[3]
"It has been suggested that the extent of the dark space represents the mean free path of the molecules.... It has been pointed out by others that the extent of the dark space is really considerably greater than the mean free path of the molecules, calculated according to the ordinary way. My measurements make it nearly twenty times as great. This, however, is not in itself a fatal objection; for, as we have seen, the mean free path of an ion may be different from that of a molecule moving among others."—Schuster,Proc. Roy. Soc., xlvii., pp. 556-7.
"It has been suggested that the extent of the dark space represents the mean free path of the molecules.... It has been pointed out by others that the extent of the dark space is really considerably greater than the mean free path of the molecules, calculated according to the ordinary way. My measurements make it nearly twenty times as great. This, however, is not in itself a fatal objection; for, as we have seen, the mean free path of an ion may be different from that of a molecule moving among others."—Schuster,Proc. Roy. Soc., xlvii., pp. 556-7.
[4]
"Physical Memoirs," part ii., vol. i., p. 244. The paragraph is italicized in the original.
"Physical Memoirs," part ii., vol. i., p. 244. The paragraph is italicized in the original.
[5]
Loc. cit., p. 242.
[6]
In a valuable paper read before the Royal Society, November 20, 1890, by Professors Liveing and Dewar, on finely divided metallic dust thrown off the surface of various electrodes, in vacuum tubes, they find not only that dust, however fine, suspended in a gas will not act like gaseous matter in becoming luminous with its characteristic spectrum in an electric discharge, but that it is driven with extraordinary rapidity out of the course of the discharge.
In a valuable paper read before the Royal Society, November 20, 1890, by Professors Liveing and Dewar, on finely divided metallic dust thrown off the surface of various electrodes, in vacuum tubes, they find not only that dust, however fine, suspended in a gas will not act like gaseous matter in becoming luminous with its characteristic spectrum in an electric discharge, but that it is driven with extraordinary rapidity out of the course of the discharge.
[Continued from SUPPLEMENT, No. 794, page 12690.]
Having now brought before you the various methods by which ordinary coal gas can be enriched, so as to give an increased luminosity to the flame, I wish now to discuss the methods by which the gas can be burnt, in order to yield the greatest amount of light, and also the compounds which are produced during combustion.
In the first lecture, while discussing the theory of luminous flames, I pointed out that, in an atmospheric burner, it was not the oxygen of the air introduced combining with and burning up the hydrocarbons, and so preventing the separation of incandescent carbon, which gave the non-luminous flame, but the diluting action of the nitrogen, which acted by increasing the temperature at which the hydrocarbons are broken up, and carbon liberated, a fact which was proved by observation that heating the mixture of gas and air again restored the luminosity of the flame. This experiment clearly shows that temperature is a most important factor in the illuminating value of a flame, and this is still further shown by a study of the action of the diluents present in coal gas, the non-combustible ones being far more deleterious than the combustible, as they not only dilute, but withdraw heat.
Anything which will increase the temperature of the flame will also increase the illuminating power, provided, of course, that the increase in temperature is not, obtained at the expense of the too rapid combustion of the hydrocarbons.
As has been shown in the experiments relating to the action of diluents on flame, already quoted, oxygen, when added to coal gas, increases its illuminating value to a marked and increasing degree, until a certain percentage has been added, after which the illuminating power is rapidly decreased, until the point is reached when the mixture becomes explosive. This is due to the fact that the added oxygen increases the temperature of the flame by doing the work of the air, but without the cooling and diluting action of the nitrogen; when, however, a certain proportion is added, it begins to burn up the heavy hydrocarbons, and although the temperature goes on increasing, the light-giving power is rapidly diminished by the diminution of the amount of free carbon in the flame.
It has been proposed to carburet and enrich poor coal gas by admixture with it of an oxy-oil gas made under Tatham's patents, in which crude oils are cracked at a comparatively low temperature, and are there mixed with from 12 to 24 per cent. of oxygen gas. Oil gas made at low temperatures,per se, is of little use as an illuminant, as it burns with a smoky flame, and does not travel well, but when mixed with a certain amount of oxygen, it gives a very brilliant white light, and no smoke, while as far as experiments have at present gone, its traveling powers are much improved.
At first sight it seems a dangerous experiment to mix a heavy hydrocarbon gas with oxygen, but it must be remembered that although hydrogen and carbon monoxide only need to be mixed with half their own volume of oxygen to give a most explosive mixture, yet as the number of carbon and hydrogen atoms in the combustible gas increase, so does the amount of oxygen needed to give explosion. Thus coal gas needs rather more than its own volume, and ethylene three times its volume, to give the maximum explosive results, while these mixtures begin to be explosive when 10 per cent. of oxygen is mixed with hydrogen or water gas, 30 per cent. with coal gas, and over 50 per cent. of oil gas of the character used. It is claimed that if this gas was used as an enricher of coal gas, 5 per cent. of it would increase the luminosity of 16-candle gas by about 40 per cent.
Oxygen has been obtained for some time past from the air on a commercial scale by the Brin process, and at the present time there seems every prospect of our being able to obtain oxygen at a rate of about 3s. 6d. per 1,000 cubic feet. Another process by which this important result can also be obtained was first introduced by Tessie du Mothay, and has now just been revived. It consists of passing alternate currents of steam and air over sodic manganate heated to dull redness in an iron tube; the process has never been commercially successful, for the reason that the contents of the tube fused, and flowing over the surface of the iron rapidly destroyed the tubes or retorts, and also as soon as fusion took place, the mass became so dense that it had little or no action on the air passing over it. Now, however, this difficulty has been partly overcome by so preparing the manganate as to prevent fusion, and to keep it in a spongy state, which gives very high results, and the substance being practically everlasting, the cost of production is extremely low.
It is proposed to feed this by a separate system of pipes to small gas jets, and by converting them into practically oxyhydrogen blow pipes, to raise solid masses of refractory material to incandescence, and also by supplying oxygen in the same way to oil lamps of particular construction, to obtain a very great increase in illuminating power.
Whether these methods of employing cheap oxygen would be successful or not, I do not wish to discuss at the present time, but there is no doubt but that cheap oxygen would be an enormous boon to the gas manager, as by mixing 0.8 per cent. of oxygen with his coal gas before purification, he could not only utilize the method so successfully introduced by Mr. Valon at Ramsgate, but could also increase the illuminating value of his gas.
In speaking of the structure of flame, I pointed out that close to the burner from which the gas giving the flame is issuing, a space exists in which no combustion is going on—in other words, a flame is never in contact with the rim of the burner. This is best seen when the gas is turned low—with a batswing burner, for instance—turned so low that only a small non-luminous flame is left, the space between burner and flame will appear as great as the flame itself, while, if the gas is mixed with an inert diluent like carbon dioxide, the space can be very much increased.
Several theories have been brought forward to explain this phenomenon, but the true one is that the burner abstracts so much heat from the flame at that point that it is unable to burn there, and this can be proved by the fact that where a cold object touches the flame, a dividing space, similar to that noticed between flame and burner, will always be observed, and the colder the object and the more diluted the gas the greater is the observed space. If a cold metal wire or rod is held in a non-luminous flame, it causes an extinction of the gas for some considerable space around itself; but as the temperature of the rod rises, this space becomes smaller and smaller until the rod is heated to redness, and then the flame comes in contact with the rod.
In the same way, if the burner from which the gas is issuing be heated to redness, the space between burner and flame disappears. It has already been shown that cooling the flame by an inert diluent reduces the illuminating value, and finally renders it more luminous; and we are now in a position to discuss the points which should be aimed at in the construction of a good gas burner.
In the first place, a sensible diminution in light takes place when a metal burner is employed, and the larger the surface and thickness of the metal the worse will be its action on the illuminating power of the flame; but this cooling action is only influencing the bottom of the flame, so that with a small flame the total effect is very great, and with a very large flame almostnil.
The first point, therefore, to attend to is that the burner shall be made of a good non-conductor. In the next place, the flow of the gas must be regulated to the burner, as, if you have a pressure higher than that for which the burner is constructed, you at once obtain a roaring flame and a loss of illuminating power, as the too rapid rush of gas from the burner causes a mingling of gas and air and a consequent cooling of the flame. The tap also which regulates the flame is better at a distance from the burner than close to it, as any constriction near the burner causes eddies, which give an unsteady flame.
These general principles govern all burners, and we will now take the ordinary forms in detail. In the ordinary flat flame burner, given a good non-conducting material, and a well regulated gas supply, little more can be done, while burning it in the ordinary way, to increase its luminosity; and it is the large surface of flame exposed to the cooling action of the air which causes this form of burner to give the lowest service of any per cubic foot of gas consumed. Much is done, moreover, by faulty fittings and shades, to reduce the already poor light given out, because the light-yielding power of the flame largely depends upon its having a well rounded base and broad, luminous zone; and when a globe with a narrow opening is used with such a flame—as is done in 99 out of 100 cases—the updraught drags the flame out of shape, and seriously impairs its light-giving powers, a trouble which can be got over by having the globe with an opening at the bottom not less than 4 inches in diameter, and having small shoulders fixed to the burner, which draw out the flame and protect the base from the disturbing influence of draughts.
The Argand burner differs from the flat flame burners in that a circular flame is employed. The air supply is regulated by a cylindrical glass, and this form of burner gives a better service than the flat flame burner, as not only can the supply of gas and air be better adjusted, but the air being slightly warmed by the hot glass adds to the temperature of the flame, which is also increased by radiation from the opposite side of the flame itself.
The chief loss of light in such a burner depends upon the fact that, being circular, the light from the inner surface has to pass through the wall of flame, and careful photometric experiments show that the solid particles present in the flame so reduce its transparency that a loss amounting to about 25 per cent. of light takes place during its transmission.
The height of the flame also must be carefully adjusted to the size of the flame, as too long a chimney, by increasing the air supply unduly, cools, and so lowers the illuminating power of the flame. Experiments with carbureted water gas gave the following results, with a consumption of 5 cubic feet per hour:
For many years no advance was made upon these forms of burner, but when, ten years ago, it was recognized that anything which cools the flame reduces its value, while anything which increases its temperature raises its illuminating power, then a change took place in the forms of burner in use, and the regenerative burners, introduced by such men as Siemens, Grimston, and Bower, commenced what was really a revolution in gas lighting.
By utilizing the heat contained in the escaping products of combustion to raise the temperature of the gas and air which are to enter into combination in the flame, an enormous increase in the temperature of the solid particles of carbon in the flame is obtained, and a far greater and whiter light is the result.
The Bower lamp, in which (at any rate in the later forms) the flame burns between a downward and an upward current of air, was one of the first produced, and so well has it been kept up to date that it still holds its own; while as types of the "inverted cone" regenerative burner, we may also take the Cromarty and Wenham lights, which have been followed by a host of imitators, and so closely are the original types adhered to that one begins seriously to wonder what the use of the Patent Office really is.
The Schulke, and the last form of Siemens regenerative burner, however, stand apart from all the others by dealing with flat and not conical flames, and in both regeneration is carried on to a high degree. The only drawback to the regenerative burner is that it is by far the best form of gas stove as well as burner, and that the amount of heat thrown out by the radiant solid matter in the flame is, under some circumstances, an annoyance. But, on the other hand, we must not forget that this is the form best adapted for overhead burners, and that nearly every form of regenerative lamp can be adapted as a ventilating agent, and that with the withdrawal of the products of combustion from the air of the room, the great and only serious objection to gas as an illuminant disappears.
When coal gas is burned, the hydrogen is supposed to be entirely converted into water vapor, and the carbon to finally escape into the air as carbon dioxide; and if this were so, every cubic foot of gas consumed would produce approximately 0.52 cubic foot of carbon dioxide and 1.34 cubic feet of water vapor, while the illuminating power yielded by the cubic foot of gas will, of course, vary with the kind of burner used.
Roughly speaking, the ordinary types of burner give the following results:
So that the regenerative forms of burner, by giving the greatest illuminating power per cubic foot of gas consumed, yield a smaller amount of vitiation to the air per candle of light emitted.
An ordinary room, say 16' X 12' X 10', would not be considered properly illuminated unless the light were at least equal to 32 candle power; and in the table below the amount of the oxygen used up and the products of combustion formed by each class of illuminant and burner in attaining this result are given, the number of adults who would exhale the same amount during respiration being also stated.
From these data it appears, according to rules by which the degree of vitiation of the air in any confined space is measured by the amount of oxygen used up and carbon dioxide formed, that candles are the worst offenders against health and comfort. Oil lamps come next, and gas least. This, however, is an assumption which practical experience does not bear out. Discomfort and oppression in a room lighted by candles or oil are less felt than in one lighted by any of the older forms of gas burner; and the partial explanation of this is to be found in the fact that, when a room is illuminated with candles or oil, people are contented with a feebler and more local light than when using gas. In a room of the size described, the inmates would be more likely to use two candles placed near their books, or on a table, than thirty-two scattered about the room.
Moreover, the amount of water vapor given off during the combustion of gas is greater than in the case of the other illuminants. Water vapor having a great power of absorbing radiant heat from the burning gas becomes heated, and diffusing itself about the room, causes great feeling of oppression; the air also being highly charged with moisture, is unable to take up so rapidly the water vapor which is always evaporating from the surface of our skin, whereby the functions of the body receive a slight check, resulting in a feeling ofmalaise.
Added to these, however, is a far more serious factor which has, up to the present, been overlooked, and that is that an ordinary gas flame, in burning, yields distinct quantities of carbon monoxide and acetylene, the prolonged breathing of which in the smallest traces produces headache and general physical discomfort, while its effect upon plant life is equally marked.
AMOUNT OF OXYGEN REMOVED FROM THE AIR, AND CARBON DIOXIDE AND WATER VAPOR GENERATED TO GIVE AN ILLUMINATION EQUAL TO 32 CANDLE POWER.
Ever since the structure of flame has been noted and discussed, it has been accepted as a fact beyond dispute that the outer almost invisible zone which is interposed between the air and the luminous zone of the flame is the area of complete combustion, and that here the unburnt remnants of the flame gases, meeting the air, freely take up oxygen and are converted into the comparatively harmless products of combustion, carbon dioxide and water vapor, which only need partial removal by any haphazard process of ventilation to keep the air of the room fit to support animal life. I have, however, long doubted this fact, and at length, by a delicate process of analysis have been able to confirm my suspicions. The outer zone of a luminous flame is not the zone of complete combustion; it is a zone in which luminosity is destroyed in exactly the same way that it is destroyed in the Bunsen burner; that is the air penetrating the flame so dilutes and cools down the outer layer of incandescent gas that it is rendered non-luminous, while some of the gas sinks below the point at which it is capable of burning, with the result that considerable quantities of the products of incomplete combustion carbon monoxide and acetylene escape into the air, and render it actively injurious.
I have proved this by taking a small platinum pipe, with a circular loop on the end, the interior of the loop being pierced with minute holes, and by making a circular flame burn within the loop so that the non-luminous zone of the flame just touched the inside of the loop, and then by aspiration so gentle as not to distort the shape of the flame, withdrawing the gases escaping from the outer zone. On analyzing these by a delicate process, which will be described elsewhere, I arrived at the following results:
GASES ESCAPING FROM THE OUTER ZONE OF FLAME.
The gases leaving the luminous flame show that the diluting action of the nitrogen is so great that considerable quantities even of the highly inflammable and rapidly burning hydrogen escape combustion, while the products of incomplete combustion are present in sufficient quantity to account perfectly for the deleterious effects of gas burners in ill-ventilated rooms. The analyses also bring out very clearly the fact that, although the dilution of coal gas by air in atmospheric burners is sufficient to prevent the decomposition of the heavy hydrocarbons with liberation of carbon, and so destroy luminosity, yet the presence of the extra supply of oxygen does make the combustion far more perfect, so that the products of incomplete combustion are hardly to be found in the escaping gases.
These experiments are of the gravest import, as they show more clearly than has ever been done before the absolute necessity for special and perfect ventilation where coal gas is employed for the illumination of our dwelling rooms.
When coal gas was first employed during the early part of this century as an illuminating agent, the low pitch of the old fashioned rooms, and the excess of impurities in the gas, rendered it imperative that the products of combustion of the sulphur-laden gas should be conducted from the apartment, and for this purpose arrangements of tubes with funnel shaped openings were suspended over the burners. The noxious gases were thus conveyed either to the flue or open air; but this type of ventilator was unsightly in the extreme, and some few attempts were made to replace it by a more elegant arrangement, as in the ventilating lamp invented by Faraday, and in the adaptation of the same principle by Mr. I.O.N. Rutter, who strove for many years to direct attention to the necessity of removing the products of combustion from the room. But with the increase of the gas industry, the methods for purifying the coal gas became gradually more and more perfect, while the rooms in the modern houses were made more lofty; and the products of combustion being mixed with a larger volume of air, and not containing so many deleterious constituents, became, if not much less noxious, at all events less perceptible to the nose. As soon as this point was reached, the ventilating tubes were discarded, and from that day to this the air of our dwelling rooms has been contaminated by illuminants, with hardly an effort to alleviate the effect produced upon health. I say "hardly an effort," for the Messrs. Boyle tried, by their concentric tube ventilators, to meet the difficulty, while Mr. De la Garde and Mr. Hammond have each constructed lamps more or less on the principle of the Rutter lamp; but either from their being somewhat unsightly, or from their diminishing the amount of light given out, none of them have met with any degree of success. In places of public entertainment, where large quantities of coal gas are consumed for illuminating purposes, the absolute necessity for special ventilation gave rise to the "sun burner," with its ventilating shaft. This, however, gives but a very poor illuminating power per cubic foot of gas consumed, due partly to the cooling of the flame by the current of air produced, and partly to its distance from the objects to be illuminated.
The great difficulty which in the whole history of ventilation has opposed itself to the adoption of proper arrangements for removing the products of combustion has been the necessity of bringing the tube to carry off the gases low down into the room, and of incasing the burner in such a way that none of the products should escape; but with the present revolution in gas burners this necessity is entirely done away with, and the regenerative burner offers the means not only of removing all the products of combustion but also of effecting thorough ventilation of the room itself, as experiments made some few years ago showed me that a ventilating regenerative burner, burning 20 cubic feet of gas per hour and properly fitted, will not only remove all its own products of combustion, but also over 5,000 cubic feet per hour of the vitiated air from the upper part of the room. I am quite aware that many regenerative lamp makers raise various objections to fitting ventilating lamps, these being chiefly due to the fact that it requires considerable trouble to fit them properly; but I think I have said enough to show the absolute necessity of some such system, and when there is a general demand for ventilating lamps, engineering skill will soon find means to overcome any slight difficulties which exist.
Having disposed in a few words of a subject which, if fully treated, would occupy a long course of lectures by itself, I will pass on to the consideration of gas as at present used as a fuel.
There is no doubt that gas is the most convenient and in many ways one of the best forms of fuel for heating and cooking purposes, and the efforts which all large gas companies are now making to popularize and increase the use of gas for such purposes will undoubtedly bear fruit in the future. But before the day can come for gas to be used in this way on a large scale, there is one fact which the gas manager and gas stove manufacturer must clearly realize and submit to, and that is that no gas stove or gas water heater, of any construction, should be sent out or fitted without just as great care being taken to provide for the carrying away of the products of combustion as if an ordinary fuel range was being fitted. Do not for one moment allow yourself to be persuaded that, because a gas stove or geyser does not send out a mass of black smoke, the products of combustion can be neglected and with safety allowed to mingle with the atmosphere we are to breathe.
Scarcely a winter passes but one or more deaths are recorded from the products of combustion given off from various forms of water heaters used in bath rooms; scarcely a cookery class is given, with gas stoves, that one or more ladies do not have to leave suffering from an intense headache, and often in an almost fainting condition. And the same cause which brings about these extreme cases, on a smaller scale causes such physical discomfort to many delicately organized persons that a large class exist who absolutely and resolutely decline to have gas as an illuminant or fuel in any of their living rooms; and if the use of gas, more especially as fuel, is to be extended, and if gas is to hold its own in the future against such rivals as the electric light, then those interested in gas and gas stoves must face the problem, and by improving the methods of burning and using gas do away with the present serious drawbacks which exist to its use.
The feeling has gradually been gaining ground in the public mind that, when atmospheric burners and other devices for burning coal gas are employed for heating purposes, certain deleterious products of incomplete combustion find their way into the air, and that this takes place to a considerable extent is shown by the facts brought forward in a paper read by Mr. William Thomson before the last meeting of the British Association.
Mr. Thomson attempted to separate and determine the quantity of carbon monoxide and hydrocarbons present in the flue gases from various forms of gas stoves and burners, but, like every other observer who has attempted to solve this most difficult problem, he found it so beset with difficulties that he had to abandon it, and contented himself with determining the total amounts of carbon and hydrogen escaping in an unburned condition, experiments which showed that the combustion of gas in stoves for heating purposes is much more incomplete than one had been in the habit of supposing, but his experiments give no clew as to whether the incompletely burned matter consisted of such deleterious gases as carbon monoxide and acetylene, or comparatively harmless gases, such as marsh gas and hydrogen. After considerable work upon the subject, I have succeeded in doing this by a very delicate process of analysis, and I now wish to lay some of my results before you.
If a cold substance, metal or non-metal, be placed in a flame, whether it be luminous or non-luminous, it will be observed that there is a clear space, in which no combustion is taking place, formed round the cool surface, and that as the body gets heated so this space gets less and less until, when the substance is at the same temperature as the flame itself, there is contact between the two. Moreover, when a luminous flame is employed in this experiment the space still exists between the cool body and the flame, but you also notice that the luminosity is decreased over a still larger area although the flame exists.
This meaning that, in immediate contact with the cold body, the temperature is so reduced that the flame cannot exist, and so is extinguished over a small area; while over a still larger space the temperature is so reduced that it is not hot enough to bring about decomposition of the heavy hydrocarbons with liberation of carbon to the same extent as in hotter portions of the flame. Now, inasmuch as when water is heated or boiled in an open vessel, the temperature cannot rise above 100°C., and as the temperature of an ordinary flame is over 1,000°C., it is evident that the burning gas can never be in contact with the bottom of the vessel, or, in other words, the gas is put out before combustion is completed, and the unburned gas and products of incomplete combustion find their way into the air and render it perfectly unfit for respiration.
The portion of the flame which is supposed to be the hottest is about half an inch above the tip of the inner zone of the flame, and it is at this point that most vessels containing water to be heated are made to impinge on the flame; and it is this portion of the flame, also, which is utilized for raising various solids to a temperature at which they radiate heat.
In order to gain an insight into the amount of contamination which the air undergoes when a geyser or cooking stove is at work, I have determined the composition of the products of combustion, and the unburned gases escaping when a vessel containing water at the ordinary temperatures is heated up to the boiling point by a gas flame, the vessel being placed, in the first case, half an inch above the inner cone of the flame, and in the second, at the extreme outer tip of the flame.
GASES ESCAPING DURING CHECKED COMBUSTION.
These figures are of the greatest interest, as they show conclusively that the extreme top of the Bunsen flame is the only portion of the flame which can be used for heating a solid substance without liberating deleterious gases; and this corroborates the previous experiment on the gases in the outer zone of a flame, which showed that the outer zone of a Bunsen flame is the only place where complete combustion is approached.
Moreover, this sets at rest a question which has been over and over again under discussion, and that is whether it is better to use a luminous or a non-luminous flame for heating purposes. Using a luminous flame, it is impossible to prevent a deposit of carbon, which is kept by the flame at a red heat on its outer surface, and the carbon dioxide formed by the complete combustion of the carbon already burned up in flame is reduced by this back to carbon monoxide, so that even in the extreme tip of a luminous flame it is impossible to heat a cool body without giving rise to carbon monoxide, although acetylene being absent, gas stoves, in which small flat flame burners are used, have not that subtile and penetrating odor which marks the ordinary atmospheric burner stove, with the combustion checked just at the right spot for the formation of the greatest volume of noxious products.
It is the contact of the body to be heated with the flame before combustion is complete which gives rise to the greatest mischief; any cooling of the flame extinguishes a portion of the flame, and the gases present in the flame at the moment of extinction creep along the cooled surface and escape combustion.
Dr. Blochmann has shown the composition of the gases in various parts of the Bunsen flame to be as follows:
Which results show that it would be impossible to check the flame anywhere short of the extreme tip (where complete combustion is approximately taking place), without liberating deleterious products. I think I have said enough to show that no gas stove, geyser or gas cooking stove should be used without ample and thorough means of ventilation being provided, and no trace of the products of combustion should be allowed to escape into the air; until this is done, the use of improper forms of stoves will continue to inflict serious injury on the health of the people using them, and this will gradually result in the abandonment of gas as a fuel, instead of, as should be the case, its coming into general use. The English householder is far too prone to accept what is offered to him, without using his own common sense, and will buy the article which tickles his eye the most and his pocket the least, on the bare assurance of the shopkeeper, who is only anxious to sell; but when he finds that health and comfort are in jeopardy, and has discarded the gas stove, it will take years of labor to convince him that it was the misuse of gas which caused the trouble. Already signs are not wanting that the employers of gas stoves are beginning to fight shy of them, and I earnestly hope that the gas managers of the kingdom will bring pressure to bear upon the stove manufacturers to give proper attention to this all important question.
So strongly do I feel the importance of this question to the gas world and the public, that I freely offer to analyze the products of combustion given off by any gas stove or water heater sent to me at Greenwich during the next six months, on one condition, and that is that the results, good, bad, or indifferent, will be published in a paper before this Society, which has always been in the front when matters of great sanitary importance to the public had to be taken up. And if after that the public like to buy forms of apparatus which have not been certified, it is their own fault; but I do think that the maker of any stove or geyser which causes a death should be put upon his trial for manslaughter.
In conclusion, let us consider for a moment what is likely to be the future of gas during the next half century. The labor troubles, bad as they are and have been, will not cease for many a weary year. The victims of imperfect education (more dangerous than none at all, as, while destroying natural instinct, it leaves nothing in its place) will still listen and be led by the baneful influence of irresponsible demagogues, who care for naught so long as they can read their own inflammatory utterances in the local press, and gain a temporary notoriety at the expense of the poor fools whose cause they profess to serve. The natural tendency of this will be that every labor-saving contrivance that can will be pressed into the gas manager's service; and that, although coal (of a poorer class than at present used) will still be employed as a source of gas, the present retort setting will quickly give way to inclined retorts on the Coze principle; while, instead of the present wasteful method of quenching the red hot coke, it will be shot direct into the generator of the water gas plant, and the water gas carbureted with the benzene hydrocarbons derived from the smoke of the blast furnace and coke oven, or from the creosote oil of the tar distiller, by the process foreshadowed in the concluding sentences of my last lecture. It will then be mixed with the gas from the retorts, and will supply a far higher illuminant than we at present possess. In parts of the United Kingdom, such as South Wales, where gas coal is dear, and anthracite and bastard coals are cheap, water gas highly carbureted will entirely supplant coal gas, with a saving of fifty per cent. on the prices now existing in those districts. While these changes have been going on, and while improved methods of manufacture have been tending to the cheapening of gas, it will have been steadily growing in public favor as a fuel; and if in years to come the generation of electricity should have been so cheapened as to allow it to successfully compete with gas as an illuminant, the gas works will still be found as busy as of yore, the holder of gas shares as contented as to-day; for with a desire for a purer atmosphere and a white mist instead of a yellow fog, gas will have largely supplanted coal as a fuel, and gas stoves, properly ventilated and free from the reproaches I have hurled at them to-night, will burn a gas far higher in its heating power, far better in its power of bearing illuminating hydrocarbons, and free from poisonous constituents.
When the demand for it arises, hydrogen gas can be made as cheaply as water gas itself, and when time is ripe for a fuel gas for use in the house, it is hydrogen and not water gas which will form its basis. With carbureted water gas and 20 per cent. of carbon monoxide we are still below the limit of danger, but a pure water gas with over 40 per cent. of the same insidious element of danger will never be tolerated in our households. Already a patent has been taken by Messrs. Crookes and Ricarde-Seaver for purifying water gas from carbon monoxide, and converting it mainly into hydrogen by passing it at a high temperature through a mixture of lime and soda lime, a process which is chemically perfect, as the most expensive portion of the material used could be recovered; but in the present state of the labor market it is not practical, as for the making of every 100,000 cubic feet of gas, fifteen tons of material would have to be handled, the cost of labor alone being sufficient to prevent its being adopted; moreover, hydrogen can be made far cheaper directly.
From the earliest days of gas making, the manufacture of hydrogen by the passage of steam over red-hot iron has been over and over again mooted, and attempted on a large scale, but several factors have combined to render it futile.
In the first place, for every 478.5 cubic feet of hydrogen made under perfect theoretical conditions never likely to be obtained in practice, 56 lb. of iron were converted into the magnetic oxide, and as there was no ready sale for this article, this alone would prevent its being used as a cheap source of hydrogen; the next point was that when steam was passed over the red-hot iron, the temperature was so rapidly lowered that the generation of gas could only go on for a very short period, while, finally, the swelling of the mass in the retort and fusion of some of the magnetic oxide into the side renders the removal of the spent material almost an impossibility. These difficulties can, however, be got over. Take a fire clay retort, six feet long and a foot in diameter, and cap it with a casting bearing two outlet tubes closed by screw valves, while a similar tube leads from the bottom of the retort. Inclose this retort by a furnace chamber of iron lined with fire brick, leaving a space of two feet six inches round the retort, and connect the top of the furnace chamber with one opening at the top of the upright retort, while air blasts lead into the bottom of the furnace chamber, below rocking fire bars, which start at bottom of the retort, and slope upward, to leave room for ash holes closed by gas tight covers. The retort is filled with iron or steel borings, alone if pure hydrogen is required, or cast into balls with pitch if a little carbon monoxide is not a drawback, as in foundry work. The furnace chamber is now filled with coke, fed in through manholes, or hoppers, in the top, and the fuel being ignited, the blast is turned on, and the mixture of nitrogen and carbon monoxide passes over the iron, heating it to a red heat, while the fuel in contact with the retort does the same thing.
When the fuel and retort full of iron are at a cherry-red heat, the air blast is cut off, and the pipe connecting the furnace and retort, together with the pipe in connection with the bottom of the retort, are closed, and steam, superheated by passing through a pipe led round the retort or interior wall of the furnace, is injected at the bottom of the red-hot mass of iron, which decomposes it, forming magnetic oxide of iron and hydrogen, which escapes by the second tube at the top of the retort, and is led away either to a carbureting chamber if required for illumination, or direct to the gasholder if wanted as a fuel. The mass of incandescent fuel in the furnace chamber, surrounding the retort, keeping up the temperature of retort and iron sufficiently long to enable the decomposition to be completed.
The hydrogen and steam valves are now closed and the air blast turned on. The hot carbon monoxide passing over the hot magnetic oxide quickly reduces it down to metallic iron, which, being in a spongy condition, acts more freely on the steam during later makes than it did at first, and being infusible at the temperature employed, may be used for a practically unlimited period.
What more simple method than this could be desired? Here we have the formation of the most valuable of all fuel gases at the cost of the coke and steam used, a gas also which has double the carrying power for hydrocarbon vapors possessed by coal gas, while its combustion gives rise to nothing but water vapor.
In this course of lectures I have left much unsaid and undone which I should have liked to have had time to accomplish, and if I have been obliged to leave out of consideration many important points, it is the time at my disposal and not my will which is to blame. And now, in conclusion, I wish to express my thanks to my assistants, Messrs. J.A. Foster and J.B. Warden, who have heartily co-operated with me in much of the work embodied in these lectures.