Chapter 7

Fig. 126. Caudina arenata; natural size.Fig. 126. Caudina arenata; natural size.

Several other Holothurians are frequently met with on our shores. Among them is theCaudina arenata(Fig. 126), a small Holothurian, yellowish in color, and thick in texture, by no means so pretty as the white transparent Synapta; the tentacles are short, resembling a crown of cloves around the mouth. It lives in the sand, and may be found in great numbers on the sandy beaches after a storm.

Cuvieria. (Cuvieria squamataD. & K.)

[fig 127]

Fig. 127. Cuvieria; natural size.Fig. 127. Cuvieria; natural size.

The Holothurian of our coast, excelling all the rest in beauty, is the Cuvieria. (Fig. 127.) As it lies on the sand, a solid red lump, with neither grace of form nor beauty of color, even the vividness of its tint growing dull and dead when it is removed from its native element, certainly no one could suspect that it possessed any hidden charm; but place it in a glass bowl with fresh sea-water; the dull red changes to deep vivid crimson, the tentacles creep out (Fig. 127) softly, and slowly, till the mouth is surrounded by a spreading wreath, comparable for richness of tint, and for delicate tracery, to the most beautiful sea-weeds. These tentacles, when fully expanded, are as long as the body itself. A limestone pavement composed of numerous pieces covers almost the whole surface of the animal; this apparatus corresponds, as we have already mentioned, to the warts containing anchors in the Synapta; but in the latter, the limestone particles are smaller, whereas in the Cuvieria they are developed to a remarkable extent. This animal is very sluggish, the ambulacral suckers, found only on three of the tubes, being arranged in such a way as to form a sort of sole on which they creep;the sole is tough and leathery in texture, but free from the limestone pavement described above. The young (Figs. 128,129) are very common, swimming freely about, and more readily found than the adult; they are of a bright vermilion color, but the tentacles hardly branch at that age, nor is the limestone pavement formed, which gives such a peculiar aspect to the full-grown animal. The young Cuvieria, somewhat older than that represented inFig. 129, are found in plenty under stones at low-water mark, just after they have given up their nomadic habits, and when the limestone pavement begins to be developed.

[fig 128]

[fig 129]

Pentacta. (Pentacta frondosaJäg.)

The highest of our Holothurians in structure, is the Pentacta. (Fig. 130) It is very rare on our beaches, though occasionally found under stones at low-water mark; farther north, in Maine, and at Grand Manan, it is very common, covering all the rocks near low-water mark. It is a chocolate brown in color, andmeasures, when fully expanded, some fifteen to eighteen inches in length. Unlike the Cuvieria, the ambulacral suckers are evenly distributed and almost equally developed on all the tubes; between the five rows of ambulacral suckers are scattered irregularly certain appendages resembling suckers, but found on examination not to be true locomotive suckers, and called on that account false ambulacra. These are the organs corresponding to the warts around the mouth of the Synapta. Although the ambulacral suckers are, as we have said, equally developed on all the tubes, yet the Pentacta does not use them indiscriminately as locomotive organs. In Pentacta, as well as in all Holothurians, whether provided with ambulacral suckers, or, like the Synapta and Caudina, deprived of them, the odd ambulacrum, viz. the one placed opposite the madreporic body, is always used to creep upon, and forms the under surface of the animal.

[fig 130]

Fig. 130. Pentacta frondosa; expanded about one third the natural size.Fig. 130. Pentacta frondosa; expanded about one third the natural size.

The correspondence between the different phases of growth in the young Pentacta, and the adult forms of the orders described above, the Synapta, Caudina, Cuvieria, and Pentacta itself, is a striking instance of the way in which embryonic forms illustrate the relative standing of adult animals. In the earlier stages of its development, the ambulacral tubes alone are developed in the Pentacta; in this condition it recalls the lower orders of Holothurians, as the Synapta and Caudina; then a sole is formed by the greater development of three of the ambulacra, and in this state it reminds us of the next in order, the Cuvieria, while it isonly in assuming its adult form that the Pentacta develops its other ambulacra, with their many suckers.

The Pentacta resembles the Trepang, so highly valued by the Chinese as an article of food, and forms a not unsavory dish, having somewhat the flavor of lobster.

ECHINOIDS.

Sea-urchin. (Toxopneustes drobachiensisAg.)

[fig 131]

Fig. 131. Toxopneustes from above, with all the appendages expanded; natural size.Fig. 131. Toxopneustes from above, with all the appendages expanded; natural size.

Sea-urchins (Fig. 131) are found in rocky pools, hidden away usually in cracks and holes. They like to shelter themselves in secluded nooks, and, not satisfied even with the privacy of such a retreat, they cover themselves with sea-weed, drawing it down with their tentacles, and packing it snugly above them, as if to avoid observation. This habit makes them difficult to find, and it is only by parting the sea-weed, and prying into the most retired corners in such a pool, that one detects them. Their motions are slow, and they are less active than either the Star-fish or the Ophiuran, to both of which they are so closely allied.

Let us look at one first, as seen from above, with all its various organs fully extended. (Fig. 131.) The surface of the animal is divided by ten zones, like ribs on a melon, only that these zones differ in size, five broad zones alternating with five narrower ones. The broad zones, representing the interambulacral system, are composed of large plates, supporting a number of hard projecting spines, while the narrow zones, forming the ambulacral system, are pierced with small holes, arranged in regular rows, (Fig. 132,) through which extend the tentacles terminating with little cups or suckers. These zones converge towards the summit of the animal, meeting in the small area which here represents the dorsal system; this area is filled by ten plates, five larger ones at the extremity of the interambulacral zones, and five smaller ones at the extremity of the ambulacral zones. (Fig. 132.) In the five larger plates are the ovarian openings,so-calledbecause eachone is pierced by a small hole through which the eggs are passed out, while in the five smaller plates are the eye-specks. The ovaries themselves consist of long pouches or sacs, carried along the inner side of each ambulacrum; one of these ovarian plates is larger than the others, and forms the madreporic body, being pierced with many minute holes; here, as in the Star-fish, it is placed between two of the ambulacral rows, and opposite the fifth or odd one. Looked at from the under or the oral side, as seen inFig. 134, the animal presents the mouth, a circular aperture furnished with five teeth in its centre; these five teeth openinginto a complicated intestine to be presently described. From the mouth, the ten zones diverge, curving upward to meet in the dorsal area on the summit of the body. (Fig. 133.)

[fig 132]

[fig 133]

Let us now examine the appearance and functions of the various appendages on the surface. The tentacles have a variety of functions to perform; they are the locomotive appendages, and for this reason, as we have seen, the zones along which they are placed are called the ambulacra, while the intervening spaces, or the broad zones, are called the interambulacra. It should not be supposed, however, that the locomotive appendages are the only ones to be found on the ambulacra, for spines occur on the narrow as well as on the broad zones, though the larger and more prominent ones are always placed on the latter. The tentacles are also subservient to circulation, for the water which is taken in at the madreporic body passes into all the tentacles, sometimes called on that account water-tubes. Beside these offices the tentacles are constantly busy catching any small prey, and conveying it to the mouth, or securing the bits of sea-weed with which, as has been said, these animals conceal themselves from observation. It is curious to see their fine transparent feelers, fastening themselves by means of the terminal suckers on such a floating piece of sea-weed, drawing it gently down and packing it delicately over the surface of the body. As locomotive appendages, the tentacles are chiefly serviceable on the lower or oral side of the animal, which always moves with the mouth downward. About this portion of the body the tentacles are numerous (Fig. 134) and large, and when the animal advances it stretches them in a givendirection, fastens them by means of the suckers on some surface, be it of rock, or shell, or the side of the glass jar in which they are kept, and being thus anchored it drags itself forward. The tentacles are of a violet hue, though when stretched to their greatest length they lose their color, and become almost white and transparent; but in their ordinary condition the color is quite decided, and the rows along which they occur make as many violet lines upon the surface of the body.

[fig 134]

[fig 135]

Almost the sole function of the spines seems to be that of protecting the animal, and enabling it to resist the attacks of its enemies, the force of the waves, or any sudden violent contact with the rocks. The spines, when magnified, are seen to be finely ribbed for nearly the whole length (Fig. 135), the bare basal knob serving as the point of attachment for the powerful muscles, which move these spines on a regular ball-and-socket joint, the ball surmounting the tubercles (seen inFig. 132), which fit exactly in a socket at the base of the spine. In a transverse section of a spine (Fig. 136), we see that the ribs visible on the outside are delicatecolumns placed closely side by side, and connected by transverse rods forming an exceedingly delicate pattern. Beside the tentacles and the spines, they have other external appendages, of which the function long remained a mystery, and is yet but partially explained; these are the so-called pedicellariæ; they consist of a stem (s,Fig. 137), which becomes swollen (p,Fig. 137) into a thimble-shaped knob at the end (t,Fig. 137); this knob may seem solid and compact at first sight, but it is split into three wedges, which can be opened and shut at will. When open, these pedicellariæ may best be compared to a three-pronged fork, except that the prongs are arranged concentrically instead of on one plane, and, when closed, they fit into one another as neatly as the pieces of a puzzle.

[fig 136]

[fig 137]

If we watch the Sea-urchin after he has been feeding, we shall learn, at least, one of the offices which this singular organ performs in the general economy of the animal. That part of his food which he ejects passes out at an opening on the summit of the body, in the small area where all the zones converge. The rejected particle is received on one of these little forks, which closes upon it like a forceps, and it is passed on from one to the other, down the side of the body, till it is dropped off into the water. Nothing is more curious and entertaining than to watch the neatness and accuracy with which this process is performed. One may see the rejected bits of food passing rapidly along the lines upon which these pedicellariæ occur in greatest number, as if they were so many little roads for the conveyingaway of the refuse matters; nor do the forks cease from their labor till the surface of the animal is completely clean, and free from any foreign substance. Were it not for this apparatus the food thus rejected would be entangled among the tentacles and spines, and be stranded there till the motion of the water washed it away. These curious little organs may have some other office than this very laudable and useful one of scavenger, and this seems the more probable because they occur over the whole surface of the body, while they seem to pass the excrements only along certain given lines. They are especially numerous about the mouth, where they certainly cannot have this function; we shall see also that they bear an important part in the structure of the Star-fish, where there are no such avenues on the upper surface, for the passage of the refuse food, as occur on the Sea-urchin.

[fig 138]

Fig. 138. Teeth of Sea-urchin, so-called Lantern of Aristotle.Fig. 138. Teeth of Sea-urchin, so-called Lantern of Aristotle.

On opening a Sea-urchin, we find that the teeth (Fig. 138), which seem at first sight only like five little conical wedges around the mouth (Fig. 134), are connected with a complicated intestine, which extends spirally from the lower to the upper floor of the body, festooning itself from one ambulacral zone to the next, till it reaches the summit, where it opens. This intestine leads into the centre of the teeth, the jaws themselves, which sustain the teeth, being made up of a number of pieces, and moved by a complicated system of muscular bands. When the intestine is distended with food, it fills the greater part of the inner cavity; the remaining space is occupied in the breeding season by the genital organs. In a section of the Sea-urchin, one may also trace the tube by which the supply of water, first filtered through the madreporic body, is conveyed to the ambulacra; it extends from the summit of the body to the circular tube surrounding the mouth.

Echinarachnius. (Echinarachnius parmaGray.)

[fig 139]

Fig. 139. Echinarachnius, seen from above, with the spines on part of the shell; a ambulacral zone, i interambulacral zone.Fig. 139. Echinarachnius, seen from above, with the spines on part of the shell;aambulacral zone,iinterambulacral zone.

Beside the Toxopneustes (Fig. 131) described above, we have another Sea-urchin very common along our shores. Amongchildren who live near sandy beaches, they are well known as "sand-cakes" (Fig. 139), and indeed they are so flat and round, that, when dried and deprived of their bristles, they look not unlike a cake with a star-shaped figure on its surface. (Fig. 139.) When first taken from the water they are of a dark reddish brown color, and covered with small silky bristles. The disk is so flat, being but very slightly convex on the upper side, that one would certainly not associate it at first sight with the common spherical Sea-urchin or Sea-egg, as the Toxopneustes is sometimes called. But upon closer examination the delicate ambulacral tubes or suckers may be seen projecting from along the line of the ambulacra, as in the spherical Sea-urchin; and though these ambulacra become expanded near the summit into gill-like appendages, forming a sort of rosette in the centre of the disk, they are, nevertheless, the same organs, only somewhat more complicated. When such a disk is dried in the sun, and thebristles entirely removed, the lines of suture of the plates composing it, and corresponding exactly to those of the spherical Sea-urchin, may very readily be seen. (aandi,Fig. 139.)

[fig 140]

Fig. 140. Transverse section of Echinarachnius; o mouth, e e ambulacra, c m ambulacral ramifications, w w interambulacra. (Agassiz.)Fig. 140. Transverse section of Echinarachnius;omouth,e eambulacra,c mambulacral ramifications,w winterambulacra. (Agassiz.)

This flat Sea-urchin or Echinarachnius, as it is called, belongs to a group of Sea-urchins known as Clypeastroids (shield-like Sea-urchins). In a section (Fig. 140) exposing the internal structure, one cannot but be reminded by its general aspect of an Aurelia. Could one solidify an Aurelia it would present much the same appearance; another evidence that all the Radiates are built on one plan, their differences being only so many modes of expressing the same structural idea. The teeth or jaws in this flat Sea-urchin are not so complicated as in the Toxopneustes, being simply flat pieces, arranged around the mouth (o,Fig. 140), without the apparatus of muscular bands by means of which the teeth are moved in the other genus. It is a curious fact, considered in relation to the general radiate structure of these animals, that the teeth, instead of moving up and down like the jaws in Vertebrates, or from right to left like those of Articulates, move concentrically, all converging towards the centre.

STAR-FISHES.

Star-fish. (Astracanthion berylinusAg.)

[fig 141]

Fig. 141. Star-fish ray, seen from mouth side. (Agassiz.)Fig. 141. Star-fish ray, seen from mouth side. (Agassiz.)

Although there is the closest homology of parts between the Star-fish and the Sea-urchin, the arrangement of these parts, and the external appearance of the animals, as a whole, are entirely different. The Star-fish has zones corresponding exactly to thoseof the Sea-urchin, but instead of being drawn together, and united at the summit of the animal, so as to form a spherical outline, they are spread out on one level in the shape of a star. This change in the general arrangement brings the eye-specks to the extremities of the arms, and places the ovarian openings in the angles between the arms. The madreporic body is situated on the upper surface of the disk (Fig. 142), at the angle between two of the arms, and consequently between two of the ambulacra, and opposite the odd one. The tube into which it opens, runs vertically from the upper floor of the disk to the lower, where it connects with the circular tube around the mouth, and thus communicates with all the ambulacral rows. The ambulacral zones which, in the Star-fish, have the shape of a furrow, run along the lower side of each ray (Fig. 141); the interambulacral zones are divided, their plates being arranged in rows along either side of the ambulacral furrows. The ambulacral furrow, like the ambulacral zone in the Sea-urchin, is pierced with numerous holes, alternating with each other in a kind of zigzag arrangement, one hole a little in advance, the next a little farther back, and so on, and through these holes pass the tentacles, terminating in suckers, as in the Sea-urchins, and serving as in them for locomotive organs. The most prominent and strongest spines are arranged upon the large interambulacral plates on both sides of the ambulacral furrows; but the upper surface of the animal is also completely studded with smaller spines, scattered at various distances, apparently without any regular arrangement. (Fig. 142.)

[fig 142]

Fig. 142. Star-fish; natural size, seen from above.Fig. 142. Star-fish; natural size, seen from above.

The position of the pedicellariæ is quite different from that which they occupy in the Sea-urchin, where they are scattered singly between the spines and tentacles, though more regularly and closely grouped along the lines upon which the refuse food is moved off. In the Star-fish, on the contrary, these singular organs seem to be grouped for some special purpose around the spines, on the upper surface of the body. Every such spine swells near its point of attachment, thus forming a spreading base(Fig. 143), around which the pedicellariæ are arranged in a close wreath, in the centre of which the summit of the spine projects; they differ also from those of the Sea-urchin in having two prongs instead of three. Other pedicellariæ are scattered independently over the surface of the animal, but they are smaller than those forming the clusters and connected with the spines. The function of these organs in the Star-fish remains unexplained; the opening on the upper surface, through which the refuse food is thrown out, is in such a position that they evidently do not serve here the same purpose which renders them so useful to the Sea-urchin. Occasionally they may be seen to catch small preywith these forks, little Crustacea, for instance; but this is probably not their only office. The Star-fish has a fourth set of external appendages in the shape of little water-tubes. (Seen in Fig. 143.) The upper surface of the back consists of a strong limestone network (Fig. 144), and certain openings in this network are covered with a thin membrane through which these water-tubes project. It is supposed that water may be introduced into the body through these tubes; but while there can be no doubt that they are constantly filled with water, and are therefore directly connected with the circulation through the madreporic body (Fig. 145), no external opening has as yet been detected in them. The fact, however, that when these animals are taken out of their native element, the water pours out of them all over the surface of the back, so that they at once collapse and lose entirely their fulness of outline, seems to show that water does issue from those tubes. The ends of the arms are always slightly turned up, and at the summit of each is a red eye-speck. The tentacles about the eye become very delicate and are destitute of suckers.

[fig 143]

[fig 144]

[fig 145]

These animals have singular mode of eating; they place themselves over whatever they mean to feed upon, as a cockle-shell for instance, the back gradually rising as they arch themselves above it; they then turn the digestive sac or stomach inside out, so as to enclose their preycompletely, and proceed leisurely to suck out the animal from its shell. Cutting open any one of the arms we may see the yellow folds of the stomach pouches which extend into each ray; within the arms, extending along either side of the upper surface, are also seen the ovaries, like clusters of small yellow berries. Immediately below these, along the centre of the lower floor of each ray, runs the ridge formed by the ambulacral furrow, and upon either side of this ridge are placed the vesicles, by means of which the tentacles may be filled and emptied at the will of the animal; the rest of the cavity of the ray is filled by the liver. The mouth, which is surrounded by a circular tube, is not furnished with teeth, as in the Sea-urchin; but the end of each ambulacral ridge is hard, thus serving the purpose of teeth.

Cribrella. (Cribrella oculataForbes.)

Our coast, as we have said, is not rich in the variety of Star-fishes. We have two large species, one of a dark-brown color (Fig. 132), theAstracanthion berylinus, and the other, theA. pallidus, of a pinkish tint; then there is the small Cribrella, inferior in structural rank to the two above mentioned. (Fig. 146.) This pretty little Star-fish presents the greatest variety of colors; some are dyed in Tyrian purple, others have a paler shade of the same hue, some are vermilion, others a bright orange or yellow. A glass dish filled with Cribrellæ might vie with a tulip-bed in gayety and vividness of tints.

[fig 146]

Fig. 146. Cribrella from above; natural size.Fig. 146. Cribrella from above; natural size.

The disk of the Cribrella is smooth, instead of being covered, like the larger Star-fishes, with a variety of prominent appendages. The spines are exceedingly short, crowded like little warts over the surface. It is an interesting fact, illustratingagain the correspondence between the adult forms of the lower orders and the phases of growth in the higher ones, that these spines have an embryonic character. One would naturally expect to find that these small spines of the adult Cribrella would differ from those of the other full-grown Star-fishes chiefly in size, that they would be a somewhat modified pattern of the same thing on a smaller scale; but when examined under the microscope, they resemble the spines of the higher orders in their embryonic condition; it is not, in fact, a difference in size merely, but a difference in degree of development. The Cribrella moves usually with two of the arms turned backward, and the three others advanced together, the two posterior ones being sometimes brought so close to each other as to touch for their whole length.

Hippasteria. (Hippasteria phrygianaAg.)

Beside these Star-fishes we have the pentagonal Hippasteria (Hippasteria phrygianaAg.), like a red star with rounded points, found chiefly in deep water, though it is occasionally thrown up on the beaches. It has but two rows of large tentacles, terminating in a powerful sucking disk. The pedicellariæ on this Star-fish resemble large two-pronged clasps, arranged principally along the lower side. The pentagonal Star-fishes of our coast are in striking contrast to the long-armed species we have just described; they are edged with rows of large smooth plates, and do not possess the many prominent spines so characteristic of the ordinary Star-fishes.

Ctenodiscus. (Ctenodiscus crispatusD. & K.)

The Ctenodiscus (Ctenodiscus crispatusD. & K.,Fig. 147), an inhabitant of more northern waters, but seeming also to be at home here occasionally, is another pentagonal Star-fish. It lives in deep water, and frequents muddy bottoms. The peculiar structure of their ambulacra has probably some reference to this mode of living, for they are entirely wanting in the sucking disks so characteristic of the other members of this class, and theirtentacles are pointed, as if to enable them to work their way through the mud in which they make their home. The pointed tentacles of this genus are characteristic of a large group of Star-fishes, and it is an important fact, as showing their lower standing, that this feature, as well as the pentagonal outline, obtains in the earlier stages of growth of our more common Star-fishes, while in their adult condition they assume the deeply indented star-shaped outline, and have suckers at the extremities of the tentacles.

[fig 147]

Fig. 147. Ctenodiscus, seen from above; natural size.Fig. 147. Ctenodiscus, seen from above; natural size.

Solaster. (Solaster endecaForbes.)

We find also among Star-fishes the same tendency to multiplication of parts so common among the Polyps and Acalephs. Our Solaster (Solaster endeca/Forbes), for instance, has no less than twelve arms; it inhabits more northern latitudes, though sometimes found in our Bay; on the coast of Maine it is quite common, and occurs in company with another many-rayed species, theCrossaster papposaM. & T. The color of both of these Star-fishes is exceedingly varied; we find in the Solaster as many different hues as in the Cribrella, which it resembles in the structure of its spines, while in the Crossaster bands of different tints of red and purple are arranged concentrically, and the whole surface of the back is spotted with brilliantly-tinged tiny wreaths of water-tubes, crowded round the base of the different spines, which are somewhat similar to those of the Astracanthion.

OPHIURANS.

Ophiopholis. (Ophiopholis bellisLym.)

[fig 148]

Fig. 148. Ophiopholis, from above; natural size.Fig. 148. Ophiopholis, from above; natural size.

There are but two species of the ordinary forms of Ophiurans in Massachusetts Bay; the white Amphiura (Amphiura squamataSars), with long slender arms, and the spotted Ophiopholis (Fig. 148), with shorter and stouter arms, and in which the disk is less compact than in the Amphiura, and not so perfectly circular. All Ophiurans are difficult to find, from their exceeding shyness; they hide themselves in the darkest crevices, and though no eye-specks have yet been detected in them, they must have some quick perception of coming danger, for at the gentlest approach they instantly draw away and shelter themselves in their snug retreats.

They differ from the Star-fishes in having the disk entirely distinct from the arms; that is, the arms, instead of merging gradually into the disk, start at once from its margin. They have no interambulacral spaces or plates; but the whole upper surface is formed of large hard plates, which extend from the back over the sides of the arms to their lower surface, where they form a straight ridge along the centre. (Fig. 149.) The sides of these plates are pierced with holes, through which the tentacles pass; these have not, like those of the Star-fishes and Sea-urchins, a sucker at the extremity, but are covered with little warts or tubercles (Fig. 150); they are their locomotive appendages, and their way of moving is curious; they first extend one of the arms in the direction in which they mean to move, then bring forward two others to meet them, three arms being thus usually in advance, and then they drag the rest of the body on. They move with much more rapidity, and seem more active, than the Star-fishes; probably owing to the greater independence of the arms from the disk. The spines project along the margin of the arms, and not over the whole surface, the back of the arms being perfectly free from any appendages, and presenting only the surface of the plates. The madreporic body is formed by a plate on the lower side of the disk, in a position correspondingto that which it occupies in the young Star-fish; this plate is one of the large circular shields occupying the interambulacral spaces around the mouth. (Fig. 149.) On each side of the arms, where they join the disk, are slits opening into the ovarian pouches. They have no teeth; but the hard ridge at the oral end of the ambulacra, extending toward the mouth in Star-fish, is still more distinct and sharper in the Ophiurans, approaching more nearly the character of teeth.

[fig 149]

[fig 150]

Astrophyton. (Astrophyton AgassiziiStimp.)

[fig 151]


Back to IndexNext