The great bugbear staring the amateur mechanic in the face when he contemplates making a small steam engine is the matter of boring the cylinder. To bore an iron cylinder on a foot lathe is difficult even when the lathe is provided with automatic feed gear, and it is almost impossible with the ordinary light lathe possessed by most amateurs. To bore a brass cylinder is easier, but even this is difficult, and the cylinder, when done, is unsatisfactory on account of the difficulty of adapting a durable piston to it.
The engravings show a simple steam engine, which requires no difficult lathe work; in fact the whole of the work may be done on a very ordinary foot lathe. The engine is necessarily single-acting, but it is effective nevertheless, being about 1-20 H. P., with suitable steam supply. It is of sufficient size to run a foot lathe, scroll saw, or two or three sewing machines.
The cylinder and piston are made from mandrel drawn brass tubing, which may be purchased in any desired quantity in New York city. The fittings are mostly of brass, that being an easy metal to work.
The principal dimensions of the engine are as follows:
Cylinder.—Internal diameter, 1-1/2 in.; thickness, 1/8 in.; length, 3-3/8 in.
Piston.—External diameter, 1-1/2 in.; thickness, 3-32 in.; length, 3-3/4 in.
Length of stroke. 2 in.
Crank pin.—Diameter, 1/4 in.; length of bearing surface, 1/2 in.
Connecting rod.—Diameter, 5/16 in.; length between centers, 5-1/2 in.
Shaft.—Diameter, 5/8 in.; diameter of bearings, 1/2 in.; length. 6 in.; distance from bed to center of shaft, 1-1/2 in.
Flywheel.—Diameter, 8 in.; weight, 10 lb.
Valve.—Diameter of chamber, 9-16 in.; length, 1-1/4 in.; width of valve face working over supply port, 3/32 in.; width of space under valve, 3/8 in.; length of the same, 1 in.; distance from center of valve spindle to center of eccentric rod pin, 3/4 in.
Ports, supply—Width, 1/16 inch.; length, 1 in. Exhaust.—Width, 1/8 in.; length, 1 in.; space between ports, 5-16 in.
Pipes.—Steam supply, 1/4 in.; exhaust, 3/8 in.
Eccentric.—Stroke, 3/4 in.; diameter, 1-5/16 in. length of eccentric rod between centers, 8-3/8 in.
Cut off, 5/8
Thickness of base plate, 1/4 in.
Wooden base, 6-1/4 in x 8 in.: 2-3/8 in. thick.
Thickness of plate supporting cylinder, 3/8 in.
Total height of engine, 13-1/4 in.
Distance from base plate to under side of cylinder head. 9-1/4 in.
Diameter of vertical posts, 9-16 in.; distance apart, 3-1/2 in.; length between shoulders 6-1/4 in.
Base plate fastened to base with 1/4 in. bolts.
The connecting rod, eccentric rod, crank pin, and shaft, are of steel. The eccentric-strap and flywheel are cast iron, and the other portions of the engine are of brass. The screw threads are all chased, and the flange,a, and head of the piston, F, in addition to being screwed, are further secured by soft solder.
Fig. 1 shows the engine in perspective. Fig 2 is a side elevation, with parts broken away. Fig. 3 is a vertical transverse section. Fig. 4 is a partial plan view. Fig. 5 is a detail view of the upper end of the connecting rod and its connections; and Fig. 6 is a horizontal section taken through the middle of the valve chamber.
The cylinder, A, is threaded externally for 1 inch from its lower end, and the collar,a, 1/4 inch thick, is screwed on and soldered. The face of the collar is afterward turned true. The same thread answers for the nut which clamps the cylinder in the plate, B, and for the gland,b, of the stuffing box, which screws over the beveled end of the cylinder, and contains fibrous packing filled with asbestos or graphite. The posts, C, are shouldered at the ends and secured in their places by nuts. Their bearing surface on the plate, D, is increased by the addition of a collar screwed on. The posts are made from drawn rods of brass, and need no turning except at the ends.
image15Fig. 1.—SIMPLE SINGLE-ACTING STEAM ENGINE.
The cylinder head, E, which is a casting containing the valve chamber, is screwed in. The piston, F, fits the cylinder closely, but not necessarily steam tight. The head is screwed in and soldered, and the yoke, G, which receives the connecting rod pin, is screwed into the head. The connecting rod, H, is of steel with brass ends. The lower end, which receives the crank pin, is split, and provided with a tangent screw for taking up wear. The crank pin is secured in the crank disk, I, by a nut on the back. The eccentric rod, J, is of steel, screwed at its lower end into an eccentric strap of cast or wrought iron, which surrounds the eccentric, K. The valve, L, is slotted in the back to receive the valve spindle, by which it is oscillated. The ports are formed by drilling from the outside, and afterward forming the slot, with a graver or small sharp chisel. The supply port, for convenience, may be somewhat enlarged below. The holes for the exhaust port will be drilled through the hole into which the exhaust pipe is screwed. The chamber communicating with the exhaust is cored out in the casting.
The easiest way to make the valve is to cut it out of a solid cylinder turned to fit the valve chamber.
An engine of this kind will work well under a steam pressure of 50 lb., and it may be run at the rate of 200 to 250 revolutions per minute.
image16SIDE ELEVATION. SECTIONAL, AND DETAIL VIEWS OF SIMPLE STEAM ENGINE.
It is desirable to construct a flat pasteboard model to verify measurements and to get the proper adjustment of the valve before beginning the engine. M.
An improved finger ring has been patented by Mr. David Untermeyer, of New York city. The object of this invention is to furnish finger rings so constructed that they can be opened out to represent serpents, and which, when being worn, will give no indication of being anything more than rings.
An improved heel skate-fastener has been patented by Mr. Elijah S. Coon, of Watertown, N.Y. This invention consists, essentially, of a screw threaded hollow plug or thimble, a dirt plate for covering the opening in the plug, and a spring for holding the dirt plate in place. This fastener possesses several advantages over one that is permanently attached to the heel. Being cylindrical, it is more easily connected, because the hole for its reception can be made with a common auger or bit without the necessity for lasting the boot or shoe or using a knife or chisel. Being screw threaded it can be readily screwed into place with a common screwdriver; this also enables it to be screwed either in or out, in order to make it fit the heel key. The screw thread permits of screwing it in beyond the surface of the heel, so as to prevent it from wearing out by the ordinary wearing of the shoe.
An improved velocipede has been patented by Messrs. Charles E. Tripler and William H. Roff, of New York city. The object of this invention is to obtain a more advantageous application of the propelling power than the ordinary cranks, to avoid the noise of pawls and ratchets, and to guard the velocipedes against being overturned should one of the rear wheels pass over an obstruction.
Mr. Philip H. Pax on, of Camden, N. J., has patented a machine that will cut lozenges in a perfect manner, and will not be clogged by the gum and sugar of the lozenge dough.
Mr. John H. Robertson, of New York city, has patented an improved mat, which consists of longitudinal metal bars provided with alternate mortised and tenoned ends, and composed of series of sockets united by webs and of wooden transverse rods entered through said sockets and held therein by vertical pins.
Mr. Charles F. Clapp, of Ripon, Wis, has patented a novel arrangement of a desk attachment for trunks. The desk and tray may be lifted from the trunk when the desk is either raised or lowered.
A combined scraper, chopper, and dirter has been patented by Messrs. Francis A. Hall and Nathaniel B. Milton, of Monroe, La. The object of this invention is to furnish an implement so constructed as to bar off a row of plants, chop the plants to a stand, and dirt the plants at one passage along the row, and which shall be simple, convenient, and reliable.
Mr. Hermann H. Cammann, of New York city, has patented a basket so constructed that it can be compactly folded for transportation or storage.
Messrs. David H. Seymour and Henry R. A. Boys, of Barrie, Ontario, Canada, have patented an improvement in that class of devices that are designed to be applied to steam cylinders for introducing oil or tallow into the cylinder and upon the cylinder valves. It consists of an oil cup provided with a gas escape, a scum breaker, an interior gauge, and an adjustable feed pipe extension.
Mr. John H. Conrad, of Charlotte, Mich., has patented a portable sliding gate which will dispense with hinges and which can be used in any width of opening. It may be readily connected with a temporary opening or gap made in the fence.
An improved reversible pole and shaft for vehicles has been patented by Mr. Francis M. Heuett, of Jug Tavern, Ga. The object of this invention is to so combine the parts of shafts for vehicles that they may be readily transposed and re-employed to form the tongue without removing the thill arms or hounds from the axle.
Mr. William Jones, of Kalamazoo, Mich., has patented an improved box which is useful for various purposes, but is particularly intended for shipping fourth class mail matter. The feature of special novelty is the means of fastening the hinged cover.
Mr. Louis J. Halbert, of Brooklyn, N. Y., has patented an improved slate cleaner, which is simple, convenient, and effective.
An improved boot, which is simple in its make, fits well, and is convenient to put on and take off, has been patented by Ellene A. Bailey, of St. Charles, Mo. The boot is provided with side seams, one of which is open at its lower end, and is provided with lacing, buttons, or a like device, so that it can be closed when the boot is on the wearer's foot.
In the handsome engraving herewith are shown the male and female of the Hercules beetle (Dynastes hercules) of Brazil. The family of theDynastidæcomprises some of the largest and most beautiful of the beetle race, and all of them are remarkable for enormous developments of the thorax and head. They are all large bodied and stout limbed, and by their great strength abundantly justify their generic name,Dynastes, which is from the Greek and signifies powerful. The larvæ of these beetles inhabit and feed upon decaying trees and other rotting vegetable matter, and correspond in size with the mature insects. Most of them inhabit tropical regions, where they perform a valuable service in hastening the destruction of dead or fallen timber.
An admirable example of this family of beetles is the one here represented. In the male of the Hercules beetle the upper part of the thorax is prolonged into a single, downward curving horn fully three inches long, the entire length of the insect being about six inches. The head is prolonged into a similar horn, which curves upward, giving the head and thorax the appearance of two enormous jaws, resembling the claw of a lobster. The real jaws of the insect are underneath the lower horn, which projects from the forepart of the head. The under surface of the thorax-horn carries a ridge of stiff, short, golden-yellow hairs, and the under surface and edges of the abdomen are similarly ornamented.
The head, thorax, and legs are shining black; the elytra, or wing-covers, are olive-green, dotted with black spots, and are much wrinkled. The wings are large and powerful.
image17THE HERCULES BEETLE.
The female Hercules is quite unlike the male. It is much smaller, being not more than three and a half inches long, is without horns, and is covered with a brown hairy felt.
These beetles are nocturnal in habit, and are rarely seen in the daytime, except in dark hiding places in the recesses of Brazilian forests.
A prominent dealer in poultry, Mr. H. W. Knapp, of Washington Market, gives a discouraging opinion of the probable success of chicken raising by artificial means in this country. He said recently when questioned on this subject by a representative of theEvening Post:
"I went to France to study the matter, for if it can be made to succeed it will make an immense fortune, as it has already done in Paris. I was delighted with what I saw there, and the matter at first sight seems to be so fascinating that I do not wonder that new men here are always ready to take hold of it as soon as those who have bought dear experience are only too glad to get out of it. Even clergymen and actors are bitten with the desire to transform so many pounds of corn into so many pounds of spring chicken. The now successful manager, Mackaye, spent about a thousand dollars, in constructing hatching machines and artificial mothers in Connecticut, but he found that the stage paid better, and his expensive devices may now be bought for the value of old tin.
"Enthusiasts will tell you that by the new discovery chickens may be made out of corn with absolute certainty. In Paris this has been done; but the conditions are entirely different here. There the land is valuable, and they cannot devote large fields to a few hundred chickens; the French climate is so uniform that the markets of Paris cannot be supplied from the south with produce which ripens or matures before that of the neighborhood of Paris; the price of chickens is so high and labor so cheap that more care can be given with profit to one spring chicken than one of our poultry raisers could give to a dozen. Here we have plenty of land, the climate south of us is so far advanced in warmth that even with steam we cannot raise poultry ahead of the south, and the margin of profit is so small that one failure with a large batch of chickens sweeps away the profits from several successful experiments.
"When persons wanted me to go into the project I declined and was called an old fogy. One man spent a fortune on the enterprise in New Jersey, and at first was hailed as a public benefactor. What was the result of all his outlay and work? He managed to hatch quantities of young chickens every February, but although he could fatten them by placing them in boxes and forcing a fattening mixture down their throats, he could not make them grow; they had no exercise; they remained puny little things, and another defect soon appeared: though fat they were tough and stringy. The breeder sent lots of them to me, and they looked fat and tender; but my customers complained that they could not be young, for they were tough and tasteless, and that I must have sold them aged dwarfs under the name of spring chickens. It was found absolutely necessary to let them run out of doors as soon as the weather allowed it, and by the time that they were ready for market the southern chickens were here and could be sold for less than these. The upshot of the business is that this breeder has sold out, and another man has now taken hold of a small part of his old establishment to try other methods of making it a success.
"As to raising turkeys in that manner it will tail more disastrously than the chicken business. Size and weight are wanted in turkeys; and that reminds me," continued Mr. Knapp, "that the newspapers ought to impress the country people with the necessity of improving their poultry stock; breeding in and in is ruining poultry; every year the stock we receive is deteriorating, and this is the cause. I could give you some striking examples from my experience of forty years in the business. Some years ago we poulterers thought that ducks were going to disappear from bills of fare altogether; they were tasteless, worthless birds which people avoided. On Long Island a farmer made experiments in breeding with an old Muscovy drake, tough as an alligator, and the common duck. The result was superb and has changed the whole duck industry. If the farmers of Southern New Jersey, the sandy country best suited to turkeys, would bring from the West a few hundred wild turkeys we should have an immediate improvement. I see no such turkey now as we had twenty years ago. The breast is narrow and the body runs to length; it is all neck and legs, and can be bought by the yard. Rhode Island sends us the best turkeys, but they are not what they used to be. If, instead of attempting to beat nature at her own game, the rich men who have money to spend would devote it to better breeding, there would be an improvement. I do not yet despair of seeing immense farms wholly devoted to raising better poultry than we yet have."
Mr. Addison Ellsworth favors us with a transcript of a letter from Mr. Albert D. Rust, of Ennis, Ellis County, Texas, describing a remarkable exhibition of copulative cannibalism on the part of the mantis. The ferocious nature of these strange insects is well known, and is in striking contrast with the popular name, "praying mantis," which they have gained by the pious attitude they take while watching for the flies and other insects which they feed upon.
About sunrise, August 28, 1880, Mr. Rust's attention was attracted by a pair of mantis, whetherMantis religiosaor not, he was not sure, but from the length of the body and the shortness of the wings he was inclined to think them of some other species. The female had her arms tightly clasped around the head of the male, while his left arm was around her neck. Mr. Rust watched intently to see whether the embrace was one of war or for copulation. It proved to be both. As the two abdomens began to approach each other the female made a ferocious attack upon the male, greedily devouring his head, a part of the body, and all the arm that had encircled her neck. A moment after the eating began, Mr. Rust observed a complete union of the sexual organs, and the eating and copulation went on together. On being forcibly separated the female exhibited signs of fear at her headless mate, and it was with difficulty that they were brought together again. On being suddenly tossed upon the back of the female the male seized her with a grasp from which she could not extricate herself, and immediately the sexual union was renewed, to all appearances as perfectly as before.
The pair were accidentally killed, otherwise, Mr. Rush thinks, the female would have continued her cannibalistic repast until she had devoured the entire body of her companion.
This peculiarity of the mantis seems not to have been observed before, though their mutually destructive disposition has been noted by several. Desiring to study the development of these insects, M. Roesel raised a brood of them from a bag of eggs. Though plentifully supplied with flies, the young mantis fought each other constantly, the stronger devouring the weaker, until but one was left.
M. Poiret was not more successful. When a pair of mantis were put together in a glass they fought viciously, the fight ending with the decapitation of the male and his being eaten by the female.
At the meeting of the Association of Nurserymen in Chicago, last July, one of our prominent horticulturists described leaf variegation as a disease. Incidentally this brought up the question: Does the graft affect the stock upon which it is inserted?
Much confusion of ideas exists upon this subject, largely due to a loose application of the term disease. Strictly speaking, this term is only applicable to that which shows the health of the plant to be impaired. It should be distinguished from aberrant or abnormal forms, for these are not necessarily indicative of disease. Nobody thinks of saying that red or striped roses are diseased because they are departures in color from the white flower of the type species; or that white, yellow, or striped roses are diseased when the color of the type species is red. Nobody thinks of saying that double flowers are evidences of disease in the plant, or that diminution in the size of leaves or variation in their form is a disease. Why then should it be said that because leaves may become of some other color than green, or become party-colored, therefore they are diseased? If it be said that flowers are not leaves, and that therefore the analogy is not a good one, the reply is, that flowers in all their parts, and fruits also, are only leaves differently developed from the type. This fact is a proven one, and so admitted to be by all botanists and vegetable physiologists of the present day. If it be objected that by becoming double, flowers lose the power of reproducing the variety or species, the answer is, that this loss of power is not necessarily the result of disease, but may arise from various other causes. Because an animal is castrated, it surely will not be claimed that therefore it is diseased. In man and in the higher animals the power of reproduction ceases at certain ages, but it cannot therefore be said that such men or animals are diseased. Neither is a redundancy of parts an unequivocal evidence of disease.
Topknot fowls and ducks are as healthy as those which do not have such appendages, and a Shetland pony is as healthy as a Percheron horse, notwithstanding the difference in their size and weight. Again, color in block or in variegation is not positive evidence of disease in animal life. The white Caucasian is as healthy as the negro, the copper-colored Malay as the red Indian. The horse, ox, and hog run through white and red to black both in solid and party-color, and all are equally healthy; so with the rabbit, dog, cat, and others of our domestic animals. In wild animals, birds, reptiles, fishes, and insects, it is the same, so that mere difference in color or combinations of color are notprima facieevidence of disease.
But some will say this may be true of animal life, but not of plant life. That there is a strong and evident analogy, the one with the other, is now universally admitted by physiologists. Formerly many physiologists considered leaf variegation a disease, because it generally ran in stripes lengthwise of the leaf or in spots. In the former case it was supposed to originate from disease in the leaf cells of the leaf stalk, which, as the cells grow longitudinally, naturally prolonged it to the end of the leaf. But the originating of varieties in which the variegation did not assume this form, with other considerations, has done much to upset this theory. In the variegated leaved snowberry we have the center and border of the leaf green, separated the one from the other by an isolated white or yellow zone. In the zebra-leaved eulalia and the zebra-leaved juncus, from Japan, we have the variegation of the leaf transversely instead of longitudinally, so that according to the old theory we have the anomaly of a healthy portion of the leaf producing an unhealthy portion, and that again a healthy one, and thus alternately along the whole length of the leaf.
When we dissect a leaf in its primal development, we find that its cells contain colorless globules, by botanists called chlorophyl or phyto-color; these undergo changes according as they are acted upon by light, oxygen, or other agents, producing green, yellow, red, and other tints. This chlorophyl only exists in the outer or superficial cells of the parenchyma or cellular tissue of the leaf, and thus differs from starch and other substances produced in the internal cells, from which the light is more or less excluded. It is a fatty or wax-like substance, readily dissolved in alcohol or ether. The primal color of all leaves and flowers is white or a pale yellowish hue, as can readily be seen by cutting open a leaf or flower bud. The seed leaves of the French bean are white when they come out of the earth, but they become green an hour afterward under the influence of bright sunshine. A case is on record where in a certain section, some miles in extent, in this country, about the time of the trees coming into leaf, the sun did not shine for twenty days; the leaves developed to nearly their full size, but were of a pale or whitish color; finally, one forenoon the sun shone out fully, and by the middle of the afternoon the trees were in full summer dress. These facts show that the green color of leaves is due to the action of light. Variegation is sometimes produced independently of the chlorophyl, as inBegonia argyrostigmaandCarduus marianus, in which it is produced by a layer of air interposed between the epidermis or outer skin of the leaf and the cells beneath; this gives the leaf a bright, silvery appearance.
To what, then, are we to ascribe leaf variegation? I think that it is entirely due to diminished root power; by this I do not mean that the roots are diseased, but that they are either in an aberrant or abnormal state; but disease cannot be predicated upon either of these states. To explain: everybody knowsSpirea callosato be a strong growing shrub, having umbels of rosy-colored flowers and strong, stout roots; the white flowered variety is quite dwarf, is more leafy and bushy than the species, and has more fibrous and delicate roots than the type; the crisp-leaved variety is still more dwarf, very bushy, and very leafy, and has very fine threadlike roots. This would indicate that the aberrance is in the roots; the two varieties are much more leafy in proportion to their size than the species, so that if the leaves controlled the roots, the latter should have been larger in proportion than those of the species. Again, once when, in the autumn, I was preparing my greenhouse plants for their winter quarters, I cut back a "Lady Plymouth" geranium, which chanced to be set away in a cool and somewhat damp cellar. When discovered the following February and started into growth in the greenhouse it produced nothing but solid green leaves, and never afterward produced a variegated leaf. This I attributed to its having gained greater root power during its long season of rest. By this I mean that the roots had grown and greatly increased in size, although there had not been any leaf growth. That roots under certain circumstances do so is well known. The roots of fir trees have been found alive and growing forty five years after the trunks were felled. The same has occurred in an ash tree after its trunk had been sawn off level with the ground. A root ofIpomea sellowiihas been known to keep on growing for twelve years after its top had been destroyed by frost; and in all that time it never made buds or leaves, yet it increased to seven times its original weight. The tuberous roots of some of theTropæolumswill continue to grow and increase in size after the tops have been accidentally broken off; and potatoes buried so deep in the earth that they cannot produce tops will produce a crop of new potatoes.
On the other hand, I have had an oak-leaved geranium overlooked in a corner of the greenhouse until it was almost dried up for lack of water. When its branches were pruned back and it was started into growth only one branch showed the almost black center of the leaf, all the rest were clear green. This was an evident case of diminished root power, but the plant grew as thriftily as ever. The lack of the dark marking in the leaves was equivalent to the variegation in other varieties, only in a reverse direction.
In practice, when gardeners wish to produce an abnormal condition in a tree or plant, they will, if they wish to dwarf it, graft it on a species or variety of diminished root power, and contrariwise, if they wish to increase its growth, will graft it upon a stock of strong root power. But in neither case can the graft be said to be diseased by the action of the roots of the stock.
When this root power is so far diminished as to produce complete albinism, the shoots from such roots appear to partake of this diminished power, and to lose the power of making roots, and thus become very difficult to propagate. It is sometimes said that albino cuttings cannot be rooted at all, but this is a mistake, for I have succeeded in striking such cuttings from the variegated leavedHydrangea. It required much care to do it; they did not, however, retain their albino character after they rooted and started into growth.
Albinism and white variegation in leaves appear to be due to the chlorophyl in such leaves being able to resist the action of the three (red, yellow, and blue) rays of light. What we call color in any substance or thing is due to its reflecting these different rays in various proportions of combination and absorbing the rest of them, the various proportions giving the various shades of color. White is due to the reflection of all of them, and black to the absorption of them. In some plants with variegated foliage we have the curious fact that the cells containing chlorophyl reflecting one color produce cells which reflect an entirely different color. In the coleus "Lady Burrill," for instance, the lower half of the leaf is of a deep violet-crimson color, and the upper half is golden yellow. In other varieties of coleus, inPerilla nankiensis, and other plants, we have foliage without a particle of green in it, and yet they are perfectly healthy. This shows that green leaves are not absolutely necessary to the health of a plant.
As a proof of leaf variegation being a disease, the speaker alluded to cited a case in which a green leaved abutilon, upon which a variegated leaved variety had been grafted, threw out a variegated leaved shoot below the graft. This can easily be explained. The growth of the trunk or stem of all exogenous plants, or those which increase in size on the outside of the stem, is brought about by the descent of certain formative tissue called cambium, elaborated by the leaves and descending between the old wood and the bark, where it is formed into alburnum or woody matter. Some think that it is also formed by the roots and ascends from them as well as descending from the leaves. Be this as it may, there is no doubt about its descent. In such comparatively soft-wooded, free growing plants as the abutilon the descent of the cambium is very free and in considerable quantity, so that the stock would soon be inclosed in a layer of it descending from the graft. When being converted into woody matter it also forms adventitious buds which under certain favorable circumstances will emit shoots of the same character as the graft from which it was derived. The graft is such cases may be said to inclose the stock in a tube of its own substance, leaving the stock unaffected otherwise. The variegated shoot in this case was in reality derived from the downward growth of the graft and not from the original stock, which was not therefore contaminated by the graft. In cases where the stock is of much slower growth than the graft, or the graft is inserted upon a stock of some other species, the descending cambium does not inclose the stock, but makes layers of wood on the stem of the graft, which thus, as is frequently seen, overgrows the stock, sometimes to such an extent as to make it unsightly. Nobody ever saw an apple shoot from a crab stock, a pear from a quince stock, or a peach shoot from a plum stock. This is one of the arguments in favor of the view that cambium also rises from the roots.
Again, to show that the stock is not affected by the graft, or the graft by the stock, except as to root power, let any person graft a white beet upon a red beet, or contrariwise, when about the size of a goosequill, and when they have attained their full growth, by dividing the beet lengthwise he will find the line of demarkation between the colors perfectly distinct, neither of them running into the other.
The theory that leaf variegation is a disease has been held by many distinguished botanists and is in nowise new. But this theory has been controverted, and we think successfully, by other botanists, and it is not now accepted by the more advanced vegetable physiologists. There are now so many acute and industrious students and observers in every department of science, and the accumulation of facts is so rapid and so great, that very many of the older theories are being set aside as not in accord with the newly discovered facts. A student brought up in institutions where the old theories are inculcated has afterward to spend half his time in unlearning what he had been previously taught, and the other half in studying the new facts brought to his notice and testing the theories promulgated by men of science. Botanical science does not wholly consist in the classification and nomenclature of plants, but largely consists in a knowledge of vegetable anatomy and physiology, and these require much study and some knowledge of other sciences, such as chemistry, meteorology, geology, etc. Without such general knowledge it is difficult to form a harmonious theory in regard to any of the phenomena of plant life.
The following interesting facts concerning the cultivation of the above products in the island of Ceylon, were given in Mr. H. B. Brady's recent address before the British Pharmaceutical Conference at Swansea:
The vanilla plant is trained on poles placed about twelve or eighteen inches apart—one planter has a line of plants about three miles in length. Like the cardamom, it yields fruit after three years, and then continues producing its pods for an indefinite period.
The cinnamon (Cinnamomum zeylanicum) is, as its name indicates, a native of Ceylon. It is cultivated on a light sandy soil about three miles from the sea, on the southwest coast of the island, from Negumbo to Matura. In its cultivated state it becomes really productive after the sixth year, and continues from forty to sixty years. The superintendent of the largest estate in this neighborhood stated that there were not less than fifteen varieties of cinnamon, sufficiently distinct in flavor to be easily recognized. The production of the best so injures the plants that it does not pay to cut this at any price under 4s. 6d. to 5s. per lb. The estate alluded to above yields from 30,000 to 40,000 lb. per annum; a uniform rate of 4-1/2 d. per lb. of finished bark is paid for the labor. Cinnamon oil is produced from this bark by distillation; the mode is very primitive and wasteful. About 40 lb. of bark, previously macerated in water, form one charge for the still, which is heated over a fire made of the spent bark of a previous distillation. Each charge of bark yields about three ounces of oil, and two charges are worked daily in each still.
The cultivation of the cocoanut tree and the production of the valuable cocoanut oil are two important Cingalese occupations. These trees, it appears, do not grow with any luxuriance at a distance from human dwellings, a fact which may perhaps be accounted for by the benefit they derive from the smoke inseparable from the fires in human habitations. The cultivation of cocoanuts would seem to be decidedly profitable, as some 4,000 nuts per year are yielded by each acre, the selling price being £3 per thousand, while the cost of cultivation is about £2 per acre. In extracting the oil, the white pulp is removed and dried, roughly powdered, and pressed in similar machinery to the linseed oil crushing mills of this country. The dried pulp yields about 63 per cent by weight of limpid, colorless oil, which in our climate forms the white mass so well known in pharmacy.
A correspondent suggests that it would be a handy accomplishment for schoolboys to be proficient in the handling, splicing, hitching, and knotting of ropes. He suggests the propriety of having the art taught in our public schools. A common jackknife and a few pieces of clothes line are the main appliances needed to impart the instruction with. He concludes it would not only be of use in ordinary daily life, but especially to those who handle merchandise and machinery. Any one, he adds, who has noticed the clumsy haphazard manner in which boxes and goods are tied for hoisting or for loading upon trucks, will appreciate the advantage of practical instruction in this direction. Probably a good plan, he further suggests, would be to have one schoolboy taught first by the master, and then let the pupil teach the other boys. Our correspondent thinks most boys would consider it a nice pastime to practice during recess and at the dinner hour, so that no time would be taken from study or recitation time.
PEARCEvs.MULFORDet al.
Appeal from the Circuit Court of the United States for the Southern District of New York.
1. Reissued patent No. 5,774 to Shubael Cottle, February 24, 1874, for improvement in chains for necklaces, declared void, the first claim, if not for want of novelty, for want of patentability, and the second for want of novelty.
2. Neither the tubing, nor the open spiral link formed of tubing, nor the process of making either the open or the closed link, nor the junction of closed and open spiral links in a chain, was invented by the patentee.
3. All improvement is not invention and entitled to protection as such. Thus to entitle it it must be the product of some exercise of the inventive faculties, and it must involve something more than what is obvious to persons skilled in the art to which it relates.
The decree of the circuit court is therefore reversed, and it is ordered that the bill be dismissed.
DICKSON vs. KINSMAN.—INTERFERENCE.—TELEPHONE.
The subject matter of the interference is defined in the preliminary declaration thereof as follows:
The combination in one instrument of a transmitting telephone and a receiving telephone, so arranged that when the mouthpiece of the speaking or transmitting telephone is applied to the mouth of a person, the orifice of the receiving telephone will be applied to his ear.
1. While it is true that the unsupported allegations of an inventor, that he conceived an invention at a certain date, are not sufficient to establish such fact, the testimony of a party that he constructed and used a device at a certain time is admissible.
2. Abandonment is an ill-favored finding, which cannot be presumed, but must be conclusively proven.
The decision of the Board of Examiners-in-Chief is reversed, and priority awarded to Dickson.
Lieutenant Schwatka, whose recent return from a successful expedition in search of the remains of Sir John Fanklin's ill-fated company, combats the prevalent opinion that the Arctic winter, especially in the higher latitudes, is a period of dreary darkness.
In latitude 83° 20' 20" N., the highest point ever reached by man, there are four hours and forty-two minutes of twilight on December 22, the shortest day in the year, in the northern hemisphere. In latitude 82° 27' N., the highest point where white men have wintered, there are six hours and two minutes in the shortest day; and latitude 84° 32' N., 172 geographical miles nearer the North Pole than Markham reached, and 328 geographical miles from that point, must yet be attained before the true Plutonic zone, or that one in which there is no twilight whatsoever, even upon the shortest day of the year, can be said to have been entered by man. Of course, about the beginning and ending of this twilight, it is very feeble and easily extinguished by even the slightest mists, but nevertheless it exists, and is quite appreciable on clear cold days, or nights, properly speaking. The North Pole itself is only shrouded in perfect blackness from November 13 to January 29, a period of seventy-seven days. Supposing that the sun has set (supposing a circumpolar sea or body of water unlimited to vision) on September 24, not to rise until March 18, for that particular point, giving a period of about fifty days of uniformly varying twilight, the pole has about 188 days of continuous daylight, 100 days of varying twilight, and 77 of perfect inky darkness (save when the moon has a northern declination) in the period of a typical year. During the period of a little over four days, the sun shines continuously on both the North and South Poles at the same time, owing to refraction parallax, semi-diameter, and dip of the horizon.
The breaking up of the Baltic, the last of the famous Collins line of steamships, calls out a number of interesting facts with regard to the history of the several vessels of that fleet. There were five in all, the Adriatic, Atlantic, Pacific, Arctic, and Baltic. They were built and equipped in New York. Their dimensions were: Length, 290 feet; beam, 45 feet; depth of hold, 31½ feet; capacity, 2,860 tons; machinery, 1,000 horse power. In size, speed, and appointments they surpassed any steamers then afloat, and they obtained a fair share of the passenger traffic. A fortune was expended in decorating the saloons. The entire cost of each steamer was not less than $600,000, and notwithstanding their quick passages, the subsidy received, and the high rates of freight paid, the steamers ran for six years at great loss, and finally the company became bankrupt.
The Atlantic was the pioneer steamship of the line. She sailed from New York April 27, 1849, and arrived in the Mersey May 10, thus making the passage in about thirteen days, two of which were lost in repairing the machinery; the speed was reduced in order to prevent the floats from being torn from the paddle-wheels. The average time of the forty-two westward trips in the early days of the line was 11 days 10 hours and 26 minutes, against the average of the then so called fastest line of steamers, 12 days 19 hours and 26 minutes. In February, 1852, the Arctic made the passage from New York to Liverpool in 9 days and 17 hours.
The Arctic was afterward run into by a French vessel at sea and only a few of her passengers were saved. The Pacific was never heard from after sailing from Liverpool, and all the persons on board were lost. The Atlantic, after rotting and rusting at her wharf, was deprived of her machinery and converted into a sailing vessel, and was broken up in New York last year. The Adriatic, the "queen of the fleet," made less than a half dozen voyages, was sold to the Galway Company, and is now used in the Western Islands as a coal hulk by an English company.
The Baltic was in the government service during the war as a supply vessel, and was afterward sold at auction; her machinery was removed and sold as old iron. She was then converted into a sailing ship, and of late years has been used as a grain carrying vessel between San Francisco and Great Britain. On a recent voyage to Boston she was strained to such an extent as to be made unseaworthy, and for that reason is to be broken up.
One cannot but remark in this connection how small has been the advance in steamship building during the quarter century since the Collins line was in its glory.
An American missionary, Miss Norwood, of Swatow, recently described in aTimesparagraph how the size of the foot is reduced in Chinese women. The binding of the feet is not begun till the child has learnt to walk. The bandages are specially manufactured, and are about two inches wide and two yards long for the first year, five yards long for subsequent years. The end of the strip is laid on the inside of the foot at the instep, then carried over the toes, under the foot, and round the heel, the toes being thus drawn toward and over the sole, while a bulge is produced on the instep, and a deep indentation in the sole. Successive layers of bandages are used till the strip is all used, and the end is then sewn tightly down. The foot is so squeezed upward that, in walking, only the ball of the great toe touches the ground. After a month the foot is put in hot water to soak some time; then the bandage is carefully unwound, much dead cuticle coming off with it. Frequently, too, one or two toes may even drop off, in which case the woman feels afterward repaid by having smaller and more delicate feet. Each time the bandage is taken off, the foot is kneaded to make the joints more flexible, and is then bound up again as quickly as possible with a fresh bandage, which is drawn up more tightly. During the first year the pain is so intense that the sufferer can do nothing, and for about two years the foot aches continually, and is the seat of a pain which is like the pricking of sharp needles. With continued rigorous binding the foot in two years becomes dead and ceases to ache, and the whole leg, from the knee downward, becomes shrunk, so as to be little more than skin and bone. When once formed, the "golden lily," as the Chinese lady calls her delicate little foot, can never recover its original shape.
Our illustrations show the foot both bandaged and unbandaged, and are from photographs kindly forwarded by Mr. J. W. Bennington, R.N., who writes: "It is an error to suppose, as many do, that it is only the Upper Ten among the daughters of China that indulge in the luxury of 'golden lilies,' as it is extremely common among every class, even to the very poorest—notably the poor sewing women one sees in every Chinese city and town, who can barely manage to hobble from house to house seeking work. The pain endured while under the operation is so severe and continuous that the poor girls never sleep for long periods without the aid of strong narcotics, and then only but fitfully; and it is from this constant suffering that the peculiar sullen or stolid look so often seen on the woman's face is derived. The origin of this custom is involved in mystery to the Westerns. Some say that the strong-minded among the ladies wanted to interfere in politics, and that there is a general liking for visiting, chattering, and gossip (and China womencanchatter and gossip), both and all of which inclinations their lords desired, and desire, to stop by crippling them."