RAILROADS TO THE CLOUDS.

If George Stephenson, when he placed the first locomotive on the track and guaranteed it a speed of six miles an hour, could have foreseen that in less than eighty years the successors of his rude machine would be climbing the sides of mountain ranges, piercing gorges hitherto deemed inaccessible, crossing ravines on bridges higher than the dome of St. Paul's, and traversing the bowels of the earth by means of tunnels, no doubt his big blue eyes would have stood out with wonder and amazement. But he foresaw nothing of the kind; the only problem present in his mind was how to get goods from the seaports in western England to London as easily and cheaply as possible, and to do this he substituted for horses, which had for 150 years been drawing cars along wooden or iron tracks, the wonderful machine which has revolutionized the freight and passenger traffic of the world.

It was, indeed, impossible for any one to foresee the triumphs of engineering which have accompanied the advances in transportation. To the engineer of the present day there are no impossibilities. The engineer is a wizard at whose command space and matter are annihilated. The highest mountain, the deepest valley, has no terrors for him. He can bridge the latter and encircle or tunnel the former. The only requisites which he demands are that something in his line be needed, and that the money is forthcoming to defray the expense, and the thing will be done. But the railroad he is asked to construct must be necessary, and the necessity must be plainly shown, or no funds will be advanced; and although the theory does not invariably hold good, especially when a craze for railroad building is raging, as a rule no expense for the construction of a road will be incurred without a prospect of remuneration.

Hence the need of railroad communication has caused lines to be constructed through districts where only a few years ago the thing would have been deemed impossible. The Pacific roads of this country were a necessity long before their construction, and in the face of difficulties almost insuperable were carried to successful completion. So, also, of the railroads in the Andes of South America. The famous road from Callao through the heart of Peru is one of the highest mountain roads in the world, as well as of the most difficult construction. The grades are often of 300 feet and more to the mile, and when the mountains were reached so great were the difficulties the engineers were forced to confront that in some places laborers were lowered from cliffs by ropes in order that, with toil and difficulty, they might carve a foothold in order to begin the cutting for the roadway.

In some sections tunnels are more numerous than open cuts, and so far as the road has gone sixty-one tunnels, great and small, have been constructed, aggregating over 20,000 feet in length. The road attains a height of 15,000 feet above the level of the sea, and at the highest point of the track is about as high as the topmost peak of Mont Blanc. It pierces the range above it by a tunnel 3,847 feet long. The stern necessities of business compelled the construction of this road, otherwise it never would have been begun.

The tunnels of the Andes, however, do not bear comparison with the tunnels, bridges, and snow sheds of the Union Pacific, nor do even these compare with the vast undertakings in the Alps--three great tunnels of nine to eleven miles in length, which have been prepared for the transit of travelers and freight. The requirements of business necessitated the piercing of the Alps, and as soon as the necessity was shown, funds in abundance were forthcoming for the enterprise.

But tunneling a mountain is a different thing from climbing it. Many years ago the attention of inventors was directed to the practicability of constructing a railroad up the side of a mountain on grades which, to an ordinary engine, were quite impossible. The improvements in locomotives twenty-five and thirty years ago rendered them capable of climbing grades which, in the early days of railroad engineering, were deemed out of the question. The improvements proved a serious stumbling block in the way of the inventors, who found that an ordinary locomotive was able to climb a much steeper grade than was commonly supposed. The first railroads were laid almost level, but it was soon discovered that a grade of a few feet to the mile was no impediment to progress, and gradually the grade was steepened.

The inventors of mountain railroad transportation might have been discouraged by this discovery, but it is a characteristic of an inventor that he is not set back by opposition, which, in fact, only serves to stimulate his zeal. The projectors of inclined roads and mountain engines kept steadily on, and in France, Germany, England, and the United States many experimental roads were constructed, each of a few hundred yards in length, and locomotive models were built and put in motion to the amazement of the general public, who jeered alike at the contrivances and the contrivers, deeming the former impracticable and the latter crazy.

But the idea of building a road up the side of a hill was not to be dismissed. There was money in it for the successful man, so the cranky inventors kept on at work in spite of the jeers of the rabble and the discouragements of capitalists loath to invest their money in an uncertain scheme. To the energy and perseverance of railroad inventors the success of the mountain railroad is due, as also is the construction of the various mountain roads, of which the road up Mt. Washington, finished in 1868, was the first, and the road up Pike's Peak, completed the other day, was the latest.

Of all the mountain roads which have been constructed since the one up Mt. Washington was finished, the best known is that which ascends the world-famous Rigi. With the exception of Mont Blanc, Rigi is, perhaps, the best known of any peak in the Alps, though it is by no means the highest, its summit being but 5,905 feet above the level of the sea. Although scarcely more than a third of the height of some other mountains in the Alps, it seems much higher because of its isolated position. Standing as it does between lakes Lucerne, Zug, and Lowertz, it commands a series of fine views in every direction, and he who looks from the summit of Rigi, if he does no other traveling in Switzerland, can gain a fair idea of the Swiss mountain scenery. Many of the most noted peaks are in sight, and from the Rigi can be seen the three lakes beneath, the villages which here and there dot the shores, and, further on, the mighty Alps, with their glaciers and eternal snows.

Many years ago a hotel was built on the summit of the Rigi for the benefit of the tourists who daily flocked to this remarkable peak to enjoy the benefit of its wonderful scenery. The mountain is densely wooded save where the trees have been cut away to clear the land for pastures. The ease of its ascent by the six or eight mule paths which had been made, the gradual and almost regular slope, and the throngs of travelers who resorted to it, made it a favorable place for an experiment, and to Rigi went the engineers in order to ascertain the practicability of such a road. The credit of the designs is due to a German engineer named Regenbach, who, about the year 1861, designed the idea of a mountain road, and drew up plans not only for the bed but also for the engine and cars. The scheme dragged. Capitalists were slow to invest their money in what they deemed a wild and impracticable undertaking, and even the owners of the land on the Rigi were reluctant for such an experiment to be tried. But Regenbach persevered, and toward the close of the decade the inhabitants of Vitznau, at the base of the Rigi, were astonished to see gangs of laborers begin the work of making a clearing through the forests on the mountain slope. They inquired what it meant, and were told that a road up the Rigi was to be made. The Vitznauers were delighted, for they had no roads, and there was not a wheeled vehicle in the town, nor a highway by which it could be brought thither. The idea of a railroad in their desolate mountain region, and, above all, a railroad up the Rigi, never entered their heads, and a report which some time after obtained currency in the town, that the laborers were beginning the construction of a railroad, was greeted with a shout of derision.

Nevertheless, that was the beginning of the Rigi line, and in May, 1871, the road was opened for traffic. It begins at Vitznau, on Lake Lucerne, and extends to the border of the canton and almost to the top of the mountain. It is 19,000 feet long, and during that distance rises 4,000 feet at an average grade of 1 foot in 4. Though steep, it is by no means so much so as the Mt. Washington road, which rises 5,285 feet above the sea, at an average of 1 foot in 3. There are, however, stretches of the Rigi road at which the grade is about 1 foot in 2½, which is believed to be the steepest in the world.

The Rigi road has several special features aside from its terrific slopes which entitle it to be considered a triumph of the engineer's skill. About midway up the mountains the builders came to a solid mass of rock, which presented a barrier that to a surface road was impassable. They determined to tunnel it, and, after an enormous expenditure of labor, finished an inclined tunnel 225 feet in length, of the same gradient as the road. A gorge in the side of the mountain where a small stream, the Schnurtobel, had cut itself a passage also hindered their way, and was crossed by a bridge of lattice girder work in three spans, each 85 feet long. The entire roadbed, from beginning to end, was cut in the solid rock. A channel was chiseled out to admit the central beam, which contains the cogs fitting the driving wheel of the locomotive. The engine is in the rear of the train, and presents the exceedingly curious feature of a boiler greatly inclined, in order that at the steeper gradients it may remain almost perpendicular. The coal and water are contained in boxes over the driving wheels, so that all the weight of the engine is really concentrated on the cogs--a precaution to prevent their slipping. The cost of the road, including three of these strangely constructed locomotives, three passenger coaches, and three open wagons, was $260,000, and it is a good paying investment. The fare demanded for the trip up the mountains is 5 francs, while half that sum is required for the downward passage, and the road is annually traversed by from 30,000 to 50,000 passengers.

Curious sensations are produced by a ride up this remarkable line. The seats of the cars are inclined like the boiler of the locomotive, and so long as the cars are on a level the seats tilt at an angle which renders it almost impossible to use them. But when the start is made the frightful tilt places the body in an upright position, and, with the engine in the rear, the train starts up the hill with an easy, gliding motion, passing up the ascent, somewhat steeper than the roof of a house, without the slightest apparent effort. But if the going up excites tremor, much more peculiar are the feelings aroused on the down grade. The trip begins with a gentle descent, and all at once the traveler looking ahead sees the road apparently come an end. On a nearer approach he is undeceived and observes before him a long decline which appears too steep even to walk down. Involuntarily he catches at the seats, expecting a great acceleration of speed. Very nervous are his feelings as the train approaches this terrible slope, but on coming to the incline the engine dips and goes on not a whit faster than before and not more rapidly on the down than on the up grade. Many people are made sick by the sensation of falling experienced on the down run. Some faint, and a few years ago one traveler, supposed to be afflicted with heart disease, died of fright when the train was going over the Schnurtobel bridge. The danger is really very slight, there not having been a serious accident since the road was opened. The attendants are watchful, the brakes are strong, but even with all these safeguards, men of the steadiest nerves cannot help wondering what would become of them in case anything went wrong.

Bold as was the project of a railroad on the Rigi, a still bolder scheme was broached ten years later, when a daring genius proposed a railroad up Mt. Vesuvius. A railroad up the side of an ordinary mountain seemed hazardous enough, but to build a line on the slope of a volcano, which in its eruption had buried cities, and every few years was subject to a violent spasm, seemed as hazardous as to trust the rails of an ordinary line to the rotten river ice in spring time. The proposal was not, however, so impracticable as it looked. While the summit of Vesuvius changes from time to time from the frequent eruptions, and varies in height and in the size of the crater, the general slope and contour of the mountain are about the same to-day as when Vesuvius, a wooded hill, with a valley and lake in the center of its quiescent crater, served as the stronghold of Spartacus and his rebel gladiators. There have been scores of eruptions since that in which Herculaneum and Pompeii were overthrown, but the sides of the mountain have never been seriously disturbed.

A road on Vesuvius gave promise of being a good speculation. Naples and the other resorts of the neighborhood annually attracted many thousands of visitors, and a considerable number of these every year ascended the volcano, even when forced to contend with all the difficulties of the way. Many, however, desiring to ascend, but being unable or unwilling to walk up, a chair service was established--a peculiar chair being slung on poles and borne by porters. In course of time the chair service proved to be inadequate for the numbers who desired to make the ascent, and the time was deemed fit for the establishment of more speedy communication.

Notwithstanding the necessity, the proposal to establish a railroad met with general derision, but the scheme was soon shown to be perfectly practicable, and a beginning was made in 1879. The road is what is known as a cable road, there being a single sleeper with three rails, one on the top which really bore the weight, and one on each side near the bottom, which supported the wheels, which coming out from the axle at a sharp angle, prevented the vehicle from being overturned. The road covers the last 4,000 feet of the ascent, and the power house is at the bottom, a steel cable running up, passing round a wheel at the top and returning to the engine in the power house. The ascent to the lower terminus of the road is made on mules or donkeys; then, in a comfortable car, the traveler is carried to a point not far from the crater. The car is a combined grip and a passenger car, similar in some points to the grip car of the present day, while the seats of the passenger portion are inclined as in the cars on the Rigi road. But the angle of the road being from thirty-three to forty-five degrees, makes both ascent and descent seem fearfully perilous. Every precaution, however, is taken to insure the safety of passengers; each car is provided with several strong and independent brakes, and thus far no accident worth recording has occurred. The road was opened in June, 1880. Although there have been several considerable eruptions since that date, none of them did any damage to the line but what was repaired in a few hours.

The fashion thus set will, no doubt, be followed in many other quarters. Wherever there is sufficient travel to pay working expenses and a profit on a steep grade mountain road it will probably be built. Already there is talk of a road on Mont Blanc, of another up the Yungfrau, and several have been projected in the Schwartz and Hartz mountains. A route on Ben Nevis, in Scotland, is already surveyed, and it is said surveys have also been made up Snowden, with a view to the establishment of a road to the summit of the highest Welsh peak. Sufficient travel is all that is necessary, and when that is guaranteed, whenever a mountain possesses sufficient interest to induce people to make its ascent in considerable numbers, means of transportation, safe and speedy, will soon be provided. The modern engineer is able, willing and ready to build a road to the top of Mt. Everest in the Himalayas if he is paid for doing so.--St. Louis Globe-Democrat.

To clean hair brushes, wash with weak solution of washing soda, rinse out all the soda, and expose to sun.

THE FRENCH ARMORED TURRET SHIP MARCEAUTHE FRENCH ARMORED TURRET SHIP MARCEAU

The Marceau, the last ironclad completed and added to the French navy, was put in commission at Toulon in April last, and has lately left that town to join the French squadron of the north at Brest. The original designs of this ship were prepared by M. Huin, of the French Department of Naval Construction, but since the laying down of the keel in the year 1882 they have been very considerably modified, and many improvements have been introduced.

Both ship and engines were constructed by the celebrated French firm, the Société des Forges et Chantiers de la Mediterranée, the former at their shipyard in La Seyne and the latter at their engine works in Marseilles. The ship was five years in construction on the stocks, was launched in May, 1887, and not having been put in commission until the present year, was thus nearly nine years in construction. She is a barbette belted ship of somewhat similar design to the French ironclads Magenta, now being completed at the Toulon arsenal, and the Neptune, in construction at Brest.

The hull is constructed partly of steel and partly of iron, and has the principal dimensions as follows. Length, 330 ft. at the water line; beam, 66 ft. outside the armor; draught, 27 ft. 6 in. aft.; displacement, 10,430 English or 10,600 French tons. The engines are two in number, one driving each propeller; they are of the vertical compound type, and on the speed trials developed 11,300 indicated horse power under forced and 5,500 indicated horse power under natural draught, the former giving a speed of 16.2 knots per hour with 90 revolutions per minute. The boilers are eight in number, of the cylindrical marine type, and work at a pressure of 85.3 lb. per square inch. During the trials the steering powers of the ship were found to be excellent, but the bow wave is said, by one critic, to have been very great.

The ship is completely belted with Creusot steel armor, which varies in thickness from 9 in. forward to 17¾ in. midships. In addition to this belt the ship is protected by an armored deck of 3½ in., while the barbette gun towers are protected with 15¾ in. steel armor with a hood of 2½ in. to protect the men against machine gun fire. As a further means of insuring the life of the ship in combat and also against accidents at sea, the Marceau is divided into 102 water-tight compartments and is fitted with torpedo defense netting. There are two masts, each carrying double military tops; and a conning tower is mounted on each mast, from either of which the ship may be worked in time of action, and both of which are in telegraphic communication with the engine rooms and magazines. Provision is made for carrying 600 tons of coal, which, at a speed of 10 knots, should be sufficient to supply the boilers for a voyage of 4,000 miles.

The armament of the Marceau is good for the tonnage of the ship and consists principally of four guns of 34 centimeters (13.39 in.) of the French 1884 model, having a weight of 52 tons, a length of 28½ calibers, and being able to pierce 30 in. of iron armor at the muzzle. The projectiles weigh 924 lb., and are fired with a charge of 387 lb. of powder. The muzzle velocity has been calculated to be 1,968 ft. per second. The guns are entirely of steel and are mounted on Canet carriages in four barbette towers, one forward, one aft, and one on each side amidships. On the firing trials both the guns and all the Canet machinery, for working the guns and hoisting the ammunition, gave very great satisfaction to all present at the time. In addition to the above four heavy guns there are, in the broadside battery, sixteen guns of 14 centimeters (5.51 in.), eight on each side, and a gun of equal caliber is mounted right forward on the same deck. The armament is completed by a large number of Hotchkiss quick-firing and revolver guns and four torpedo tubes, one forward, one aft, and one on each side.

The crew of the Marceau has been fixed at 600 men, and the cost is stated to have been about $3,750,000.--Engineering.

Steam Pipes.--The failures of copper steam pipes on board the Elbe, Lahn, and other vessels have drawn serious attention both to the material and to the modes of construction of the pipes. The want of elastic strength in copper is an important element in the matter; and the three following remedies have been proposed, while still retaining copper as the material. First, in view of the fact that in the operation of brazing the copper may be seriously injured, to use solid drawn tubes. This appears fairly to meet the main dangers incidental to brazing; but as solid drawn pipes of over 7 inches diameter are difficult to procure, it hardly meets the case sufficiently. Secondly, to use electrically deposited tubes. At first much was promised in this direction; but up to the present time it can hardly be regarded as more than in the experimental stage. Thirdly, to use the ordinary brazed or solid drawn tubes, and to re-enforce them by serving with steel cord or steel or copper wire. This has been tried, and found to answer perfectly. For economical reasons, as well as for insuring the minimum of torsion to the material during manufacture, it is important to make as few bends as possible; but in practice much less difficulty has been experienced in serving bent pipes in a machine than would have been expected. Discarding copper, it has been proposed to substitute steel or iron. In the early days of the higher pressures, Mr. Alexander Taylor adopted wrought iron for steam pipes. One fitted in the Claremont in February, 1882, was recently removed from the vessel for experimental purposes, and was reported upon by Mr. Magnus Sandison in a paper read before the Northeast Coast Institution of Engineers and Shipbuilders.2The following is a summary of the facts. The pipe was 5 inches external diameter, and 0.375 inch thick. It was lap welded in the works of Messrs. A. & J. Stewart. The flanges were screwed on and brazed externally. The pipe was not lagged or protected in any manner. After eight and a half years' service the metal measured where cut 0.32 and 0.375 inch in thickness, showing that the wasting during that time had been very slight. The interior surface of the tube exhibited no signs of pitting or corrosion. It was covered by a thin crust of black oxide, the maximum thickness of which did not exceed 1/32 inch. Where the deposit was thickest it was curiously striated by the action of the steam. On the scale being removed, the original bloom on the surface of the metal was exposed. It would thus appear that the danger from corrosion of iron steam pipes is not borne out in their actual use; and hence so much of the way is cleared for a stronger and more reliable material than copper. So far the source of danger seems to be in the weld, which would be inadmissible in larger pipes; but there is no reason why these should not be lapped and riveted. There seems, however, a more promising way out of the difficulty in the Mannesmann steel tubes which are now being "spun" out of solid bars, so as to form weldless tubes.

TABLE I.--TENSILE STRENGTH OF GUN METAL AT HIGH TEMPERATURES.

Cast steel has been freely used by the writer for bends, junction pieces, etc., of steam pipes, as well as for steam valve chests; and except for the fact that steel makers' promises of delivery are generally better than their performance, the result has thus far been satisfactory in all respects. These were adopted because there existed some doubt as to the strength of gun metal under a high temperature; and as the data respecting its strength appeared of a doubtful character, a series of careful tests were made to determine the tensile strength of gun metal when at atmospheric and higher temperatures. The test bars were all 0.75 in diameter, or 0.4417 square inch sectional area; and those tested at the higher temperatures were broken while immersed in a bath of oil at the temperature here stated, each line being the mean of four experiments. The result of these experiments was to give somewhat greater faith in gun metal as a material to be used under a higher temperature; but as steel is much stronger, it is probably the most advisable material to use, when the time necessary to procure it can be allowed.

Feed Heating.--With the double object of obviating strain on the boiler through the introduction of the feed water at a low temperature, and also of securing a greater economy of fuel, the principle of previously heating the feed water by auxiliary means has received considerable attention, and the ingenious method introduced by Mr. James Weir has been widely adopted. It is founded on the fact that, if the feed water as it is drawn from the hot well be raised in temperature by the heat of a portion of steam introduced into it from one of the steam receivers, the decrease of the coal necessary to generate steam from the water of the higher temperature bears a greater ratio to the coal required without feed heating than the power which would be developed in the cylinder by that portion of steam would bear to the whole power developed when passing all the steam through all the cylinders. The temperature of the feed is of course limited by the temperature of the steam in the receiver from which the supply for heating is drawn. Supposing, for example, a triple expansion engine were working under the following conditions without feed heating: Boiler pressure, 150 lb.;--indicated horse power in high pressure cylinder 398, in intermediate and low pressure cylinders together 790, total, 1,188; and temperature of hot well 100° Fahr. Then with feed heating the same engine might work as follows: The feed might be heated to 220° Fahr., and the percentage of steam from the first receiver required to heat it would be 12.2 per cent.; the indicated horse power in the high pressure cylinder would be as before 398, and in the intermediate and low pressure cylinders it would be 12.2 per cent, less than before, or 694, and the total would be 1,092, or 92 per cent. of the power developed without feed heating. Meanwhile the heat to be added to each pound of the feed water at 220° Fahr. for converting it into steam would be 1,005 units against 1,125 units with feed at 100° Fahr., equivalent to an expenditure of only 89.4 per cent. of the heat required without feed heating. Hence the expenditure of heat in relation to power would be 89.4 + 92.0 = 97.2 per cent., equivalent to a heat economy of 2.8 per cent. If the steam for heating can be taken from the low pressure receiver, the economy is about doubled. Other feed heaters, more or less upon the same principle, have been introduced. Also others which heat the feed in a series of pipes within the boiler, so that it is introduced into the water in the boiler practically at boiling temperature; this is economical, however, only in the sense that wear and tear of the boiler is saved; in principle the plan does not involve economy of fuel.

Auxiliary Supply of Fresh Water.--Intimately associated with the feed is the means adopted for making up the losses of fresh water due to leakage of steam from safety valves, glands, joints, etc., and of water discharged from the air pumps. A few years ago this loss was regularly made up from the sea, with the result that the water in the boilers was gradually increased in density; whence followed deposit on the internal surfaces, and consequent loss of efficiency, and danger of accident through overheating the plates. With the higher pressures now adopted, the danger arising from overheating is much more serious, and the necessity is absolute of maintaining the heating surfaces free from deposit. This can be done only by filling the boiler with fresh water in the first instance, and maintaining it in that condition. To do this two methods are adopted, either separately or in conjunction. Either a reserve supply of fresh water is carried in tanks or the supplementary feed is distilled from sea water by special apparatus provided for the purpose. In the construction of the distilling or evaporating apparatus advantage has been taken of two important physical facts, namely, that, if water be heated to a temperature higher than that corresponding with the pressure on its surface, evaporation will take place; and that the passage of heat from steam at one side of a plate to water at the other is very rapid. In practice the distillation is effected by passing steam, say from the first receiver, through a nest of tubes inside a still or evaporator, of which the steam space is connected either with the second receiver or with the condenser. The temperature of the steam inside the tubes being higher than that of the steam either in the second receiver or in the condenser, the result is that the water inside the still is evaporated, and passes with the rest of the steam into the condenser, where it is condensed, and serves to make up the loss. This plan localizes the trouble of deposit, and frees it from its dangerous character, because an evaporator cannot become overheated like a boiler, even though it be neglected until it salts up solid; and if the same precautions are taken in working the evaporator which used to be adopted with low pressure boilers when they were fed with salt water, no serious trouble should result. When the tubes do become incrusted with deposit, they can be either withdrawn or exposed, as the apparatus is generally so arranged; and they can then be cleaned.

Screw Propeller.--In Mr. Marshall's paper of 1881 it was said that "the screw propeller is still to a great extent an unsolved problem." This was at the time a fairly true remark. It was true the problem had been made the subject of general theoretical investigation by various eminent mathematicians, notably by Professor Rankine and Mr. William Froude, and of special experimental investigation by various engineers. As examples of the latter may be mentioned the extended series of investigations in the French vessel Pelican, and the series made by Mr. Isherwood on a steam launch about 1874. These experiments, however, such as they were, did little to bring out general facts and to reduce the subject to a practical analysis. Since the date of Mr. Marshall's paper, the literature on this subject has grown rapidly, and, has been almost entirely of a practical character. The screw has been made the subject of most careful experiments. One of the earliest extensive series of experiments was made under the writer's direction in 1881, with a large number of models, the primary object being to determine what value there was in a few of the various twists which inventive ingenuity can give to a screw blade. The results led the experimenters to the conclusion that in free water such twists and curves are valueless as serving to augment efficiency. The experiments were then carried further with a view to determine quantitative moduli for the resistance of screws with different ratios of pitch to diameter, or "pitch ratios," and afterward with different ratios of surface to the area of the circle described by the tips of the blades, or "surface ratios." As these results have to some extent been analyzed and published, no further reference need be made to them now.

In 1886, Mr. R.E. Froude published in the Transactions of the Institution of Naval Architects the deductions drawn from an extensive series of trials made with four models of similar form and equal diameter, but having different pitch ratios. Mr. S.W. Barnaby has published some of the results of experiments made under the direction of Mr. J.I. Thornycroft; and in his paper read before the Institution of Civil Engineers in 1890 he has also put Mr. R.E. Froude's results into a shape more suitable for comparison with practice. Nor ought Mr. G.A. Calvert's carefully planned experiments to pass unnoticed, of which an account was given in the Transactions of the Institution of Naval Architects in 1887. These experiments were made on rectangular bodies with sections of propeller blade form, moved through the water at various velocities in straight lines, in directions oblique to their plane faces; and from their results an estimate was formed of the resistance of a screw.

One of the most important results deduced from experiments on model screws is that they appear to have practically equal efficiencies throughout a wide range both in pitch ratio and in surface ratio; so that great latitude is left to the designer in regard to the form of the propeller. Another important feature is that, although these experiments are not a direct guide to the selection of the most efficient propeller for a particular ship, they supply the means of analyzing the performances of screws fitted to vessels, and of thus indirectly determining what are likely to be the best dimensions of screw for a vessel of a class whose results are known. Thus a great advance has been made on the old method of trial upon the ship itself, which was the origin of almost every conceivable erroneous view respecting the screw propeller. The fact was lost sight of that any modification in form, dimensions, or proportions referred only to that particular combination of ship and propeller, or to one similar thereto; so something like chaos was the result. This, however, need not be the case much longer.

In regard to the materials used for propellers, steel has been largely adopted for both solid and loose-bladed screws; but unless protected in some way, the tips of the blades are apt to corrode rapidly and become unserviceable. One of the stronger kinds of bronze is often judiciously employed for the blades, in conjunction with a steel boss. Where the first extra expense can be afforded, bronze seems the preferable material; the castings are of a reliable character, and the metal does not rapidly corrode; the bronze blades can therefore with safety be made lighter than steel blades, which favors their springing and accommodating themselves more readily to the various speeds of the different parts of the wake. This might be expected to result in some slight increase of efficiency; of which, however, the writer has never had the opportunity of satisfactorily determining the exact extent. Instances can be brought forward where bronze blades have been substituted for steel or iron with markedly improved results; but in cases of this kind which the writer has had the opportunity of analyzing, the whole improvement might be accounted for by the modified proportions of the screw when in working condition. In other words, both experiment and practical working alike go to show that, although cast iron and steel blades as usually proportioned are sufficiently stiff to retain their form while at work, bronze blades, being made much lighter, are not; and the result is that the measured or set pitch is less than that which the blades assume while at work. Some facts relative to this subject have already been given in a recent paper by the author.

Twin Screws.--The great question of twin screw propulsion has been put to the test upon a large scale in the mercantile marine, or rather in what would usually be termed the passenger service. While engineers, however, are prepared to admit its advantages so far as greater security from total breakdown is concerned, there is by no means thorough agreement as to whether single or twin screws have the greater propulsive efficiency. What is required to form a sound judgment upon the whole question is a series of examples of twin and single screw vessels, each of which is known to be fitted with the most suitable propeller for the type of vessel and speed; and until this information is available, little can be said upon the subject with any certainty. So far the following large passenger steamers, particulars of which are given in table II., have been fitted with twin screws. It appears t be a current opinion that the twin screw arrangement necessitates a greater weight of machinery. This is not necessarily so, however; on the contrary, the opportunity is offered for reducing the weight of all that part of the machinery of which the weight relatively to power is inversely proportional to the revolutions for a given power. This can be reduced in the proportion of 1 to the square root of 2, that is 71 per cent. of its weight in the single screw engine; for since approximately the same total disk area is required in both cases with similar proportioned propellers, the twins will work at a greater speed of revolution than the single screw. From a commercial point of view there ought to be little disagreement as to the advantage of twin screws, so long as the loss of space incurred by the necessity for double tunnels is not important; and for the larger passenger vessels now built for ocean service the disadvantage should not be great. Besides their superiority in the matter of immunity from total breakdown, and in greatly diminished weight of machinery, they also offer the opportunity of reducing to some extent the cost of machinery. A slightly greater engine room staff is necessary; but this seems of little importance compared with the foregoing advantages.

TABLE II.--PASSENGER STEAMERS FITTED WITH TWIN SCREWS.

Weight of Machinery Relatively to Power.--It is interesting to compare the weight of machinery relatively to the power developed; for this comparison has sometimes been adopted as the standard of excellence in design, in respect of economy in the use of material. The principle, however, on which this has generally been done is open to some objections. It has been usual to compare the weight directly with the indicated horse-power, and to express the comparison in pounds per horse-power. So long as the machinery thus compared is for vessels of the same class and working at about the same speed of revolution, no great fault can be found; but as speed of revolution is a great factor in the development of power, and as it is often dependent on circumstances altogether external to the engine and concerning rather the speed of the ship, the engines fitted to high speed ships will thus generally appear to greater advantage than is their due. Leaving the condenser out of the question, the weight of an engine would be much better referred to cylinder capacity and working pressures, where these are materially different, than directly to the indicated power. The advantages of saving weight of machinery, so long as it can be done with efficiency, are well known and acknowledged. If weight is to be reduced, it must be done by care in design, not by reduction of strength, because safety and saving of repairs are much more important than the mere capability of carrying a few tons more of paying load. It must also be done with economy; but this is a matter which generally settles itself aright, as no shipowner will pay more for a saving in weight than will bring in a remunerative interest on his outlay. In his paper on the weight of machinery in the mercantile marine,3Mr. William Boyd discussed this question at some length, and proposed to attain the end of reducing the weight of machinery by the legitimate method of augmenting the speed of revolution and so developing the required power with smaller engines. This method, while promising, is limited by the efficiency of the screw, but may be adopted with advantage so long as the increase in speed of revolution involves no such change in the screw as to reduce its efficiency as a propeller. But when the point is reached beyond which a further change involves loss of propelling efficiency, it is time to stop; and the writer ventures to say that in many cargo vessels now at work the limit has been reached, while in many others it has certainly been passed.

Economy of Fuel.--Coming to the highly important question of economy of fuel, the average consumption of coal per indicated horse-power is 1.522 lb. per hour. The average working pressure is 158.5 lb. per square inch. Comparing this working pressure with 77.4 lb. in 1881, a superior economy of 19 per cent. might be expected now, on account of the higher pressure, or taking the 1.828 lb. of coal per hour per indicated horse-power in 1881, the present performance under similar conditions should be 1.48 lb. per hour per indicated horse-power. It appears that the working pressures have been increased twice in the last ten years, and nearly three times in the last nineteen. The coal consumptions have been reduced 16.7 per cent. in the last ten years and 27.9 per cent. in the last nineteen. The revolutions per minute have increased in the ratios of 100, 105, 114; and the piston speeds as 100, 124, 140. Although it is quite possible that the further investigations of the Research Committee on Marine Engine Trials may show that the present actual consumption of coal per indicated horse-power is understated, yet it is hardly probable that the relative results will be affected thereby.

Dimensions.--In the matter of the power put into individual vessels, considerable strides have been made. In 1881, probably the greatest power which has been put into one vessel was in the case of the Arizona, whose machinery indicated about 6,360 horse-power. The following table gives an idea of the dimensions and power of the larger machinery in the later passenger vessels:

TABLE III.--DIMENSIONS AND POWER OF MACHINERY IN LATER PASSENGER VESSELS.

In war vessels the increase has been equally marked. In 1881 the maximum power seems to have been in the Inflexible, namely, 8,485 indicated horse-power. The following will give an idea of the recent advance made: Howe (Admiral class), 11,600 indicated horse-power; Italia and Lepanto, 19,000 indicated horse-power; Re Umberto, 19,000 indicated horse-power; Blake and Blenheim (building), 18,000 indicated horse-power; Sardegna (building), 22,800 indicated horse-power. It is thus evident that there are vessels at work to-day having about three times the maximum power of any before 1881.

General Conclusions.--The progress made during the last ten years having been sketched out, however roughly, the general conclusions may be stated briefly as follows: First, the working pressure has been about doubled. Second, the increase of working pressure and other improvements have brought with them their equivalent in economy of coal, which is about 20 per cent. Third, marked progress has been made in the direction of dimension, more than twice the power having been put into individual vessels. Fourth, substantial advance has been made in the scientific principles of engineering. It only remains for the writer to thank the various friends who have so kindly furnished him with data for some of the tables which have been given; and to express the hope that the next ten years may be marked by such progress as has been witnessed in the past. But it must be remembered that, if future progress be equal in merit or ratio, it may well be less in quantity, because advance becomes more difficult of achievement as perfection is more nearly approached.


Back to IndexNext