Chapter 3

25. Seeds with parachutes.—Many years ago large portions of Huron and Sanilac counties of eastern Michigan were swept by a fire so severe that the timber was all killed. Fifteen years later the woody growth consisted mostly of willows, poplars, and birches. The seeds of all kinds of willows and poplars are very light, and are produced in immense quantities. Like those of the great willow-herb, they are beautifully constructed for making long journeys through the air—a fact that explains the frequency of these trees in burned districts. A considerable number of seeds and fruits grow with a parachute attached at one end, not to prevent injury by falling from the tree top, but to enable the wind to sustain and transport them for a longer distance.

26. A study of the dandelion.—In spring the dandelion is almost everywhere to be found; every one knows it—the child to admire, the gardener to despise. From each cluster of leaves spreading flat in the grass come forth several hollow stems, short or tall, depending on the amount of sunshine and shade. Each stem bears, not one flower, but a hundred or more small ones. Around and beneath each yellow cluster are two rows of thin, green, smooth scales (involucre).

The short outer row soon curls back, as though for rest or ornament, or for watching the progress of the colony above; but the inner row has a very important duty yet to perform in guarding the large family within. At night, or in daytime, if the day be wet, the long scales press like a blanket closely about the flowers, and do not permit them to come out; but when the sun is bright, it shrinks the outer side of these scales, which then curl apart, leaving the yellow flowers ready for bees to visit or boys to admire and study. For several days the flowers of a head blossom in succession, each night to be snugly wrapped by the scales, and the next day to be again left open, if the weather be fine. After each flower in turn has been allowed to see the light, and after all have been crawled over by bee and wasp to distribute the yellow pollen that seeds may be produced, there is nothing else to do but patiently wait for a week or two while receiving food from the mother plant to perfect each little fruit and seed. During all this period of maturing, day and night, rain or shine, the scales hold the cluster closely; the stem bends over to one side, and the rain and dew is kept from entering. After a while, on some bright morning, the dandelion stalk is seen standing erect again, and is probably surrounded by many others in a similar position. The dry air shrinks the outside of the scales, and they turn downward; the circle of feathers at the top of the slender support attached to the seed-like fruit below spreads out, and the community, which now looks like a white ball of down, is ready for a breeze. The feathery top is now ready to act as a parachute, and invites the wind to catch up the whole and float it away. If there is no breeze, the moist air of night closes the outer scales; each of the feathery tips closes, and all are secure till the next bright day.

Of a like nature are fruits of thistles, fireweed, prickly lettuce, sow thistles, scabiosa, valerian, cat-tail flag, cotton grass, some anemones, smoke tree, virgin's bower, and some of the grasses.

27. How the lily sows its seeds.—Ripened pods of lilies usually stand straight up on a stiff, elastic stem; beginning at the top, each one slowly splits into three parts, which gradually separate from each other. Why do they not burst open all of a sudden, like pea pods, and shoot the seeds all about and have the job done with? Or why does not the pod burst open at the lower end first, instead of the upper?

Observe that the three opening cells are lashed together loosely with a latticework. No slight breeze can dislodge the seeds, but just see how they behave in a good gale! The elastic stems are swayed back and forth against each other, and some of the upper seeds are tossed out by the wind that passes through the lattice, and at such times are often carried to some distance. The seeds at the top having escaped, the dry pods split down farther and still farther and open still wider, till the bottom is reached. As the seeds are not all carried away the first or even the second time, and as succeeding breezes may come from different directions, it is thus possible for the lily to scatter its seeds in all directions.

The seeds of the lily are flat, very thin, and rather light, not designed to be shot out like bullets, but to be carried a little way by the wind; the pods are erect, and open at the top, that the seeds need not escape when there is no wind or unless some animal gives the stem a strong shake. The latticework was made for a purpose, and the gradual opening of the pods prevents the supply from all going in one direction or in one day, for a better day may arrive. The student will look for and compare the following: Iris, figwort, wild yam, catalpa, trumpet-creeper, centauria, mulleins, foxglove, beardtongue, and many other fruits.

28. Large pods with small seeds to escape from small holes.—The large ripe pod of the poppy stands erect on a stiff stem, with a number of small openings near the top. The seeds are nearly spherical, and escape, a few at a time, when the stem is shaken by the wind or some animal, thus holding a reserve for a change of conditions. Here is an illustration of ripe pods of a bellflower,Campanula turbinata, nodding instead of erect.

The small holes are still uppermost, but to be uppermost in this case it is necessary for them to be at the base of the pod.

29. Seeds kept dry by an umbrella growing over them.—When mature, the apple of Peru,Nicandra, keeps every dry bursting fruit covered with a hood, umbrella, or shed, so that seeds may be kept continually dry and may be spread with every shake by the wind, or by an animal, in rainy weather as well as in dry.

In the words of Dr. Gray, "The fruit is a globular dry berry, enclosed by a five-parted, bladdery inflated calyx." The margins of the lobes of the calyx curl upwards and outwards as the berry hangs with the apex downward.

The berry is as large as one's thumb, and when ripe, bursts open irregularly on the upper side as it hangs up under the calyx. As the covering of the pod opens more and more, a few seeds at a time may be rattled out by wind or animal. The numerous large and light fruits, with calyx surrounding them, are each supported on a nodding stem, stiff and elastic, which gives the wind a good chance to sway them about. Water does not seem to get into the berries even when they are torn open, for when it is poured over the branches it rolls off the calyx roof as freely as from a duck's back. The fruits ofPhysalisare apparently kept dry in a manner similar to the apple of Peru, although when first mature they are soft and juicy, considerably like a ripe tomato.

30. Shot off by wind or animal.—The calyx of sage, bergamot, and most other mints, remains dry and stiff, as a cup to hold one to four little round nutlets as they ripen. The figure shows two of these in section, as they are attached to the main stem of the plant, or one of its branches. Observe the direction taken by the upper and by the lower points of the calyx. When dry, the plant behaves somewhat as follows: when the wind jostles the branches against each other, or when an animal of some kind hits the plant, this movement causes many of these cups to get caught; but the elastic stem comes suddenly back to its place, and in so doing flips a nutlet or more from its mouth one to six feet, somewhat as a boy would flip a pea with a pea-shooter. In our garden, July 2, when plants of sage,Salvia interrupta, were ripening their fruit, we found it difficult to collect any seeds, but seedlings were observed in abundance on every side of the plant, some to the distance of six feet. Plants dispersing seeds in this manner have been called catapult fruits. Examine ripening fruits of blue curls, pennyroyal, germander, balm, horehound, dittany, hyssop, basil, marjoram, thyme, savory, catmint, skullcap, self-heal, dragon's head, motherwort, and various dry fruits of several chickweeds.

31. Seed-like fruits moved about by twisting awns.—Most of the grains of grasses are invested with glumes, or chaff, and a considerable per cent of the chaff has awns, some of which are well developed and some poorly developed. The distribution of such grasses depends on several agents—wind, water, and animals. The chaff and awns of all are hygroscopic; that is, are changed by differences caused by variation of moisture in the air. Sweet vernal grass, tall oat grass, holy grass, redtop, animated or wild oats, blue-joint, and porcupine grass are among them. When mature, the grain and glumes drop off, or are pushed off, and go to the ground. When moist, these awns untwist and straighten out, but when dry they coil up again; with each change they seem to crawl about on the ground and work down to low places or get into all sorts of cracks and crevices, where the first rain is likely to cover them more or less with earth, after which they are ready for growth.

32. Grains that bore into sheep or dogs or the sand.—Porcupine grass,Stipa spartea, grows in dry soil in the northern states, but more particularly on the dry prairies of the central portion of the United States. This grass, when ripe, has a very bad reputation among ranchmen for the annoyance the bearded grain causes them. The grains are blown into the stubble among grasses with the bearded point down, sticking into the soil. The first rain or heavy dew straightens out the awns, which are twisted again as they dry. The bearded point works a little farther with each change, and after twisting and untwisting a number of times it gets down three or four inches into the sand, often to moisture, where the awns decay and the grain germinates. Here is an admirable scheme for moving about and for boring into the ground. But this is not all. The grains are quick to catch fast to clothing, as people move among the plants, and they are admirably fitted for attaching themselves to dogs and sheep, which they annoy very much. These animals transport the grains for long distances. The twisting and untwisting of the awns enable the grain to bore through the fleeces, and even to penetrate the skins and make wounds which sometimes cause the death of the animal. Examine also seeds of pin clover, Alfilerilla, which is becoming abundant in many parts of the world.

33. Winged fruits and seeds fall with a whirl.—The large fruit of the silver maple falls in summer. As these trees are most abundant along the margins of streams, the fruit often drops into the water and is carried down stream to some sand drift or into the mud, where more sand is likely to cover them. Thus sown and planted and watered, they soon grow and new trees spring up. But in many instances a strong breeze, sometimes a whirlwind, has been seen to carry these mature fruits from the tree to a distance of thirty rods.

A thin sheet of paper descends more slowly than the same material put in the form of a ball. On the same principle, many seeds and fruits are flattened, apparently for a purpose; not that they may be easily shot through the air by some elastic force, not to increase their chances for attachment to animals, but to enable the wind to sustain them the longer and carry them farther. Some seeds and dry fruits are said to have wings, with the general understanding that they are by this means better fitted to be sustained in air. We shall find that all or nearly all flattened seeds and dry fruits, also winged seeds and fruits, are one-sided, unbalanced, and more or less twisted; consequently, in falling to the ground they whirl about, and are thus kept much longer in the air than they would be if shaped more like a winged arrow. Even the wings on the fruit of some of the ashes are twisted, though many of them are flat. Experiments with these things are sure to interest inquisitive children, or even older persons, when once started right; they are likely to prove as interesting as flying kites, skating, fishing, or coasting on the hillside. Try experiments with seeds of catalpa, trumpet-creeper, wild yam, pine, spruce, arbor vitæ, and fruits of maple, box elder, birch, hop tree, blue beech, ailanthus, ash, tulip tree,—in fact, anything of this nature you can find, whether the name is familiar or not. No two of them will behave in all respects alike.

34. Plants which preserve a portion of their seeds for an emergency.—Many a great general or business man has learned by experience and observation that it is usually unwise to exhaust all resources in one effort. If possible, he always plans to have something in reserve for an emergency—a loophole for escape from difficulty. We have seen in many instances that plants are endowed with the same trait. This is well illustrated by the way in which the jack-pine,Pinus[Banksiana]divaricata, holds in reserve a portion of its seeds, to be used in case the parent trees are killed by fire. In 1888 I made a study of this tree as it lives on the sandy plains of Michigan. The tree is often killed by fire, and never sprouts from the stump, as do oaks, willows, cherries, and most other trees. The jack-pine grows readily and rapidly from seed dropped on the sand, and begins to bear cones and seeds in abundance while it is yet only a few years old, perhaps as young as five years in some instances. The cones open slowly to liberate their seeds, some of them only after months or even years, and in some cases they never open at all. I have seen cones containing good seeds that had been nearly grown over by the tree. Dry weather, the dryer and hotter the better, causes many of these stubborn old cones to open their scales and allow the seeds to escape. What can be the advantage in cones of this nature? Let us see. A brisk fire passes over the ground at irregular intervals, usually of from one to ten years; it licks up all dry leaves and sticks, and kills the pine trees and all else above ground. The soil and the trunks of trees are blackened, and by lack of reflection the heat of the sun is rendered more intense; besides, the heat of the fire acts slowly on the unburned cones as they are left on the dead trees. By the time the quick hot fire has passed over, the cones have slowly opened and begun scattering seeds on the vacant and newly burned ground, at a time when there is the best possible chance for them to grow. I picked a few unopened cones which, according to my judgment, were from two to four years old. They were placed under glass in a dark sheet-iron dish and exposed to the sun. The extra heat caused the cones to open; many seeds were obtained and sown, and in five days they began to come up, 95 per cent germinating. From the same tree I selected at the same time older cones, which I believe to be from four to six years old at least. From these, 225 seeds were sown, 191 of which germinated—about 85 per cent.

By numerous devices a large number of the lower plants send off their ripe spores with considerable force. Some call them sling fruits. One in particular,Pilobolus cristallinus, found about damp stables, I have observed to shoot black masses of spores to a spot on a wall six feet above the ground, with enough force to have carried them not less than twelve feet. When ripe and dry, the spores of most ferns are shot from the parent plant by a motion forcible enough not only to burst thesporangium, the vessel that contains the spores, but also to turn it inside out.

35. Dry pods twist as they split open and throw the seeds.—In December, while absent from home, I collected for future study some pods of the Chinese wistaria, and left them on my desk in the library for the night. The house was heated by a hot-air furnace. In the morning the pods were in great confusion; most of them had split and curled up, and the seeds were scattered all about the room. As usual the little daughter, an only child, was accused of spoiling my specimens, but she showed her innocence. A little investigation and a few experiments with some pods not yet opened explained the whole matter satisfactorily. The stout pods grow and ripen in a highly strained condition, with a strong tendency to burst spirally, the two half-pods being ready to coil and spring in opposite directions; when the valves can no longer hold together, they snap with a sharp noise and sling the heavy seeds, giving them a good send-off into the world. As a pair of birds build a nest, hatch eggs, rear their young, and then send them forth to seek their fortunes, so for months the mother plant had labored, had produced and matured seeds, which at last it scattered broadcast. Goethe, Kerner von Marilaun, each independently, and very likely others, had an experience with ripe pods brought to a warm room very similar to my own. In many cases the ripe and drying fruits are "touched off" by wind jostling the branches or by animals passing among them; in the latter case there is a chance that a portion of the discharges will be lodged somewhere on the animal and be carried along with it.

36. A seed case that tears itself from its moorings.—The perennial phlox in cultivation distributes its seeds in the following manner: when ripe, the calyx becomes dry and paper-like, and spreads out in the form of a saucer. The thick-walled dry pistil opens from the top into three pieces with a snap, spreading open so far against the calyx that it is torn from the brittle attachment; away go the seeds, mingled with the fragments of the pistil, no longer of any use.

Fruits that sling their seeds are to be found in every neighborhood, and are first-class objects for the curious person to see and handle. Very fortunate is the girl or boy who is never fully satisfied with what he reads and sees pictured, but has a strong desire to learn how plants are made and how they behave. A considerable number of seed pods have been illustrated with notes in recent schoolbooks. Here are some of them: peas and vetches, and some kinds of beans, violets, balsams, wood sorrel, geranium, castor bean, some of the mustards and cresses and their cousins, Alfilerilla, richweed,Pilea, witch-hazel, and others. Each of those will well repay study, especially the fruit and seeds of oxalis. The witch-hazel bears a hard, woody, nut-like fruit, as large as a hazelnut; when ripe, the apex gaps open more and more, the sides pressing harder against each smooth seed, till finally it is shot, sometimes for a distance of thirty feet. The girl who has shot an apple seed or lemon seed with pressure of thumb and finger across a small room, can understand the force needed to shoot a seed but little heavier than that of the apple two or three times that distance.

With the frosts of autumn ripe acorns, beechnuts, bitternuts, butternuts, chestnuts, hickory nuts, hazelnuts, and walnuts are severed from the parent bush or tree and fall to the ground among the leaves.

37. Squirrels leave nuts in queer places and plant some of them.—Even before the arrival of frosts many of these are dropped by the aid of squirrels, gray and red, which cut the stems with their teeth. The leaves, with the help of the shifting winds, gently cover the fruit, or some portions of it, and make the best kind of protection from dry air and severe cold; and they come just in the nick of time. Dame Nature is generous. She produces an abundance; enough to seed the earth and enough to feed the squirrels, birds, and some other animals. The squirrels eat many nuts, but I have seen them carry a portion for some distance in several directions, and plant one or two or three in a place, covering them well with soil. It may be the thought of the squirrel—I cannot read his thoughts—to return at some future time of need, as he often does. But in some cases he forgets the locality, or does not return because he has stored up more than he needs; or in some cases the squirrels leave that locality or are killed; in any such case the planted nuts are not disturbed. At all events, some of the nuts—one now and then is all that is needed—are allowed to remain where planted. In this way the squirrel is a benefit to the trees and pays for the nuts he eats. He has not lived in vain, for he is a tree planter and believes in arboriculture. His arbor day comes in autumn, and he needs no message from the governor to stimulate him to work.

After some red squirrels had been given black walnuts, a member of my family saw them hide the nuts in all conceivable places, and in some instances place them above a cluster of small branches of a tree for support where three or more twigs spread from nearly the same place. Here the nuts, one in a place, were left till perhaps shaken to the ground by a severe wind or by some other cause. In one winter, without hunting for them, six to ten places were found in one neighborhood of Michigan, where something had placed a single walnut or acorn in the forks of small branches. In some cases a severe wind could have dislodged the nut.

On February 18, 1897, I found a single black walnut held by small branches of a red oak.

The oak was an inch and a half in diameter, and the nut was about six feet from the ground. The nearest bearing tree was fully three hundred long steps distant. We can imagine that, through fright or other causes, a squirrel might be suddenly interrupted while carrying nuts, and might then drop them to the ground, where later a tree would be started.

38. Birds scatter nuts.—The work of birds in scattering seeds and fruits has long been recognized.3

3In the fall of 1897, Prof. C. F. Wheeler saw a blue jay fly from a white oak tree with an acorn in its mouth. The bird went to the ground four or five rods distant and crowded the acorn into the soil as far as it could, covering the spot with a few leaves. A member of my family saw a blue jay leave half of a black walnut in the forks of several small branches.

Some friends of mine collected a quantity of hazelnuts, while yet the green husks enclosed the nuts, and placed them near the house to dry. At once they were discovered by a blue jay, which picked out a nut at a time, flew away, held the nut between its toes, cracked it from the small end, and ate the contents. In this operation a number of nuts slipped away and were lost. But it seems that all were not eaten, for the next season half a dozen or more hazel shoots came up, and to-day a new patch of hazel bushes is growing in the yard. Doubtless many acorns are carried from place to place and dropped in an aimless way by woodpeckers, blue jays, and crows; also beechnuts by these birds, and by nuthatches, and by pigeons, before the latter became nearly extinct. Woodpeckers and blue jays place beechnuts and small acorns in the crevices of bark on standing trees. If left there very long, the nuts will become too dry to grow, but in the act of transporting them some of the nuts may be accidentally dropped in various places.

39. Do birds digest all they eat?—To determine whether seeds would lose their vitality in passing through the digestive organs of birds, Kerner von Marilaun fed seeds of two hundred and fifty different species of plants to each of the following: blackbird, song thrush, robin, jackdaw, raven, nutcracker, goldfinch, titmouse, bullfinch, crossbill, pigeon, fowl, turkey, duck, and a few others; also to marmot, horse, ox, and pig, making five hundred and twenty separate experiments. As to the marmot, horse, ox, and pig, almost all the fruits and seeds were destroyed. From the ox grew a very few seeds of millet, and from the horse one or two lentils and a few oats; from the pig a species of dogwood, privet, mallow, radish, and common locust. Under ordinary conditions, no seed was found to germinate after passing through the turkey, hen, pigeon, crossbill, bullfinch, goldfinch, nutcracker, titmouse, and the duck. Ravens and jackdaws passed without injury seeds of stone fruits and others with very hard coats. Of seeds that passed through the blackbird 75 per cent germinated, 85 per cent in the case of the thrush, 80 per cent in the case of the robin.4

4It should be noted that the blackbird here mentioned is not the same as either of our blackbirds, but a thrush much like our robin; that the robin mentioned is a ground warbler nearly related to our bluebird. It should also be noted that jackdaws, ravens, thrushes, and probably many others eject thousands of seeds by the mouth for one which passes through the intestines.

40. Color, odor, and pleasant taste of fruits are advertisements.—In summer, buds are formed on bushes of black raspberry, blossoms appear, and these are followed by small, green, and bitter berries, which hardly anything cares to eat. They grow slowly, become soft and pulpy, and finally good to eat. How is bird or boy or girl to know where they are and when they are fit to eat? The plant has enterprise and has displayed two want advertisements by painting the berries first dark red, and then dark purple, when they are good to eat. But is the plant made expressly to produce berries, just to feed birds and children? If that be all, why are seeds formed in the berries in such large numbers? No! They produce berries that contain seeds, and from these seeds are to grow more bushes. Then why should not the berries always remain bitter or hard, so that nothing would touch them? If we may say so, the plant produces sweet and showy berries on purpose to be eaten, that the seeds may be carried away. What becomes of the seeds? Each one is enclosed in a hard, tough covering, which protects it from destruction in the stomachs of many birds and some other animals. The seeds are well distributed by the animals that eat the berries. The brilliant colors of ripe berries say to bird and child: "Here we are; eat us, for we are good." The sweet pulp pays the birds for distributing the seeds, else they would not be so distributed. The seeds are as well provided for locomotion as the ticks, the mites, and the spiders, and when ready to go, the berries flaunt their colors to attract attention. You see, then, that although the old parent bush cannot change its place, young bushes grow from the tips of the branches, and seedlings spring up at long distances from their old homes.

Sparrows, finches, and similar birds in the winter eat and destroy seeds of grasses and weeds, while the same birds in summer and autumn eat bushels of blueberries, huckleberries, elderberries, raspberries, strawberries, and similar fruits, and distribute their unharmed seeds over thousands of acres, which otherwise might never support a growth of these species.

The downy woodpecker, among other things, devours berries of three kinds of dogwood, Virginia creeper, service berry, strawberry, pokeberry, poison ivy, poison sumac, stag-horn sumac, and blue beech.

The hairy woodpecker devours many of the above fruits, as well as those of spicebush, sour gum, cherries, grapes, blackberries. The flicker devours most of the fruits listed for the two woodpeckers named above, also hackberry, black alder, green brier, bayberries. A number of other woodpeckers possess habits much the same as the three above named. The cedar bird devours many species of hard-seeded fruits.

The various shades of red appear to good advantage among green leaves. As illustrations of such, we have the wintergreen, partridge berry, bush cranberry, bearberry, service berry, currant, holly, strawberry, red-berried elder, winter berry, honeysuckle, and many more. Where the leaves are liable to become red in autumn the berries are often blue. Of such, notice wild grapes, blueberries, and berries of sassafras, though the flowering dogwood has red leaves as well as red berries.

There is a reason for prickles on rosebushes. When ripe, rosehips are usually red or yellow, and thus attract birds which are fond of the fleshy portion outside; but the seed-like nuts are too hard and dry to suit their taste, and are rejected and sown in the vicinity, where the ripened hips are picked in pieces and eaten. Mice and red squirrels are also fond of the seed-like nutlets of roses, but seldom secure them from the bushes. Why, do you ask? Because the prickles were most likely placed on the rosebushes to prevent this very thing, and not to annoy the lover of flowers, or to prevent her from cutting what she needs.

41. The meddlesome crow lends a hand.—"One of the most industrious and persistent seed-transporting agencies I know of is that ubiquitous, energetic, rollicking, meddlesome busybody, the crow. I have seen crows gather by hundreds and have a regular powwow, a mass convention, where they seemed to discuss measures and appoint officers. At length they get through, and as they start to fly away many, if not all, will drop something. I have found these to be acorns, walnuts, hickory nuts, buckeyes, sycamore balls, sticks, eggshells, pebbles, etc. As a crow leaves an oak he will pluck an acorn, which he may carry five miles and light on a beech tree where something else will attract his attention, when he will drop the acorn and maybe pluck a pod of beechnuts and fly away somewhere else."—Prof. W. B. Barrows.

The number of seeds distributed by crows is enormous, and consists of many species, including poison ivy and poison sumac, wild cherry, dogwood, red cedar, sour gum, and Virginia creeper. The hard, undigested seeds are mostly expelled from the mouth in pellets, shown in the illustration, and germinate more promptly than those untouched by birds.

Bears are very fond of berries, and will scatter the seeds of service berries, elder berries, chokecherries, raspberries, and blackberries.

42. Ants distribute some kinds of seeds.—Ants are numerous, strong, skillful, and in suitable weather are always very busy. Their habits have been investigated, and it has been found that in some respects they are genuine farmers on a small scale. They have their slaves (not hired help); they feed their plant lice, remove them from place to place, and otherwise care for them, because the lice constitute one of the chief sources of their supply of sweet. They build roads and houses, and enjoy society after their fashion. They have use for certain kinds of seeds, portions or all of which they eat at once or carry to their homes. A number of persons in different countries and at different times have seen ants carrying seeds. Some young student of botany may have noticed along one side of the glossy seeds of the bloodroot a delicate, fleshy ridge, and wondered what could be its use. The answer can now be given with a good degree of confidence. The ants either eat this fleshy ridge at once, or, as more frequently happens, carry such seeds to their homes. The smooth seeds they do not eat, but cast them out of their nests after using the part they like; after being rejected the seed may stand a chance to germinate. The seeds cannot be carried so well unless this ridge,caruncle, be present. Other seeds of this nature are those of wild ginger, celandine, cyclamen, violet, periwinkle, some euphorbias, bellwort, trillium, prickly poppy, dutchman's breeches, squirrel-corn, several species of Corydalis, Seneca snakeroot, and other species of milkworts.

In his work onVegetable Mold and Earthworms, p. 113, Darwin states that earthworms are in the habit of lining their holes, using seeds among other things, and that these sometimes grow. In this way the worms aid in spreading plants.

43. Cattle carry away living plants and seeds.—In Arizona, where cacti abound, Professor Toumey finds that many of them are broken in pieces by cattle, which eat a portion, while other portions often adhere to the legs or noses and are carried from place to place. These fragments are usually capable of growing.

The unicorn plant,Martynia proboscidia, common in the southwestern portion of the United States, is sometimes seen in cultivation. When ripe, the fruit is hard, carrying two stout beaks with recurved tips. Experiments show it to be admirably adapted to catch on to the feet of sheep, goats, and cattle, or hold to the fleeces of the two former.

44. Water-fowl and muskrats carry seeds in mud.—Seeds and fruits of aquatic and bog plants that are floating, or in the mud of shallow water, are often carried by ducks, herons, swallows, muskrats, and other frequenters of such places, on their feet, beaks, or feathers, as they hastily leave one place for another. In this way seeds of water plantain, sedges, grasses, rushes, docks, arrowhead, pondweeds, duckweed, cat-tail flag, bur reed, bladderwort, water crowfoot, and many others are transported from one pond, lake, or stream, to another. In some cases enough of a living plant may be detached and carried away to keep on growing. Darwin found on the feet of some birds six and three-quarter ounces of mud, in which were five hundred and thirty-seven seeds that germinated. Mud may be carried on the feet of land animals as well as on aquatic animals, not only from ponds and bogs, but from the fields where seeds may have accumulated in the earth or washed down the slopes.

45. Why some seeds are sticky.—Some seeds and fruits are sticky; in some instances the mucilaginous substance is normally moist enough to adhere to anything that touches it, while in other cases it requires to be wetted before it will adhere. The seeds of flax, plantain, peppergrass, basil, sage, dracocephalum, groundsel, drop-seed grass, and many others less familiar, possess this peculiarity. The berries of some plants, when fully ripe, burst very easily when touched, and some of the seeds are then likely to adhere to animals and be carried away. Some berries of several plants belonging to the nightshade family have this peculiarity, as well as some of the cucurbits. When the outer covering of seeds of water lilies, arums, and others are broken, the gummy secretion is very likely to adhere to the feathers, or fur, or feet of animals. A number of fruits, and even the upper fruit-bearing branches, have sticky glands with which to catch on to any passing object. Among these are some kinds of sedges, chickweeds, and catchflies.

The sticky substance on seeds and fruits not unfrequently serves another good turn besides enabling them to adhere to animals. The slime holds them to the spot where they are to grow, or it enables some to float or to sink in water, according to the amount of the mucilage.


Back to IndexNext