VII.

Miller began his study of crystallography with thesame materials as Naumann; but, in addition, he adopted the beautiful method of Franz Ernst Neumann of referring the faces of a crystal to the surface of a circumscribed sphere by means of radii drawn perpendicular to the faces. The points where the radii meet the spherical surface are the poles of the faces, and the arcs of great circles connecting these poles may obviously be used as a measure of the angles between the crystal faces. This invention of Neumann's was the germ of Miller's system of crystallography, for it enabled the English mathematician to apply the elegant and compendious methods of spherical trigonometry to the solution of crystallographic problems; and Professor Miller always expressed his great indebtedness to Neumann, not only for this simple mode of defining the position of the faces of a crystal, but also for his method of representing the relative position of the poles of the faces on a plane surface by a beautiful application of the methods of stereo-graphic and gnomonic projection. This method of representing a crystal shows very clearly the relations of the parts, and was undoubtedly of great aid to Miller in assisting him to generalize his deductions.

From the outset, Professor Miller apprehended more clearly than any previous writer the all-embracing scope of the great law of crystallography. He opens his treatise with its enunciation, and, from this law as the fundamental principle of the subject, the whole of his system of crystallography is logically developed. Beyond this, all that is peculiar to Miller's system is involved in two or three general theorems. The rest of his treatise consists of deductions from these principles and their application to particular cases.

One of the most important of these principles, and one which in the treatise is involved in the enunciation of the fundamental law of crystallography, is in its essence nothing but an analytical device. As we have already stated, Weiss had shown that, ifa:b:crepresent the ratio of the intercepts of any plane of a crystal on the three axesx,y, andz, respectively, the intercepts of any other possible plane must satisfy the proportion—

A:B:C=m a:n b:p c,

in whichm,n, andpare simple whole numbers. The irrational valuesa,b, andcare fundamental magnitudes for every crystalline substance;[G]and Miller called these relative magnitudes the parameters of the crystals, while he called the whole numbers,m,n, andp, the indices of the respective planes. But, instead of writing the proportion which expresses the law of crystallography as above, he gave to it a slightly different form, thus:

A:B:C=1ha:1kb:1lc,

and used in his system for the indices of a plane the valuesh:k:l, which are also in the ratio of whole numbers, and usually of simpler whole numbers thanm:n:p. This seems a small difference; forh k lin the last proportion are obviously the reciprocals ofm n pin the first; but the difference, small as it is, causes a wonderful simplification of the formulæ which express the relations between the parts of a crystal. From the last proportion we derive at once

1h·aA=1k·bB=1l·cC,

which is the form in which Miller stated his fundamental law.

IfPrepresents the "pole" of a face whose "indices" areh k l, that is, represents the point where the radius drawn normal to the face meets the surface of the sphere circumscribed around the crystal (the sphere of projection, as it is called), and ifX,Y,Zrepresent the points where the axes of the crystal meet the same spherical surface,[H]then it is evident thatX Y,X Z, andY Zarethe arcs of great circles, which measure the inclination of the axes to each other, and thatP X,P Y, andP Zare arcs of other great circles, which measure the inclination of the plane (hkl) on planes normal to the respective axes; and, also, that these several arcs form the sides of spherical triangles thus drawn on the sphere of projection. Now, it is very easily shown that

ahcosP X=bkcosP Y=clcosP Z,

and by means of this theorem we are able to reduce a great many problems of crystallography to the solution of spherical triangles.

Another very large class of problems in crystallography is based on the relation of faces in a zone; that is, of faces which are all parallel to one line called the zone axis, and whose mutual intersections, therefore, are all parallel to each other. If, now,hklandpqrare the indices of any two planes of a zone (not parallel to each other), any other plane in the same zone must fulfill the condition expressed by the simple equation

uu+ vv+ ww=o,

whereuvandware the indices of the third plane, and u v w have the values

u =k r−l qv =l p−h rw =h q−k p.

Sincehklandpqrare whole numbers, it is evident that u v w must also be whole numbers, and these quantities are called the indices of the zone. The three whole numbers which are the indices of a plane when written in succession serve as a very convenient symbol of that plane, and represent to the crystallographer all its relations; and in like manner Miller used the indices of a zone inclosed in brackets as the symbol of that zone. Thus 123, 531, 010 are symbols of planes, and [111], [213], [001] symbols of zones.

An additional theorem enables us to calculate the symbols of a fourth plane in a zone when the angular distances between the four planes and the symbols of three of them are known, but this problem can not be made intelligible with a few words.

The few propositions to which we have referred involve all that is essential and peculiar to the system of Professor Miller. These given, and the rest could be at once developed by any scholar who was familiar with the facts of crystallography; and the circumstance that its essential features can be so briefly stated is sufficient to show how exceedingly simple the system is. At the same time, it is wonderfully comprehensive, and the student who has mastered it feels that it presents to him in one grand view the entire scheme of crystal forms, and that it greatly helps him to comprehend the scheme as a whole,and not simply as the sum of certain distinct parts. So felt Professor Miller himself; and, while he regarded the six systems of crystals of the German crystallographers as natural divisions of the field, he considered that they were bounded by artificial lines which have no deeper significance than the boundary lines on a map. How great the unfolding of the science from Haüy to Miller, and yet now we can see the great fundamental ideas shining through the obscurity from the first! What we now call the parameters of a crystal were to Haüy the fundamental dimensions of his "integrant molecules," our indices were his "decrements," and our conceptions of symmetry his "fundamental forms." There has been nothing peculiar, however, in the growth of crystallography. This growth has followed the usual order of science, and here as elsewhere the early, gross, material conceptions have been the stepping-stones by which men rose to higher things. In sciences like chemistry, which are obviously still in the earlier stages of their development, it would be well if students would bear in mind this truth of history, and not attach undue importance to structural formulæ and similar mechanical devices, which, although useful for aiding the memory, are simply hindrances to progress as soon as the necessity of such assistance is passed. And, when the life of a great master of science has ended, it is well to look back over the road he hastraveled, and, while we take courage in his success, consider well the lesson which his experience has to teach; and, as progress in this world's knowledge has ever been from the gross to the spiritual, may we not rejoice as those who have a great hope?

Although the exceeding merit of the "Treatise on Crystallography" casts into the shade all that was subordinate, we must not omit to mention that Professor Miller published an early work on hydrostatics, and numerous shorter papers on mineralogy and physics, which were all valuable, and constantly contained important additions to knowledge. Moreover, the "New Edition of Phillips's Mineralogy," which he published in 1852 in connection with H. J. Brooke, owed its chief value to a mass of crystallographic observations which he had made with his usual accuracy and patience during many years, and there tabulated in his concise manner. As has been said by one of his associates in the Royal Society, "it is a monument to Miller's name, although he almost expunged that name from it."[I]It is due to Professor Miller's memory that his works should be collated, and especially that by a suitable commentary his "Tract on Crystallography" should be made accessible to the greatbody of the students of physical science, who have not, as a rule, the ability or training which enables them to apprehend a generalization when solely expressed in mathematical terms. The very merits of Professor Miller's book as a scientific work render it very difficult to the average student, although it only involves the simplest forms of algebra and trigonometry.

Independence, breadth, accuracy, simplicity, humility, courtesy, are luminous words which express the character of Professor Miller. In his genial presence the young student felt encouraged to express his immature thoughts, which were sure to be treated with consideration, while from a wealth of knowledge the great master made the error evident by making the truth resplendent. It was the greatest satisfaction to the inexperienced investigator when his observations had been confirmed by Professor Miller, and he was never made to feel discouraged when his mistakes were corrected. The writer of this notice regards it as one of the great privileges of his youth, and one of the most important elements of his education, to have been the recipient of the courtesies and counsel of three great English men of science, who have always been "his own ideal knights," and these noble knights were Faraday, Graham, and Miller.

William Barton Rogers was born at Philadelphia, on the 7th of December, 1804. His father, Patrick Kerr Rogers, was a native of Newton Stewart, in the north of Ireland; but while a student at Trinity College, Dublin, becoming an object of suspicion on account of his sympathy with the Rebellion of 1798, he emigrated to this country, and finished his education in the University of Pennsylvania, at Philadelphia, where he received the degree of Doctor of Medicine.

Here he married Hannah Blythe, a Scotch lady—who was at the time living with her aunt, Mrs. Ramsay—and settled himself in his profession in a house on Ninth Street, opposite to the University; and in this house William B. Rogers was born. He was the second of four sons—James, William, Henry, and Robert—all of whom became distinguished as men of science.

Patrick Kerr Rogers, finding that his prospects of medical practice in Philadelphia had been lessened in consequence of a protracted absence in Ireland, made necessary by the death of his father, removed to Baltimore; but soon afterward accepted the Professorship of Chemistry and Physics in William and Mary College, Virginia, made vacant by the resignation of the late Robert Hare; and it is a fact worthy of notice that, while he succeeded Dr. Hare at William and Mary College, his eldest son, James, succeeded Dr. Hare at the University of Pennsylvania. At William and Mary College the four brothers Rogers were educated; and on the death of the father, at Ellicott Mills, in 1828, William B. Rogers succeeded to the professorship thus made vacant.

He had already earned a reputation as a teacher by a course of lectures before the Maryland Institute in Baltimore during the previous year, and after his appointment at once entered on his career as a scientific investigator. At this period he published a paper on "Dew," and, in connection with his brother Henry, another paper on the "Voltaic Battery"—both subjects directly connected with his professorship. But his attention was early directed to questions of chemical geology; and he wrote, while at William and Mary College, a series of articles for the "Farmer's Register" on the "GreenSands and Marls of Eastern Virginia," and their value as fertilizers. Next we find the young professor going before the Legislature of Virginia, and, while modestly presenting his own discoveries, making them the occasion for urging upon that body the importance of a systematic geological survey for developing the resources of the State. So great was the scientific reputation that Professor Rogers early acquired by such services, that in 1835 he was called to fill the important Professorship of Natural Philosophy and Geology in the University of Virginia; and during the same year he was appointed State Geologist of Virginia, and began those important investigations which will always associate his name with American geology.

Professor Rogers remained at the head of the Geological Survey of Virginia until it was discontinued, in 1842, and published a series of very valuable annual reports. As was anticipated, the survey led to a large accumulation of material, and to numerous discoveries of great local importance. As this was one of the earliest geological surveys undertaken in the United States, its directors had in great measure to devise the methods and lay out the plans of investigation which have since become general. This is not the place, however, for such details; but there are four or five general results of Professor Rogers's geological work at this period which haveexerted a permanent influence on geological science, and which should therefore be briefly noticed. Some of these results were first published in the "American Journal of Science"; others were originally presented to the Association of American Geologists and Naturalists, and published in its "Transactions." Professor Rogers took a great interest in the organization of this association in 1840, presided over its meeting in 1845, and again, two years later, when it was expanded into the American Association for the Advancement of Science.

In connection with his brother Robert, Professor William B. Rogers was the first to investigate the solvent action of water—especially when charged with carbonic acid—on various minerals and rocks; and by showing the extent of this action in nature, and its influence in the formation of mineral deposits of various kinds, he was one of the first to observe and interpret the important class of facts which are the basis of chemical geology.

Another important result of Professor Rogers's geological work was to show that the condition of any coal-bed stands in a close genetic relation to the amount of disturbance to which the enclosing strata have been submitted, the coal becoming harder and containing less volatile matter as the evidence of disturbance increases.This generalization, which seems to us now almost self-evident—understanding, as we do, more of the history of the formation of coal—was with Professor Rogers an induction from a great mass of observed facts.

By far, however, the most memorable contribution of Professor Rogers to geology was that made in connection with Henry D. Rogers, in a paper entitled "The Laws of Structure of the more Disturbed Zones of the Earth's Crust," presented by the two brothers at the meeting of the Association of American Geologists and Naturalists, held at Boston in 1842. This paper was the first presentation of what may be called in brief the "Wave Theory of Mountain Chains." This theory was deduced by the brothers Rogers from an extended study of the Appalachian Chain in Pennsylvania and Virginia, and was supported by numerous geological sections and by a great mass of facts. The hypothesis which they offered as an explanation of the origin of the great mountain waves may not be generally received; but the general fact, that the structure of mountain chains is alike in all the essential features which the brothers Rogers first pointed out, has been confirmed by the observations of Murchison in the Ural, of Darwin in the Andes, and of the Swiss geologists in the Alps. "In the Appalachians the wave structure is very simple, and the same is true in all corrugated districts where the crust movements have beensimple, and have acted in one direction only. But where the elevating forces have acted in different directions at different times, causing interference of waves like a chopped sea, as in the Swiss Alps and the mountains of Wales or Cumberland, the undulations are disguised, and are with extreme difficulty made out." The wave theory of mountain chains was the first important contribution to dynamical and structural geology which had been brought forward in this country. It excited at the time great interest, as well from the novelty of the views as from the eloquence with which they were set forth; and to-day it is still regarded as one of the most important advances in orographic geology.

A marked feature of mountain regions is that rupturing of the strata called faults; and another of the striking geological generalizations of the brothers Rogers is what may be called the law of the distribution of faults. They showed that faults do not occur on gentle waves, but in the most compressed flexures of the mountain chains, which in the act of moving have snapped or given way at the summit where the bend is sharpest, the less inclined side being shoved up on the plane of the fault, this plane being generally parallel to, if it does not coincide with, the axis plane; and, further, that "the direction of these faults generally follows the run of the line of elevation of the mountains, the length and verticaldisplacement depending on the strength of the disturbing force."

The last of the general geological results to which we referred above was published under the name of William B. Rogers only. It was based on the observed positions of more than fifty thermal springs in the Appalachian belt, occurring in an area of about fifteen thousand square miles, which were shown to issue from anticlinal axes and faults, or from points very near such lines; and in connection with these springs it was further shown that there was a great preponderance of nitrogen in the gases which the waters held in solution.

It must be remembered that, during the time when this geological work was accomplished, Professor Rogers was an active teacher in the University of Virginia, giving through a large part of the year almost daily lectures either on physics or geology. Those who met him in his after-life in various relations in Boston, and were often charmed by his wonderful power of scientific exposition, can readily understand the effect he must have produced, when in the prime of manhood, upon the enthusiastic youths who were brought under his influence. His lecture-room was always thronged. As one of his former students writes, "All the aisles would be filled, and even the windows crowded from the outside. In one instance I remember the crowd had assembled longbefore the hour named for the lecture, and so filled the hall that the professor could only gain admittance through a side entrance leading from the rear of the hall through the apparatus-room. These facts show how he was regarded by the students of the University of Virginia. His manner of presenting the commonest subject in science—clothing his thoughts, as he always did, with a marvelous fluency and clearness of expression and beauty of diction—caused the warmest admiration, and often aroused the excitable nature of Southern youths to the exhibition of enthusiastic demonstrations of approbation. Throughout Virginia, and indeed the entire South, his former students are scattered, who even now regard it as one of the highest privileges of their lives to have attended his lectures."

Such was the impression which Professor Rogers left at the University of Virginia, that, when he returned, thirty-five years later, to aid in the celebration of the semi-centennial, he was met with a perfect ovation. Although the memories of the civil war, which had intervened, and Professor Rogers's known sympathies with the Northern cause, might well have damped enthusiasm, yet the presence of the highly honored teacher was sufficient to rekindle the former admiration; and, in the language of a contemporary Virginia newspaper, "the old students beheld before them the same William B.Rogers who thirty-five years before had held them spellbound in his class of natural philosophy; and, as the great orator warmed up, these men forgot their age; they were again young, and showed their enthusiasm as wildly as when, in days of yore, enraptured by his eloquence, they made the lecture-room of the University ring with their applause."

Besides his geological papers, Professor Rogers published, while at the University of Virginia, a number of important chemical contributions, relating chiefly to new and improved methods in chemical analysis and research. These papers were published in connection with his youngest brother, Robert E. Rogers, now become his colleague as Professor of Chemistry and Materia Medica in the University; and such were the singularly intimate relations between the brothers that it is often impossible to dissociate their scientific work. Among these were papers "On a New Process for obtaining Pure Chlorine"; "A New Process for obtaining Formic Acid, Aldehyde, etc."; "On the Oxidation of the Diamond in the Liquid Way"; "On New Instruments and Processes for the Analysis of the Carbonates"; "On the Absorption of Carbonic Acid by Liquids"; besides the extended investigation "On the Decomposition of Minerals and Rocks by Carbonated and Meteoric Waters," to which we have referred above. There was also at thistime a large amount of chemical work constantly on hand in connection with the Geological Survey, such as analyses of mineral waters, ores, and the like. Moreover, while at the University of Virginia, Professor Rogers published a short treatise on "The Strength of Materials," and a volume on "The Elements of Mechanics,"—books which, though long out of print, were very useful text-books in their day, and are marked by the clearness of style and felicity of explanation for which the author was so distinguished.

The year 1853 formed a turning-point in Professor Rogers's life. Four years previously he had married Miss Emma Savage, daughter of Hon. James Savage, of Boston, the well-known author of the "New England Genealogical Dictionary," and President of the Massachusetts Historical Society. This connection proved to be the crowning blessing of his life. Mrs. Rogers, by her energy, her intelligence, her cheerful equanimity, her unfailing sympathy, became the promoter of his labors, the ornament and solace of his middle life, and the devoted companion and support of his declining years. Immediately after his marriage, June 20, 1849, he visited Europe with his wife, and was present at the meeting of the British Association for the Advancement of Science, held that year at Birmingham, where he was received with great warmth, and made a most marked impression. Returning home in the autumn, Professor Rogers resumed his work at the University of Virginia; but the new family relations which had been established led in 1853 to the transfer of his residence to Boston, where a quite different, but even a more important, sphere of usefulness surrounded him. His wide scientific reputation, as well as his family connection, assured him a warm welcome in the most cultivated circles of Boston society, where his strength of character, his power of imparting knowledge, and his genial manners, soon commanded universal respect and admiration. He at once took an active part in the various scientific interests of the city. From 1845 he had been a Fellow of this Academy;[J]and after taking up his residence among us he was a frequent attendant at our meetings, often took part in our proceedings, became a member of our Council, and from 1863 to 1869 acted as our Corresponding Secretary. He took a similar interest in the Boston Society of Natural History. He was a member, and for many years the President, of the Thursday Evening Scientific Club, to which he imparted new life and vigor, and which was rendered by him an important field of influence. The members who were associated with him in that club will never forget those masterly expositions of recent advances in physical science; and will remember that, while he made clear their technical importance to the wealthy business men around him, he never failed to impress his auditors with the worth and dignity of scientific culture.

During the earlier years of his residence in Boston, Professor Rogers occupied himself with a number of scientific problems, chiefly physical. He studied the variations of ozone (or of what was then regarded as ozone) in the atmosphere at the time when this subject was exciting great attention. He was greatly interested in the improvements of the Ruhmkorff Coil made by Mr. E. S. Ritchie; and in this connection published a paper on the "Actinism of the Electric Discharge in Vacuum Tubes." A study of the phenomena of binocular vision led to a paper entitled "Experiments disproving by the Binocular Combination of Visual Spectra Brewster's Theory of Successive Combinations of Corresponding Points." A paper discussing the phenomena of smoke rings and rotating rings in liquids appeared in the "American Journal of Science" for 1858, with the description of a very simple but effective apparatus by which the phenomena would be readily reproduced. In this paper Professor Rogers anticipated some of the later results of Helmholtz and Sir William Thomson. In the same year an ingenious illustration of the properties of sonorous flames was exhibited tothe Thursday Evening Club above mentioned, in which Professor Rogers anticipated Count Schafgottsch in the invention of a beautiful optical proof of the discontinuity of the singing hydrogen flame.

In 1861 Professor Rogers accepted from Governor Andrew the office of Inspector of Gas and Gas-Meters for the State of Massachusetts, and organized a system of inspection in which he aimed to apply the latest scientific knowledge to this work; and in a visit he again made to Europe in 1864 he presented, at the meeting of the British Association at Bath, a paper entitled "An Account of Apparatus and Processes for Chemical and Photometrical Testing of Illuminating Gas."

During this period he gave several courses of lectures before the Lowell Institute of Boston, which were listened to with the greatest enthusiasm, and served very greatly to extend Professor Rogers's reputation in this community. Night after night, crowded audiences, consisting chiefly of teachers and working-people, were spellbound by his wonderful power of exposition and illustration. There was a great deal more in Professor Rogers's presentation of a subject than felicity of expression, beauty of language, choice of epithets, or significance of gesture. He had a power of marshaling facts, and bringing them all to bear on the point he desired to illustrate, which rendered the relationsof his subject as clear as day. In listening to this powerful oratory, one only felt that it might have had, if not a more useful, still a more ambitious aim; for less power has moved senates and determined the destinies of empires.

The interest in Professor Rogers's lectures was not excited solely, however, by the charm of his eloquence; for, although such was the felicity of his presentations, and such the vividness of his descriptions, that he could often dispense with the material aids so essential to most teachers, yet when the means of illustration were at his command he showed his power quite as much in the adaptation of experiments as in the choice of language. He well knew that experiments, to be effective, must be simple and to the point; and he also knew how to impress his audience with the beauty of the phenomena and with the grandeur of the powers of nature. He always seemed to enjoy any elegant or striking illustration of a physical principle even more than his auditors, and it was delightful to see the enthusiasm which he felt over the simplest phenomena of science when presented in a novel way.

We come now to the crowning and greatest work of Professor Rogers's life, the founding of the Massachusetts Institute of Technology—an achievement so important in its results, so far-reaching in its prospects,and so complete in its details, that it overshadows all else. A great preacher has said that "every man's life is a plan of God's." The faithful workman can only make the best use of the opportunities which every day offers; but he may be confident that work faithfully done will not be for naught, and must trustingly leave the issue to a higher power. Little did young Rogers think, when he began to teach in Virginia, that he was to be the founder of a great institution in the State of Massachusetts; and yet we can now see that the whole work of his life was a preparation for this noble destiny. The very eloquence he so early acquired was to be his great tool; his work on the Geological Survey gave him a national reputation which was an essential condition of success; his life at the University of Virginia, where he was untrammeled by the traditions of the older universities, enabled him to mature the practical methods of scientific teaching which were to commend the future institution to a working community; and, most of all, the force of character and large humanity developed by his varied experience with the world were to give him the power, even in the conservative State of his late adoption, to mold legislators and men of affairs to his wise designs.

It would be out of place, as it would be unnecessary, to dwell in this connection on the various stages in thedevelopment of the Institute of Technology. The facts are very generally known in this community, and the story has been already well told. The conception was by no means a sudden inspiration, but was slowly matured out of a far more general and less specific plan, originating in a committee of large-minded citizens of Boston, who, in 1859, and again in 1860, petitioned the Legislature of Massachusetts to set apart a small portion of the land reclaimed from the Back Bay "for the use of such scientific, industrial, and fine art institutions as may associate together for the public good." The large scheme failed; but from the failure arose two institutions which are the honor and pride of Boston—the Museum of Fine Arts and the Institute of Technology. In the further development of the Museum of Fine Arts, Professor Rogers had only a secondary influence; but one of his memorials to the Legislature contains a most eloquent statement, often quoted, of the value of the fine arts in education, which attests at once the breadth of his culture and the largeness of his sympathies.

Although the committee of gentlemen above referred to had failed to carry out their general plan, yet the discussions to which it gave rise had developed such an interest in the establishment of an institution to be devoted to industrial science and education that they determined upon taking the preliminary steps toward theorganization of such an institution. A sub-committee was charged with preparing a plan; and the result was a document, written by Professor Rogers, entitled "Objects and Plan of an Institute of Technology." That document gave birth to the Massachusetts Institute of Technology, for it enlisted sufficient interest to authorize the committee to go forward. A charter with a conditional grant of land was obtained from the Legislature in 1861, and the institution was definitely organized, and Professor Rogers appointed President, April 8, 1862. Still, the final plans were not matured, and it was not until May 30, 1864, that the government of the new institution adopted the report prepared by its president, entitled "Scope and Plan of the School of Industrial Science of the Massachusetts Institute of Technology," which Dr. Runkle has called the "intellectual charter" of the institution, and which he states "has been followed in all essential points to this very day." In striking confirmation of what we have written above, Dr. Runkle further says:

"In this document we see more clearly the breadth, depth, and variety of Professor Rogers's scientific knowledge, and his large experience in college teaching and discipline. It needed just this combination of acquirements and experience to put his conceptions into working shape, to group together those studies and exerciseswhich naturally and properly belong to each professional course, and thus enable others to see the guiding-lines which must direct and limit their work in its relations to the demands of other departments....

"The experimental element in our school—a feature which has been widely recognized as characteristic—is undoubtedly due to the stress and distinctness given to it in the 'Scope and Plan.' In our discipline we must also give credit to the tact and large-heartedness of Professor Rogers—in the fact that we are entirely free from all petty rules and regulations relating to conduct, free from all antagonism between teachers and students."

The associates of Professor Rogers in this Academy—many of them his associates also in the Institute of Technology, or in the Society of Arts, which was so important a feature of the organization—will remember with what admiration they watched the indefatigable care with which its ever active president fostered the young life of the institution he had created. They know how, during the earlier years, he bore the whole weight of the responsibility of the trust he had voluntarily and unselfishly assumed for the public good; how, while by his personal influence obtaining means for the daily support of the school, he gave a great part of the instruction, and extended a personal regard to every individual student committed to his charge. They recall with what wisdom, skill, tact, and patience he directed the increasing means and expanding scope of the now vigorous institution, overcoming obstacles, reconciling differences, and ingratiating public favor. They will never forget how, when the great depression succeeded the unhealthy business activity caused by the civil war, during which the institution had its rise, the powerful influence of its great leader was able to conduct it safely through the financial storm. They greatly grieved when, in the autumn of 1868, the great man who had accomplished so much, but on whom so much depended, his nerves fatigued by care and overwork, was obliged to transfer the leadership to a younger man; and ten years later were correspondingly rejoiced to see the honored chief come again to the front, with his mental power unimpaired, and with adequate strength to use his well-earned influence to secure those endowments which the increased life of the institution required; and they rejoiced with him when he was able to transfer to a worthy successor the completed edifice, well established and equipped—an enduring monument to the nobility of character and the consecration of talents. They have been present also on that last occasion, and have united in the acclamation which bestowed on him the title "Founder and Father perpetual, by a patent indefeasible." They have heard his feeling but modest response, and have been rejoicingthough tearful witnesses when, after the final seal of commendation was set, he fell back, and the great work was done.

We honor the successful teacher, we honor the investigator of Nature's laws, we honor the upright director of affairs—and our late associate had all these claims to our regard; but we honor most of all the noble manhood—and of such make are the founders of great institutions. In comparison, how empty are the ordinary titles of distinction of which most men are proud! It seems now almost trivial to add that our associate was decorated with a Doctor's degree, both by his own university and also by the University at Cambridge; that he was sought as a member by many learned societies; that he was twice called to preside over the annual meetings of the American Association for the Advancement of Science; and that, at the death of Professor Henry, he was the one man of the country to whom all pointed as the President of the National Academy of Science. This last honor, however, was one on which it is a satisfaction to dwell for a moment, because it gave satisfaction to Professor Rogers, and the office was one which he greatly adorned, and for which his unusual oratorical abilities were so well suited. He was a most admirable presiding officer of a learned society. His breadth of soul and urbanity of manner insensibly resolved the discords which often disturb the harmonies of scientific truth. He had the delicate tact so to introduce a speaker as to win in advance the attention of the audience, without intruding his own personality; and when a paper was read, and the discussion closed, he would sum up the argument with such clearness, and throw around the subject such a glow of light, that abstruse results of scientific investigation were made clear to the general comprehension, and a recognition gained for the author which the shrinking investigator could never have secured for himself. To Professor Rogers the truth was always beautiful, and he could make it radiant.

It is also a pleasure to record, in conclusion, that Professor Rogers's declining years were passed in great comfort and tranquillity, amidst all the amenities of life; that to the last he had the companionship of her whom he so greatly loved; and that increasing infirmities were guarded and the accidents of age warded off with a watchfulness that only the tenderest love can keep. We delight to remember him in that pleasant summer home at Newport, which he made so fully in reality as in name the "Morning-side," that we never thought of him as old, and to believe that the morning glow which he so often watched spreading above the eastern ocean was the promise of the fuller day on which he has entered.

Jean-Baptiste-André Dumas was born at Alais, in the south of France, July 14, 1800. His father belonged to an ancient family, was a man of culture, and held the position as clerk to the municipality of Alais. The son was educated at the college of his native place, and appears to have been destined by his parents for the naval service. But the anarchy and bloodshed which attended the downfall of the First Empire produced such an aversion to a military life that his parents abandoned their plan, and apprenticed him to an apothecary of the town. He remained in this situation, however, but a short time; for, owing to the same sad causes, he had formed an earnest desire to leave his home, and, his parents yielding to his wish, he traveled on foot to Genevain 1816, where he had relatives who gave him a friendly welcome, and where he found employment in the pharmacy of Le Royer.

At that time Geneva was the center of much scientific activity, and young Dumas, while discharging his duties in the pharmacy, had the opportunity of attending lectures on botany by M. de Candolle, on physics by M. Pictet, and on chemistry by M. Gaspard de la Rive; and from these lectures he acquired an earnest zeal for scientific investigation. The laboratory of the pharmacy gave him the necessary opportunities for experimenting, and an observation which he made of the definite proportions of water contained in various commercial salts, although yielding no new results, gained for him the attention and friendship of De la Rive. Soon after we find the young philosopher attempting to deduce the volumes of the atoms in solid and liquid bodies by carefully determining their specific gravities, and thus anticipating a method which thirty years later was more fully developed by Hermann Kopp.

About this time young Dumas had the good fortune to render an important service to one of the most distinguished physicians of Geneva, whose name is associated with the beneficial uses of iodine in cases of goitre. It had occurred to Dr. Coindet that burned sponge, then generally used as a remedy for that disease, might owe itsefficacy to the presence of a small amount of iodine; and on referring the question to Dumas, the young chemist not only proved the presence of iodine in the sponge, but also indicated the best method of administering what proved to be almost a specific remedy. It was in connection with this investigation that Dumas's name first appears in public. The discovery produced a great sensation, and for many years the manufacture of iodine preparations brought both wealth and reputation to the pharmacy of Le Royer.

Soon after, Dumas formed an intimacy with Dr. J. L. Prévost, then recently returned from pursuing his studies in Edinburgh and Dublin, and was induced to undertake a series of physiological investigations, which for a time withdrew him from his strictly chemical studies. Several valuable papers on physiological subjects were published by Prévost and Dumas, which attracted the notice of Alexander von Humboldt, who on visiting Geneva, in 1822, sought out Dumas and awakened in him a desire to seek a wider field of activity than his present position opened to him. In consequence he removed to Paris in 1823, where the reputation he had so deservedly earned at Geneva won for him a cordial reception at what was then the chief center of scientific study in Europe. La Place, Berthollet, Vauquelin, Gay-Lussac, Thenard, Alexandre Brongniart, Cuvier, Geoffroy St.Hilaire, Arago, Ampère, and Poisson, all manifested their interest in the young investigator. Dumas was soon appointed Répétiteur de Chimie at the École Polytechnique, and also Lecturer at the Athenæum, an institution founded and maintained by public subscription, for the purpose of exciting popular interest in literature and science; and from this beginning his advancement to the highest position which a man of science can occupy in France was extremely rapid.

In 1826 he married Mdlle. Herminie Brongniart, the eldest daughter of Alexandre Brongniart, the illustrious geologist, an alliance which not only brought him great happiness, and at the time greatly advanced his social position, but also in after years made his house one of the chief resorts of the scientific society of Paris. The many who have shared its generous hospitality will appreciate how greatly, for more than half a century, Madame Dumas has aided the work and extended the influence of her noble husband.

In 1828-'29 Dumas united with Théodore Olivier and Eugène Péclet in founding the École Centrale des Arts et Manufactures, an institution which met with great success, and in which, as Professor of Chemistry, Dumas rendered most efficient service for many years; and in 1878 had the very good fortune to aid in celebrating the fiftieth anniversary of his own foundation, and to see itacknowledged as among the most important and efficient scientific institutions of the world. In 1832 Dumas succeeded Gay-Lussac as Professor at the Sorbonne; in 1835 he succeeded Thenard at the École Polytechnique; and in 1839 he succeeded Deyeux at the École de Médecine. Thus before the age of forty he filled successively, and for some time simultaneously, all the important professorships of chemistry in Paris except one. This exception was that of the College of France, with which he was never permanently connected, although it was there that he delivered his famous course on the History of Chemical Philosophy, when temporarily supplying the place of Thenard.

Dumas early recognized the importance of laboratory instruction in chemistry, for which there were no facilities at Paris when he first came to what was then the center of the world's science; and in 1832 founded a laboratory for research at his own expense. This laboratory, first established at the Polytechnic School, was removed to the Rue Cuvier in 1839, where it remained until broken up by the Revolution of 1848. The laboratory was small, and Dumas would receive only a few advanced students, and these on terms wholly gratuitous. Among these students were Piria, Stas, Melsens, Leblanc, Lalande, and Lewy, with whose aid he carried on many of his important investigations. By the Revolution of 1848 Dumas's activities were for a time diverted into political channels; but under the Second Empire his laboratory was re-established at the Sorbonne, and in 1868 was removed to the École Centrale.

The political episode of Dumas's life was the natural result of an active mind with wide sympathies, which recognizes in the pressing demands of society its highest duty. The political and social upheaval of 1848 seemed at the time to endanger the stability in France of everything which a cultivated and learned man holds most dear; and Dumas was not one to consider his own preferences when he felt he could aid in averting the calamities which threatened his country. Immediately after the Revolution of February, he accepted a seat in the Legislative Assembly offered him by the electors of the Arrondissement of Valenciennes. Shortly afterward the President of the Republic called him to fill the office of Minister of Agriculture and Commerce. During the Second Empire he was elevated to the rank of Senator, and shortly after his entrance into the Senate he became Vice-President of the High Council of Education. In order to reform the abuses into which many of the higher educational institutions of Paris had fallen, be accepted a place in the Municipal Council of Paris, over which he subsequently presided from 1859 to 1870.

In 1868 Dumas was appointed Master of the Mint ofFrance; but he retained the office only during a short time, for with the fall of the Second Empire, in 1870, his political career came to an abrupt termination. The Senate had ceased to exist, and in the stormy days which followed, the Municipal Council had naturally changed its complexion; and even at the Mint, the man who had held such a conspicuous position under the Imperial government was obliged to vacate his place. Some years previously he had resigned his professorships because his official positions were incompatible with his relations as teacher, and now, at the age of seventy, he found himself for the first time relieved from the daily routine of official duties, and free to devote his leisure to the noble work of encouraging research, and thus promoting the advancement of science. He had reached an age when active investigation was almost an impossibility, but his commanding position gave him the opportunity of exerting a most powerful influence, and this he used with great effect. In early life he had been elected, in 1832, a member of the Academy of Sciences in succession to Serullas; in 1868 he had succeeded Flourens as its Permanent Secretary; and in 1875 he was elected a member of the French Academy as successor to Guizot, a distinction rarely attained by a man of science.

It was, however, as Permanent Secretary of the Academy of Sciences that Dumas exerted during thelast years of his life his greatest influence. He was the central figure and the ruling spirit of this distinguished body. No important commission was complete without him, and on all public occasions he was the orator of the body, always graceful, always eloquent. In announcing Dumas's death to the Academy, M. Rolland, the presiding officer, said:

"Vous savez la part considérable que Dumas prenait à vos travaux et vous avez bien souvent admiré, comme moi, la haute intelligence et la tact infini avec lesquels il savait imprimer à nos discussions les formes modérées et courtoises inhérentes à sa nature et à son caractère. Sous ce rapport aussi la perte de Dumas est irréparable et crée dans l'Académie un vide bien difficile à combler. Aussi, longtemps encore nous chercherons, à la place qu'il occupait au Bureau avec tant d'autorité, la figure sympathique et vénérée de notre bienaimé Secrétaire perpétuel."

And while Dumas was still occupying his conspicuous position in the Academy, one of the most distinguished of his German contemporaries[L]wrote of him: "An ever-ready interpreter of the researches of others, he always heightens the value of what he communicates by adding from the rich stores of his own experience, thus often conveying lights not noticed even by the authors of those researches."

When the writer last saw Dumas, in the winter of 1881-'82, the great chemist had still all the vivacity of youth, and it was difficult to realize his age. He took a lively interest in all questions of chemical philosophy, which he discussed with great earnestness and warmth. There was the same fire and the same exuberance of fancy which had enchanted me in his lectures thirty years before. At an age when most men hold speculation in small esteem, I was much struck with his criticism of a contemporary, who, he said, had no imagination, although he spoke with the highest praise of his experimental skill. At that time Dumas showed no signs of impaired strength. But during the following year his health began to fail, and he died on the 11th of April, at Cannes, where he had sought a retreat from the severity of the winter climate of Paris.

Dumas was one of the few men whose greatness can not be estimated from a single point of view. He was not only eminent as an investigator of nature, but even more eminent as a teacher and an administrator. Beginning the study of chemistry at the culmination of the epoch of the Lavoisierian system, and regarding,as he always did, the author of that system with the greatest admiration, he nevertheless was the first to discover the weak point in its armor and inflict the wound which led to its overthrow. Without attempting to detail Dumas's numerous contributions to chemical knowledge, we will here only refer to three important investigations, which produced a marked influence in the progress of chemical science.

While still in Geneva, Dumas, as has been said, made numerous determinations of the densities of allied substances, with a view to discovering the relations of what he called their molecular or atomic volumes; and it is no wonder to us that the problem proved too complex to be solved at that time. After his removal to Paris he took up the much simpler problem which the relations of the molecular volumes of aëriform substances present, and his paper "On Some Points of the Atomic Theory," which was published in the "Annales de Chimie et de Physique" for 1826, had an important influence in developing our modern chemical philosophy. Gay-Lussac had previously observed, not only that the relative weights of the several factors and products concerned in a chemical process bear to each other definite proportions, but also that, when the materials are aëriform, the relative volumes preserve an equally definite and still simpler ratio.Moreover, on the physical side, Avogadro, and afterward Ampère, had conceived the theory, that in the state of gas all molecules must have the same volume. It was Dumas who first saw that these principles furnished an important means of verifying the molecular and atomic weights.

"I am engaged," he writes, "in a series of experiments intended to fix the atomic weights of a considerable number of bodies, by determining their density in the state of gas or vapor. There remains in this case but one hypothesis to be made, which is accepted by all physicists. It consists in supposing that, in all elastic fluids observed under the same conditions, the molecules are placed at equal distances, i. e., that they are present in them in equal numbers. An immediate consequence of this mode of looking at the question has already been the subject of a learned discussion on the part of Ampère"—and Avogadro, as the author subsequently adds—"to which, however, chemists, with the exception perhaps of M. Gay-Lussac, appear to have given as yet but little attention. It consists in the necessity of considering the molecules of the simplest gases as capable of a further division—a division occurring in the moment of combination, and varying with the nature of the compound."

Here, it is obvious, are the very conceptions whichform the basis of our modern chemical philosophy; and at first we are surprised that they did not lead Dumas at once to the full realization of the consequences which the doctrine of equal molecular volumes involves in the interpretation of the constitution of chemical compounds, and to the clear distinction between "the physically smallest particles" and "the chemically smallest particles," or the molecules and the atoms, as we now call the physical and the chemical units. This distinction is implied throughout Dumas's paper already quoted, and is illustrated by a striking example in the introduction to his treatise on "Chemistry applied to the Arts," published two years later; but the ground was not yet prepared to receive the seed, and more than a quarter of a century must pass before the full harvest of this fruitful hypothesis could be reaped.

There were, however, two important incidental results of this investigation from which chemical science immediately profited. One was a simple method of determining with accuracy the vapor densities of volatile substances which has since been known by Dumas's name. The other was a radical change in the formula of the silicates. On the authority of Berzelius, who based his opinion chiefly on the analogy between thesilicates and the sulphates, the formula SiO3, had been accepted as representing the constitution of silica. But from the density of both the chloride and the fluoride of silicon Dumas concluded that the formula was SiO2, a conclusion which is now seen to be in complete harmony with the scheme of allied compounds. To Berzelius, however, the new views appeared wholly out of harmony with the system of chemistry which he had so greatly assisted in developing, and he opposed them with the whole weight of his powerful influence, and so far succeeded as to prevent their general adoption for many years. Still, "the new mode of looking at the constitution of silicic acid slowly but surely gained ground, and it is now so firmly rooted in our convictions, that the younger generation of chemists will scarcely understand the pertinacity with which this innovation was resisted."[M]

But if this investigation of gas and vapor densities brought a great strain upon the dualistic system, the second of the three great investigations of Dumas, to which we have referred, led to its complete overthrow. The experimental results of this investigation would not be regarded at the present day as remarkable, and can not be compared either in breadth or intricacy with the results of numerous investigations of a similar character which have since been made. The most important of these results were the substitution products obtained by the action of chlorine gas on acetic acid. They were published in a series of papers entitled "Sur les Types Chimiques," and the capital point made was that chlorine could be substituted in acetic acid for a large part of the hydrogen without destroying the acid relations of the product; and the inference was, that the qualities of a compound substance depend not simply on the nature of the elements of which it consists, but also on the manner or type according to which these elements are combined.

To the chemists of the present day these results and inferences seem so natural that it is difficult to understand the spirit with which they were received forty years ago. But it must be remembered that at that time the conceptions of chemists were wholly molded in the dualistic system. It was thought that chemical action depended upon the antagonism between metals and metalloids, bases and acids, acid salts and basic salts, and that the qualities of the products resulted from the blending of such opposite virtues. That chlorine should unite with hydrogen was natural, for no two substances could be more unlike; but that chlorine should supply the place of hydrogen in a chemical compound was a conception which the dualists scouted as absurd. Even Liebig, the "father oforganic chemistry," warmly controverted the interpretation which Dumas had given to the facts he had discovered. Liebig himself had successfully investigated the chemical relations of a large class of organic products. He had, however, worked on the lines of the dualistic system, showing that organic substances might be classed with similar inorganic substances, if we assume that certain groups of atoms, which he called "compound radicals," might take the place of elementary substances. In the edition of the organic part of Turner's "Chemistry" bearing his name, organic chemistry is defined as the "chemistry of compound radicals," and the formulas of organic compounds are represented on the dualistic system. Liebig's conceptions were therefore naturally opposed to those advanced by Dumas; but it is pleasant to know that the controversy which arose never disturbed the friendly relations between these two noble men of science, who could approach the same truth from different sides, and yet have faith that each was working for the same great end. In his commemorative address on Pelouze, Dumas expresses toward Liebig sentiments of affectionate regard, and Liebig dedicates to Dumas, with equal warmth, the German edition of his "Letters on Chemistry."

By the second investigation, as by the first, although Dumas gave a most fruitful conception to chemistry,he only took the first step in developing it. His conception of chemical types was very indefinite, and Laurent wrote of it, a few years later: "Dumas's theory is too general; by its poetic coloring, it lends itself to false interpretations; it is a programme of which we await the realization." Laurent himself helped toward this realization, and in his early death left the work to his associate and friend Gerhardt, who pushed it forward with great zeal, classifying chemical compounds according to the four types of hydrochloric acid, water, ammonia, and marsh-gas. Hofmann, Williamson, Wurtz, and many others, greatly aided in this work by realizing many of the possibilities which these types suggested; and thus modern Structural Chemistry gradually grew up, in which the types of Dumas and Gerhardt have been in their turn superseded by the larger views which the doctrine of quantivalence has opened out to the scientific imagination. It is a singular fact, however, that, while the growth began in France, the harvest has been chiefly reaped by Germans; and that, although in its inception the movement was strongly opposed in Germany, its legitimate conclusions are now repudiated by the most influential school of French chemists.

The third great investigation of Dumas was his revision of the atomic weights of many of the chemicalelements, and in none of his work did he show greater experimental skill. His determination of the atomic weight of oxygen by the synthesis of water, and of that of carbon by the synthesis of carbonic dioxide, are models of quantitative experimental work. To this investigation, as to all his other work, Dumas was directed by his vivid scientific imagination. In his teaching, from the first, he had aimed to exhibit the relations of the elementary substances by classing them in groups of allied bodies; and at the meeting of the British Association in 1851 he had delighted the chemical section by the eloquence and force with which he exhibited such relations, especially triads of elementary substances; such as chlorine, bromine, and iodine; oxygen, sulphur, and selenium; phosphorus, arsenic, and antimony; calcium, barium, and strontium: in which not only the atomic weight, but also the qualities of the middle member of the triad, were the mean of those of the other two members. Later, he came to regard these triads as parts of more extended series, in each of which the atomic weights increased from the first to the last element of the series, by determinate, but not always by equal differences, the values being, if not exact multiples of the hydrogen atom according to the hypothesis of Prout, at least multiples of one half or one quarter of that weight. There canbe no doubt that these speculations were more fanciful than sound, and that Dumas did not do full justice to earlier theories of the same kind; but with him these speculations were merely the ornaments, not the substance of his work, and they led him to fix more accurately the constants of chemistry, and thus to lay a trustworthy foundation upon which the superstructure of science could safely be built.

That exuberance of fancy to which we have referred made Dumas one of the most successful of teachers, and one of the most fascinating of lecturers. It was the privilege of the writer to attend the larger part of two of his courses of lectures given in Paris, in the winters of 1848 and 1851, and he remembers distinctly the impression produced. Besides the well-arranged material and the carefully prepared experiment, there was an elegance and pomp of circumstance which added greatly to the effect. The large theatre of the Sorbonne was filled to overflowing long before the hour. The lecturer always entered at the exact moment, in full evening dress, and held to the end of a two hours' lecture the unflagging attention of his audience. The manipulations were entirely left to the care of a number of assistants, who brought each experiment to a conclusion at the exact moment when the illustration was required. An elegance of diction, anappropriateness of illustration, and a beauty of exposition, which could not be excelled, were displayed throughout, and the enthusiasm of a French audience added to the animation of the scene.

To the writer the lectures of Dumas were brought in contrast to those of Faraday. Both were perfect of their kind, but very different. Faraday's method was far more simple and natural, and he excelled Dumas in bringing home to young minds abstruse truths by the logic of well-arranged consecutive experiment. With Dumas there was no attempt to popularize science; he excelled in clearness and elegance of exposition. He exhausted the subject which he treated, and was able to throw a glow of interest around details which by most teachers would have been made dry and profitless.

Two volumes of Dumas's lectures have been published; one comprises his course on the "Philosophy of Chemistry," delivered at the College of France in 1836; the other contains only a single lecture, accompanied by notes, entitled "The Balance of Organic Life," which was delivered at the Medical School of Paris, August 20, 1841. In both these volumes will be found the beauty of exposition and the elegance of diction of which we have spoken, and they are models of literary style. But of course the sympathetic enthusiasm of the great man's presence can not be reproduced by written words.

The lecture on "The Balance of Organic Life" was probably the most remarkable of Dumas's literary efforts. It dealt simply with the relations which the vegetable sustains to the animal kingdom through the atmosphere, which, though now so familiar, were then not generally understood; and the late Dr. Jeffries Wyman, who heard the lecture, always spoke of it with the greatest enthusiasm.

As might be expected, Dumas's oratory found an ample field in the Chamber of Deputies and in the Senate; and whether setting forth a project of recasting the copper coinage or a law of drainage, or ridiculing the absurd theories of homœopathy, he riveted the attention of his colleagues as completely as he had entranced the students at the Sorbonne.

In the early part of his life, Dumas was a voluminous writer, and in 1828 published the "Traité de Chimie appliquée aux Arts," in eight large octavo volumes, with an atlas of plates in quarto. But besides this extended treatise, the two volumes of lectures just referred to are his only important literary works. He published numerous papers in scientific journals, which, as we have seen, produced a most marked effect on the growth of chemical science. But the number of his monographs is not large compared with those of many of his contemporaries, and his work is to be judged by its importance andinfluence rather than by the extent of the field which it covers.

In his capacity of President of the Municipal Council at Paris, of Minister of Agricultural Commerce, of Vice-President of the High Council of Education, and of Perpetual Secretary of the Academy of Sciences, Dumas had abundant opportunity for the exercise of his administrative ability, and no one has questioned his great powers in this direction; but in regard to his political career we could not expect the same unanimity of opinion. That he was a liberal under Louis Philippe, and a reactionist under Louis Napoleon, may possibly be reconciled with a fixed political faith and an unswerving aim for the public good; but his scheme for "civilian billeting" (by which wealthy people having rooms to spare in their houses would have been compelled to billet artisans employed in public works) leads one to infer that his statesmanship was not equal to his science. Nevertheless, there can be no question about his large-hearted charity. He instituted the "Crédit Foncier," which flourishes in great prosperity to this day; he also founded the "Caisse de Rétraite pour la Vieillesse," and several other agricultural charities, which, though less successful, afford great assistance to aged workmen. Louis Napoleon used to say in jest that the whole of the War Minister's budget would not have been enough to realizeM. Dumas's benevolent schemes; and once, half-dazzled, half-amused, by one of the chemist's vast sanitary projects, he called him "the poet of hygiene."

It was to be expected that a man working with such eminent success in so many spheres of activity, and at one of the chief centers of the world's culture, should be loaded with medals, and marks of distinction of every kind. It would be idle to enumerate the orders of knighthood, or the learned societies, to which he belonged, for, so far from their honoring him, he honored them in accepting their membership. It is a pleasure, however, to remember that he lived to realize his highest ambitions and to enjoy the fruits of his well-earned renown. France has added his name in the Pantheon

"Aux Grands Hommes la Patrie Reconnaissante."


Back to IndexNext