furness and Fountains and Kirkstall, to build the large arches of the nave pointed, though they still retain the circular-headed form for the smaller arches in the same buildings, which were not so constructively important. This is one of the constructive reasons which led to the adoption of the pointed arch in mediæval architecture, and one which is easily stated and easily understood. The other influence is one arising out of the lengthened conflict with the practical difficulties of vaulting, and is a rather more complicated matter, which we must now endeavor to follow out.
Figs. 93-107.Figs.93-107.
Looking at Fig. 92, it will be seen that in addition to the perspective sketch of the intersecting arches, there is drawn under it a plan, which represents the four points of the abutment of the arches (identified in plan and perspective sketch as A, B, C, D), and the lines which are taken by the various arches shown by dotted lines. Looking at the perspective sketch, it will be apparent that the intersection of the two cross vaults produces two intersecting arches, the upper line of which is shown in the perspective sketch (markedeandf); underneath, this intersection of the two arches, which forms a furrow in the upper side of the construction, forms an edge which traverses the space occupied by the plan of the vaulting as two oblique arches, running from A to C and from B to D on the plan. Although these are only lines formed by the intersection of two cross arches, still they make decided arches to the eye, and form prominent lines in the system of vaulting; and in a later period of vaulting they were treated as prominent lines and strongly emphasized by mouldings; but in the Roman and early Romanesque vaults they were simply left as edges, the eye being directed rather to the vaulting surfaces than to the edges. The importance of this distinction between the vaulting surfaces and their meeting edges orgroins2will be seen just now. The edges, nevertheless, as was observed, do form arches, and we have therefore a system of cross arches (A B and C D3Fig. 95), two wall arches (A, D and B C), and two oblique arches (A C and B D), which divide the space into four equal triangular portions; this kind of vaulting being hence calledquadripartitevaulting. In this and the other diagrams of arches on this page, the cross arches are all shown in positive lines, and the oblique arches in dotted lines.
We have here a system in which four semicircular arches of the width of A B are combined with two oblique arches of the width of A C, springing from the same level and supposed to rise to the same height. But if we draw out the lines of these two arches in a comparative elevation, so as to compare their curves together, we at once find we are in a difficulty. The intersection of the two circular arches produces an ellipse with a very flat crown, and very liable to fail. If we attempt to make the oblique arch a segment only of a large circle, as in the dotted line at 94, so as to keep it the same level as the other without being so flat at the top, the crown of the arch is safer, but this can only be done at the cost of getting a queer twist in the line of the oblique arch, as shown at D, Fig. 93. The like result of a twist of the line of the oblique arch would occur if the two sides of the space we are vaulting over were of different lengths,i.e., if the vaulting space were otherwise than a square, as long as we are using circular arches. If we attempt to make the oblique arches complete circles, as at Fig. 96, we see that they must necessarily rise higher than the cross and side arches, so that the roof would be in a succession of domical forms, as at Fig. 97. There is the further expedient of "stilting" the cross arches, that is, making the real arch spring from a point above the impost and building the lower portion of it vertical, as shown in Fig. 98. This device of stilting the smaller arches to raise their crowns to the level of those of the larger arches was in constant use in Byzantine and early Romanesque architecture, in the kind of manner shown in the sketch, Fig. 99; and a very clumsy and makeshift method of dealing with the problem it is; but something of the kind was inevitable as long as nothing but the round arch was available for covering contiguous spaces of different widths. The whole of these difficulties were approximately got over in theory, and almost entirely in practice, by the adoption of the pointed arch. By its means, as will be seen in Fig. 100, arches over spaces of different widths could be carried to the same height, yet with little difference in their curves at the springing, and without the necessity of employing a dangerously flat elliptical form in the oblique arch. A sketch of the Gothic vault in this form, and as the intersection of the surfaces of pointed vaults, is shown in Fig. 101.
But now another and most important change was to come over the vault. The mediæval architects were not satisfied with the mere edge left by the Romans in their vaults, and even before the full Gothic period the Roman builders had emphasized their oblique arches in many cases by ponderous courses of moulded or unmoulded stone in the form of vaulting ribs. These, in the case of Norman building, were probably not merely put for the purpose of architectural expression, but also because they afforded an opportunity of concealing behind the lines of a regularly curved groin rib the irregular curves which were really formed by the junction of the vaulting surfaces. But when the vault become more manageable in its curves after the adoption of the pointed arch, the groin rib became adopted in the early pointed vaulting as a means of giving expression and carrying up the lines of the architectural design. On its edge were stones moulded with the deep undercut hollows of early English moulding, defining the curves of the oblique as well as of the cross arches with strongly marked lines, and, moreover, falling on a level with each other in architectural importance; the oblique vault of the arch is no longer a secondary line in the vaulting design; on the contrary, the cross arches are usually omitted, as shown in Figs. 102 and 103 (view and plan of an early Gothic quadripartite vault); so that the cross rib, which, in the early Romanesque wagon vault (Fig. 90), was the one marked line on the vaulting surface, has now been obliterated, and the line of the oblique arch (E F, Figs. 102, 103) has taken its place.
The effect of the strongly marked lines of the groin ribs, radiating from the cap of the shaft which was their architectural support, seems to have been so far attractive to the mediæval builders that they soon endeavored to improve upon it and carry it further by multiplying the groin ribs. One of the stages of this progress is shown in Figs. 104, 105. Here it will be seen that the cross rib is again shown, and that intermediate ribs have been introduced between it and the oblique rib. The richness of effect of the vault is much heightened thereby; but a very important modification in the mode of constructing it has been introduced. As the groin ribs become multiplied, it came to be seen that it was easier to construct them first, and fill in the spaces afterward; accordingly the groin, instead of being, as it was in the early days of vaulting, merely the line formed by the meeting of two arch surfaces, became a kind of stone scaffolding or frame work, between which the vaulting surfaces were filled in with lighter material. This arrangement of course made an immense difference in the whole principle of constructing the vault, and rendered it much more ductile in the hands of the builder, more capable of taking any form which he wished to impose on it, than when the vault was regarded and built as an intersection of surfaces. There was still one difficulty, however, one slight failure both practical and theoretical in the vault architecture, which for a long time much exercised the minds of the builders. The ribs of the vaulting being all of unequal length, they had to assume different curves almost immediately on rising from the impost; and as the mouldings of the ribs have to be run into each other ("mitered" is the technical term) on the impost, there not being room to receive them all separately, it was almost impossible to get them to make their divergence from each other in a completely symmetrical manner; the shorter ribs with the quicker curves parted from each other at a lower point than the larger ones, and the "miters" occurred at unequal heights. The effort to get over this unsatisfactory and irregular junction of the ribs at the springing was made first by setting back the feet of the shorter ribs on the impost capping, somewhat in the rear of the feet of the larger ribs, so as to throw their parting point higher up; but this also was only a makeshift, which it was hoped the eye would pass over; and in fact it is rarely noticeable except to those who know about it and look for it. Still the defect was there, and was not got over until the idea occurred of making all the ribs of the same curvature and the same length, and intercepting them all by a circle at the apex of the vault, as shown in Figs. 106, 107; the space between the circles at the apex of the vault being practically a nearly flat surface orplafondheld in its place by the arches surrounding it; though, for effect, it is often treated otherwise in external appearance, being decorated by pendants giving a reversed curve at this point, but which of course are only ornamental features hung from the roof. If we look again at Fig. 104, we shall see that this was a very natural transition after all, for the arrangement of the ribs and vaulting surfaces in that example is manifestly suggestive of a form radiating round the central point of springing, though it only suggests that, and does not completely realize it. But here came a further and very curious change in the method of building the vault, for as the ribs were made more numerous, for richness of effect, in this form of vaulting, it was discovered that it was much easier to build the whole as a solid face of masonry, working the ribs on the face of it. Thus the ribs, which in the intermediate period were the constructive framework of the vault, in the final form of fan vaulting came back to their original use as merely a form of architectural expression, meant to carry on the architectural lines of the design; and they perform, on a larger scale and with a different expression, much the same kind of function which the fluting lines performed in the Greek column. The fan vault is therefore a kind of inverted dome, built up in courses on much the same principle as a dome, but a convex curve internally, instead of a concave one, the whole forming a series of inverted conoid forms abutting against the wall at the foot and against each other at their upper margins. This form of roof is wonderfully rich in effect, and has the appearance of being a piece of purely artistic work done for the pleasure of seeing it; yet, as we have seen, it is in reality, like almost everything good in architecture, the logical outcome of a contention with structural problems.
We have already noticed the suggestion, in early Gothic or Romanesque, of the dividing up of a pier into a multiple pier, of which each part supports a special member of the superstructure, as indicated in Fig. 90. The Gothic pier, in its development in this respect, affords a striking example of that influence of the superstructure on the plan which has before been referred to. The peculiar manner of building the arch in Gothic work led almost inevitably to this breaking up of the pier into various members. The Roman arch was on its lower surface a simple flat section, the decorative treatment in the way of mouldings being round the circumference, and not on the under side orsoffitof the arch, and in early Romanesque work this method was still followed. The mediæval builders, partly in the first instance because they built with smaller stones, adopted at an early period the plan of building an arch in two or more courses or rings, one below and recessed within the other. As the process of moulding the arch stones became more elaborated, and a larger number of subarches one within another were introduced, this characteristic form of subarches became almost lost to the eye in the multiplicity of the mouldings used. But up to nearly the latest period of Gothic architecture this form may still be traced, if looked for, as the basis of the arrangement of the mouldings, which are all formed by cutting out of so many square sections, recessed one within the other. This will be more fully described in the next lecture. We are now speaking more especially of the pier as affected by this method of building the arches in recessed orders. If we consider the effect of bringing down on the top of a square capital an arch composed of two rings of squared stones, the lower one only half the width (say) of the upper one, it will be apparent that on the square capital the arch stones would leave a portion of the capital at each angle bare, and supporting nothing.4This looks awkward and illogical, and accordingly the pier is modified so as to suit the shape of the arch. Figs. 111, 112, 113, and 114, with the plans, B C D, accompanying them, illustrate this development of the pier. Fig. 111 is a simple cylindrical pier with a coarsely formed capital, a kind of reminiscence of the Doric capital, with a plain Romanesque arch starting from it. Fig. 112, shown in plan at B, is the kind of form (varied in different examples) which the pier assumed in Norman and early French work, when the arch had been divided into two recessed orders. The double lines of the arch are seen springing from the cap each way, in the elevation of the pier. If we look at the plan of the pier, we see that, in place of the single cylinder, it is now a square with four smaller half cylinders, one on each face. Of these, those on the right and left of the plan support the subarches of the arcade; the one on the lower side, which we will suppose to be looking toward the nave, supports the shaft which carries the nave vaulting, and which stands on the main capital with a small base of its own, as seen in Fig. 112—a common feature in early work; and the half column on the upper side of the plan supports the vaulting rib of theaisle. In Fig. 113 and plan C, which represents a pier of nearly a century later, we see that the pier is broken up by perfectly detached shafts, each with its own capital, and each carrying a group of arch mouldings, which latter have become more elaborated. Fig. 114 and plan D show a late Gothic fourteenth century pier, in which the separate shafts have been abandoned, or rather absorbed into the body of the pier, and the pier is formed of a number of moulded projections, with hollows giving deep shadows between them, and the capitals of the various members run into one another, forming a complete cap round the pier. This pier shows a remarkable contrast in every way to B, yet it is a direct development from the latter. In this late form of pier, it will be observed that the projection, E, which carries the vaulting ribs of the nave, instead of springing from the capital, as in the early example, Fig. 111, springs from the floor, and runs right up past the capital; thus the plan of the vaulting is brought, as it were, down on to the floor, and the connection between the roofing of its building and its plan is as complete as can well be. In Fig. 113 the vaulting shaft is supposed to stop short of the capital and to spring from a corbel in the wall, situated above the limit of the drawing. This was a common arrangement in the "Early English" and "Early Decorated" periods of Gothic, but it is not so logical and complete, or so satisfactory either to the eye or to the judgment, as starting the vaulting shaft from the floor line. The connection between the roofing and the plan may be further seen by looking at the portion of a mediæval plan given under Fig. 110, where the dotted lines represent the course of the groin ribs of the roof above. It will be seen how completely these depend upon the plan, so that it is necessary to determine how the roof in a vaulted building is to be arranged before setting out the ground plan.
Thus we see that the Gothic cathedral, entirely different in its form from that of the Greek temple, illustrates, perhaps, even more completely than the Greek style, the same principle of correct and truthful expression of the construction of the building, and that all the main features which give to the style its most striking and picturesque effects are not arbitrarily adopted forms, but are the result of a continuous architectural development based on the development of the construction. The decorative details of the Gothic style, though differing exceedingly from those of the Greek, are, like the latter, conventional adaptations of suggestions from nature; and in this respect again, as well as in the character of the mouldings, we find both sides illustrating the same general principle in the design of ornament, in its relation to position, climate, and material; but this part of the subject will be more fully treated of in the next lecture.
We have now arrived at a style of architectural construction and expression which seems so different from that of Greek architecture, which we considered in the last lecture, that it is difficult to realize at first that the one is, in regard to some of its most important features, a lineal descendant of the other. Yet this is unquestionably the case. The long thin shaft of Gothic architecture is descended, through a long series of modifications, from the single cylindrical column of the Greek; and the carved mediæval capital, again, is to be traced back to the Greek Corinthian capital, through examples in early French architecture, of which a tolerably complete series of modifications could be collected, showing the gradual change from the first deviations of the early Gothic capital from its classical model, while it still retained the square abacus and the scroll under the angle and the symmetrical disposition of the leaves, down to the free and unconstrained treatment of the later Gothic capital. Yet with these decided relations in derivation, what a difference in the two manners of building! The Greek building is comparatively small in scale, symmetrical and balanced in its main design, highly finished in its details in accordance with a preconceived theory. The Gothic building is much more extensive in scale, is not necessarily symmetrical in its main design, and the decorative details appear as if worked according to the individual taste and pleasure of each carver, and not upon any preconceived theory of form or proportion. In the Greek building all the predominant lines are horizontal; in the mediæval building they are vertical. In the Greek building every opening is covered by a lintel; in the Gothic building every opening is covered by an arch. No two styles, it might be said, could be more strongly contrasted in their general characteristics and appearance. Yet this very contrast only serves to emphasize the more strongly the main point which I have been wishing to keep prominent in these lectures—that architectural design, rightly considered, is based on and is the expression of plan and construction. In Greek columnar architecture the salient feature of the style is the support of a cross lintel by a vertical pillar; and the main effort of the architectural designer is concentrated on developing the expression of the functions of these two essential portions of the structure. The whole of the openings being bridged by horizontal lintels, the whole of the main lines of the superstructure are horizontal, and their horizontal status is as strongly marked as possible by the terminating lines of the cornice—the whole of the pressures of the superstructure are simply vertical, and the whole of the lines of design of the supports are laid out so as to emphasize the idea of resistance to vertical pressure. The Greek column, too, has only one simple office to perform, that of supporting a single mass of the superstructure, exercising a single pressure in the same direction. In the Gothic building the main pressures are oblique and not vertical, and the main feature of the exterior substructure, the buttress, is designed to express resistance to an oblique pressure; and no real progress was made with the development of the arched style until the false use of the apparent column or pilaster as a buttress was got rid of, and the true buttress form evolved. On the interior piers of the arcade there is a resolution of pressures which practically results in a vertical pressure, and the pier remains vertical; but the pressure upon it being the resultant of a complex collection of pressures, each of these has, in complete Gothic, its own apparent vertical supporting feature, so that the plan of the substructure becomes a logical representation of the main features and pressures of the superstructure. The main tendency of the pointed arched building is toward vertically, and this vertical tendency is strongly emphasized and assisted by the breaking up of the really solid mass of the pier into a number of slender shafts, which, by their strongly marked parallel lines, lead the eye upward toward the closing-in lines of the arcade and of the vaulted roof which forms the culmination of the whole. The Greek column is also assisted in its vertical expression by the lines of the fluting; but as the object of these is only to emphasize the one office of the one column, they are strictly subordinate to the main form, are in fact merely a kind of decorative treatment of it in accordance with its function. In the Gothic pier the object is to express complexity of function, and the pier, instead of being a single fluted column, is broken up into a variety of connected columnar forms, each expressive of its own function in the design. It may be observed also that the Gothic building, like the Greek, falls into certain main divisions arising out of the practical conditions of its construction, and which form a kind of "order" analogous to the classic order in a sense, though not governed by such strict conventional rules. The classic order has its columnar support, its beam, its frieze for decorative treatment. The Gothic order has its columnar support, its arch (in place of the beam), its decoratively treated stage (the triforium), occupying the space against which the aisle roof abuts, and its clerestory, or window stage. All these arise as naturally out of the conditions and historical development of the structure in the Gothic case as in the Greek one, but the Greek order is an external, the Gothic an internal one. The two styles are based on constructive conditions totally different the one from the other; their expression and character are totally different. But this very difference is the most emphatic declaration of the same principle, that architectural design is the logical, but decorative, expression of plan and construction.
[1]Delivered before the Society of Arts, London, December 13, 1887. From theJournalof the Society.[2]Agroinis the edge line formed by the meeting and intersection of any two arched surfaces. When this edge line is covered and emphasized by a band of moulded stones forming an arch, as it were, on this edge, this is called agroin rib.[3]The "D" seems to have been accidentally omitted in this diagram; it is of course the fourth angle of the plan.[4]This was illustrated by diagrams on the wall at the delivery of the lecture.
[1]
Delivered before the Society of Arts, London, December 13, 1887. From theJournalof the Society.
Delivered before the Society of Arts, London, December 13, 1887. From theJournalof the Society.
[2]
Agroinis the edge line formed by the meeting and intersection of any two arched surfaces. When this edge line is covered and emphasized by a band of moulded stones forming an arch, as it were, on this edge, this is called agroin rib.
Agroinis the edge line formed by the meeting and intersection of any two arched surfaces. When this edge line is covered and emphasized by a band of moulded stones forming an arch, as it were, on this edge, this is called agroin rib.
[3]
The "D" seems to have been accidentally omitted in this diagram; it is of course the fourth angle of the plan.
The "D" seems to have been accidentally omitted in this diagram; it is of course the fourth angle of the plan.
[4]
This was illustrated by diagrams on the wall at the delivery of the lecture.
This was illustrated by diagrams on the wall at the delivery of the lecture.
THE METEOROLOGICAL STATION ON MT. SANTIS.THE METEOROLOGICAL STATION ON MT. SANTIS.
At the second International Meteorological Congress, in 1879, the erection of an observatory on the top of a high mountain was considered. The Swiss Meteorological Commission undertook to carry out the project, and sent out circulars to different associations, governments, and private individuals requesting single or yearly contributions to aid in defraying the expense of the station. In December, 1881, an extra credit of about $1,000 was granted by the Bundesversammlung for the initial work on the station, which was temporarily placed in the Santis Hotel, and a telegraph was put up between that place and Weisbad in August, 1882, so that on September 1 of the same year the meteorological observations were begun.
At the end of August, 1885, this temporary arrangement expired, and the enterprise could not be carried on unless the support of the same was undertaken by the Union. On March 27, 1885, the Bundesversammlung decided to take the necessary steps. Mr. Fritz Brunner, who died May 1, 1885, left a large legacy for the enterprise, making it possible to build a special observatory.
For this purpose the northeast corner of the highest rocky peak was blasted out and the building was so placed that the wall of rock at the rear formed an excellent protection from the high west winds. By the first of October, last year, the building was ready for occupancy, and there was a quiet opening at which Mr. Potch, director of the Blue Hill Observatory, near Boston, and others were present.
The building is 26 feet long, 19 feet deep, and 30 feet high, and is very solid and massive, having been built of the limestone blasted from the rock. It consists of a ground floor containing the telegraph office, the observers' work room, and the kitchen and store rooms; the first story, in which are the living and sleeping rooms for the observers and their assistants; and the second story, living and sleeping rooms for visiting scientists who come to make special observations, and a reserve room. The barometer and barograph are placed in the second story, at a height of about 8,202 feet above the level of the sea, whereas in the hotel they were only about 8,093 feet above the sea level. The flat roof, of wood and cement, which extends very little above the plateau of the mountain top, is admirably adapted for making observations in the open air. All the rooms in the house are ceiled with wood, and the walls and floors of the ground floor and first story and the ceilings of the second story are covered with insulating material. The cost of the building, including the equipments, amounted to about $11,200.
The fact that since the erection of the Santis station there has been a still higher station constructed on Sonnblick (10,137 feet high) does not decrease the value of the former, for the greater the number of such elevated stations, the better will be the meteorological investigations of the upper air currents. The present observer at Santis is Mr. C. Saxer, who has endured the hardships and privations of a long winter at the station.
The anemometer house, which is shown in our illustration, is connected with the main house by a tunnel. Several times during the day records are taken of the barometer, the thermometer, the weather vane, as well as notes in regard to the condition of the weather, the clouds, fall of rain or snow, etc. A registering aneroid barometer marks the pressure of the atmosphere hourly, and two turning thermometers register the temperature at midnight and at four o'clock in the morning.—Illustrirte Zeitung.
"The light of the body is the eye." Of all our senses, sight, hearing, touch, taste, and smell, the sight is that which seems to us the most important. Through the eye, the organ of vision, we gain more information and experience more pleasure, perhaps, than through any or all our other organs of sense. Indeed, we are apt to depreciate the value of our other senses when comparing them to the eyesight. It is not uncommon to hear a person say, "I would rather die than be blind." But no one says, "I would rather die than lose my hearing." As a matter of fact, the person who is totally blind generally appears to be more cheerful, happier, than one who is totally deaf. Deaf mutes are often dull, morose, quick tempered, obstinate, self-willed, and difficult to get along with, while the blind are not infrequently distinguished for qualities quite the reverse. It is worthy of remark that the eye is that organ of sense which is most ornamental as well as useful, and the deprivation of which constitutes the most visible deformity. But it is unnecessary to enter into a comparison of the relative value of our senses or the relative misfortune of our loss of any one of them. We need them all in our daily struggle for existence, and it is necessary to our physical and mental well-being, as well as to our success in life, that we preserve them all in as high a degree of perfection as possible. We must not lose sight of the fact that all our organs of sense are parts of one body, and that whatever we do to improve or preserve the health of our eyes cannot do harm to any other organ. We shall be able to "take care of our eyes" more intelligently if we know something of their structure and how they perform their functions. The eye is a hollow globe filled with transparent material and set in a bony cavity of the skull, which, with the eyelids and eyelashes, protect it from injury. It is moved at will in every direction by six muscles which are attached to its surface, and is lubricated and kept moist by the secretions of the tear gland and other glands, which secretions, having done their work, are carried down into the nose by a passage especially made for the purpose—the tear duct. We are all familiar with the fact that our eyes are "to see with," but in order to be able to take care of our eyes intelligently, it is necessary to understand as far as possible how to see with them.
It is a remarkable fact that every object we see has its picture formed upon the back wall of our eyes. The eye is a darkened chamber, and the whole of the frontpart of it acts as a lens to bring the rays of light coming from objects we wish to see to a focus on its back wall, thus forming a picture there as distinct as the picture formed in the camera obscura of the photographer. This has not only been proved by the laws of optics, but has been actually demonstrated in the eyes of rabbits and other animals. Experimenters have held an object before the eye of a rabbit for a few moments, and have then killed the animal and removed the eye as quickly as possible, and laid its back wall bare, and have distinctly seen there the picture of the object upon which the eye had been fixed. It is a truly wonderful fact that these pictures upon the back wall of the eye can be changed so rapidly that the picture of the object last looked at disappears in an instant and makes way for the picture of the next. We know that the picture formed on the back wall of the eye is carried back to the brain by the optic nerve, but there our knowledge stops. Science cannot tell us how the brain, and through it the mind, completes the act of seeing. It is there that the finite and the infinite touch, and, as our minds are finite, we cannot comprehend the infinite.
But there is enough that we can understand, and it shall be my endeavor in this paper to make some plain statements that will help as a guide in the preservation of those wonderful and useful organs.
We have to use our eyes for near and far distant vision. In gathering pictures of distant objects the normally shaped eye puts forth little or no effort. It is the near work, such as reading, sewing, or drawing, that puts a real muscular strain upon the eyes. There are certain rules that apply to the use of the eyes for such near work regardless of the age of the person.
1. In reading, a book or newspaper should be held at a distance of from ten to fifteen inches from the eyes. It is hardly necessary to caution anybody not to hold the print further away than fifteen inches. The only objection to holding ordinary print too far away is that in so doing the pictures formed on the back wall of the eye are too small to be readily and easily perceived, and the close attention consequently necessary causes both the eyes and the brain to tire. Most persons quickly find this out themselves, and the tendency is rather to hold the book too near, for the nearer the object to the eye, the larger its picture upon the retina, or back eye wall. But here we encounter another danger. The nearer the object the eyes are concentrated upon, the greater the muscular effort necessary; so that by holding the book too near, the labor of reading is greatly increased, and the long persistence in such a habit is likely to produce weak eyes, and may, in some instances, lead to real near-sightedness. When children are observed to have acquired this habit and cannot be persuaded out of it, they should always be taken to a physician skilled in the treatment of the eye for examination and advice. A little attention at such a time may save them from a whole lifetime of trouble with their eyes. Of course, the larger the print, the farther it may be held from the eyes.
2. The position of the person with regard to the light should be so that the latter will fall upon the page he is reading, and not upon his eyes. It is generally considered most convenient to have the light shine over the left shoulder, so that in turning the leaves of the book, the shadow of the hand upon the page is avoided. It is not always possible to do this, however, and, at the same time, to get plenty of light upon the page. When one finds himself compelled to face the light in reading, or in standing at a desk bookkeeping, he should always contrive to shade his eyes from a direct light. This may be done with a large eye shade projecting from the brow. A friend of mine, a physician, is very fond of reading by a kerosene lamp, the lamp being placed on a table by his side, and the direct light kept from his eyes by means of a piece of cardboard stuck up by the lamp chimney.
3. The illumination should always be sufficient. Nothing is more injurious to the eyes than reading by a poor light. Many persons strain their eyes by reading on into the twilight as long as they possibly can. They become interested and do not like to leave off. Some read in the evening at too great a distance from the source of light, forgetting that the quantity of light diminishes as the square of the distance from the source of light increases. Thus, at four feet, one gets only one-sixteenth part of the light upon his page that he would at one foot. It is the duty of parents and others who have charge of children to see to it that they do not injure their eyes by reading by insufficient light, either daylight or artificial light. There is a common notion that electric light is bad for the eyes. The only foundation I can think of for such a notion is that it is trying to the eyes to gaze directly at the bright electric light. It is bad to gaze long at any source of light, and the brighter the source of light gazed at, the worse for the eyes, the sun being the worst of all. I have seen more than one person whose eyes were permanently injured by gazing at the sun, during an eclipse or otherwise. As a matter of fact, nothing short of sunlight is better than the incandescent electric light to read by or to work by.
As to reading while lying down in bed or on a lounge, I can see no objection to it so far as the eyes are concerned, provided the book is held in such a position that the eyes do not have to be rolled down too far. Unless the head is raised very high by pillows, however, it will be found very fatiguing to hold the book high enough, not to mention the danger of falling asleep, and of upsetting the lamp or candle, and thus setting the bed on fire. Many persons permanently weaken their eyes by reading to pass away the tedious hours during recovery from severe illness. The muscles of the eyes partake of the general weakness and are easily overtaxed. Persons in this condition may be read to, but should avoid the active use of their own eyes.
Reading while in the rail cars or in omnibuses is to be avoided. The rapid shaking, trembling or oscillating motion of the cars makes it very difficult to keep the eyes fixed upon the words, and is very tiresome. I have seen many persons who attributed the failure of their eyes to the daily habit of reading while riding to and from the city. Children should be cautioned against reading with the head inclined forward. The stooping position encourages a rush of blood to the head, and consequently the eyes become congested, and the foundations for near-sightedness are laid.
(To be continued.)
[1]From a paper by David Webster. M.D., professor of ophthalmology in the New York Polyclinic and surgeon to the Manhattan Eye and Ear Hospital, New York.
[1]
From a paper by David Webster. M.D., professor of ophthalmology in the New York Polyclinic and surgeon to the Manhattan Eye and Ear Hospital, New York.
From a paper by David Webster. M.D., professor of ophthalmology in the New York Polyclinic and surgeon to the Manhattan Eye and Ear Hospital, New York.
The author deals with the question whether a sample of goods is dyed with indigo alone or with a mixture of indigo and other blue coloring matters. His method may be summarized as follows: Threads of the material in question should give up no coloring matter to boiling water. Alcohol at 50 and at 95 per cent. (by volume) ought to extract no color, even if gently warmed (not boiled). Solution of oxalic acid saturated in the cold, solution of borax, solution of alum at 10 per cent., and solution of ammonium molybdate at 331/3per cent. ought not to extract any coloring matter at a boiling heat. The borax extract, if subsequently treated with hydrochloric acid, should not turn red, nor become blue on the further addition of ferric chloride. Solutions of stannous chloride and ferric chloride with the aid of heat ought entirely to destroy the blue coloring matter. Glacial acetic acid on repeated boiling should entirely dissolve the coloring matter. If the acetic extracts are mixed with two volumes of ether and water is added, so as to separate out the ether, the water should appear as a slightly blue solution, the main bulk of the indigo remaining in suspension at the surface of contact of the ethereal and watery stratum. This acid watery stratum should be colorless, and should not assume any color if a little strong hydrochloric acid is allowed to fall into it through the ether. No sulphureted hydrogen should be evolved on boiling the yarn or cloth in strong hydrochloric acid. On prolonged boiling, supersaturation with strong potassa in excess, heating and adding a few drops of chloroform, no isonitrile should be formed.—W. Lenz.
This is a Special Edition of theScientific American, issued monthly—on the first day of the month. Each number contains about forty large quarto pages, equal to about two hundred ordinary book pages, forming, practically, a large and splendidMagazine of Architecture, richly adorned withelegant plates in colorsand with fine engravings, illustrating the most interesting examples of modern Architectural Construction and allied subjects.
A special feature is the presentation in each number of a variety of the latest and best plans for private residences, city and country, including those of very moderate cost as well as the more expensive. Drawings in perspective and in color are given, together with full Plans, Specifications, Costs, Bills of Estimate, and Sheets of Details.
No other building paper contains so many plans, details, and specifications regularly presented as theScientific American. Hundreds of dwellings have already been erected on the various plans we have issued during the past year, and many others are in process of construction.
Architects, Builders, and Owners will find this work valuable in furnishing fresh and useful suggestions. All who contemplate building or improving homes, or erecting structures of any kind, have before them in this work an almostendless series of the latest and best examplesfrom which to make selections, thus saving time and money.
Many other subjects, including Sewerage, Piping, Lighting, Warming, Ventilating, Decorating, Laying out of Grounds, etc., are illustrated. An extensive Compendium of Manufacturers' Announcements is also given, in which the most reliable and approved Building Materials, Goods, Machines, Tools, and Appliances are described and illustrated, with addresses of the makers, etc.
The fullness, richness, cheapness, and convenience of this work have won for it theLargest Circulationof any Architectural publication in the world.
MUNN & CO., Publishers,361 Broadway, New York.
A Catalogue of valuable books on Architecture, Building, Carpentry, Masonry, Heating, Warming, Lighting, Ventilation, and all branches of industry pertaining to the art of Building, is supplied free of charge, sent to any address.
In connection with the publication of theBuilding Editionof theScientific American, Messrs. Munn & Co. furnish plans and specifications for buildings of every kind, including Churches, Schools, Stores, Dwellings, Carriage Houses, Barns, etc.
In this work they are assisted by able and experienced architects. Full plans, details, and specifications for the various buildings illustrated in this paper can be supplied.
Those who contemplate building, or who wish to alter, improve, extend, or add to existing buildings, whether wings, porches, bay windows, or attic rooms, are invited to communicate with the undersigned. Our work extends to all parts of the country. Estimates, plans, and drawings promptly prepared. Terms moderate. Address
MUNN & CO., 361Broadway, New York.
PUBLISHED WEEKLY.
Terms of Subscription, $5 a year.
Sent by mail, postage prepaid, to subscribers in any part of the United States or Canada. Six dollars a year, sent, prepaid, to any foreign country.
All the back numbers ofThe Supplement, from the commencement, January 1, 1876, can be had. Price, 10 cents each.
All the back volumes ofThe Supplementcan likewise be supplied. Two volumes are issued yearly. Price of each volume, $2.50 stitched in paper, or $3.50 bound in stiff covers.
Combined Rates.—One copy ofScientific Americanand one copy ofScientific American Supplement, one year, postpaid, $7.00.
A liberal discount to booksellers, news agents, and canvassers.
MUNN & CO., 361 Broadway, New York, N.Y.
Contained inScientific American Supplementduring the past ten years, sentfree of chargeto any address. MUNN & CO., 361 Broadway, New York.
Manufacturers, Agriculturists, Chemists, Engineers, Mechanics, Builders, men of leisure, and professional men, of all classes, need good books in the line of their respective callings. Our post office department permits the transmission of books through the mails at very small cost. A comprehensive catalogue of useful books by different authors, on more than fifty different subjects, has recently been published, for free circulation, at the office of this paper. Subjects classified with names of author. Persons desiring a copy have only to ask for it, and it will be mailed to them. Address,
MUNN & CO., Publishers,361 Broadway, New York, N.Y.
In connection with theScientific American, Messrs. MUNN & CO. are solicitors of American and Foreign Patents, have had 42 years' experience, and now have the largest establishment in the world. Patents are obtained on the best terms.
A special notice is made in theScientific Americanof all inventions patented through this Agency, with the name and residence of the Patentee. By the immense circulation thus given, public attention is directed to the merits of the new patent, and sales or introduction often easily effected.
Any person who has made a new discovery or invention can ascertain, free of charge, whether a patent can probably be obtained, by writing to MUNN & CO.
We also send free our Hand Book about the Patent Laws, Patents, Caveats, Trade Marks, their costs, and how procured. Address
MUNN & CO.,361 Broadway, New York.Branch Office, 622 and 624 F St., Washington, D.C.