Chemical tests for minerals.
A common horse-shoe magnet, such as can be bought for amere trifle at any toyshop, will be found very useful for extracting particles of iron from other mineral. Whenever the means of transport will admit, it is well to take a small compact case of simple appliances, tests, and reagents. The whole, by a little ingenuity, may be easily packed in a solid leather case very little larger than an ordinary sandwich box. Its contents should be as follows: Small glass-stoppered and capped bottle of nitric acid, ditto hydrochloric acid, ditto liq. ammonia, ditto quicksilver, small corked bottles of ferrocyanide of potassium, bi-chromate of potash, fused borax, and common salt; a small jointed blowpipe, a pair of forceps, a small pair of scales, fitted for taking specific gravities, and a set of weights, a bit of flint glass, a piece of sapphire, which can be obtained from any lapidary; half a dozen test tubes to nest one within the other; half a dozen old watch glasses, to be obtained for a few pence from any watchmaker; half a dozen narrow strips of window glass, cut to a thickness little greater than stout wire, and 5in. long (these are for stirring up hot acids, &c.); a piece of stout copper wire, shaped like the figure 9, to hold the watch glasses on whilst they are over the lamp or candle flame; a small fine file and a few narrow slips of well burnt light charcoal; a common wire cigar-holder, to hold the test tubes in whilst heated; and a very small bright-faced hammer, such as watchmakers use. It is truly astonishing how much qualitative analysis can be carried out with these comparatively limited means. We will suppose that a little bag of sand has been obtained; that it shows, on being spread out, a number of particles of a glittering yellow substance, as well as black-coloured grains, mixed with common quartz and minute fragments of stone. We first place our sand on a sheet of white paper, and with our pocket lens have a thorough examination of the various constituents. Should any grains of sufficient size and questionable character present themselves, they may be at once taken up on the moistened point of a pin. If one of them should look like gold, place it on some hard substance and give it a blow with your hammer. If it flattens without powdering, drop it into one of your test tubes, pour in a little nitric acid, and hold it in the flame until it boils thoroughly. If your particle gives off a train of minute bubbles and gradually dissolves,pour a little of the contents of your tube into two separate watch glasses placed side by side, add a little water to each. Add a little common salt to No. 1; if the particle is silver, you will at once have a thick white precipitate—chloride of silver. Drop a few drops of your liquor ammonia into No. 2; and if copper, the beautiful and well-marked blue colour of ammonuret of copper will at once appear. Should the particle have crushed under the blow, it is probably either sulphuret of iron or copper ore. To distinguish these two substances when in a minute state of division, proceed with the acid as just described, and test one watch glass with a small fragment of ferrocyanide of potassium, when, if sulphuret of iron or “mundic,” you will have a dense cloud of Prussian blue in your watch glass. Treat the other with your liquor ammonia, and you will have the same brilliant ammonuret of copper colour as if the particle had been native or malleable copper. Having satisfied ourselves as to the selected particles—for should the flattened grain resist the action of the hot acid and remain bright, it is surely gold—we place our sand on a shovel, and hold it there until the whole is red hot; it may then be taken from the fire, and allowed to cool on the shovel. The magnet will now take out all the bits of iron. Now with a hammer-face or smooth water-worn pebble proceed to crush all the substances on the shovel fine. Then at the nearest stream of water, or in a large tub, carefully van and wash your sample until all the earthy and worthless matters have been washed away; then the practised eye will instantly distinguish the gold, if any. The utterly inexperienced may, however, be deceived by remaining fragments of mundic or copper ore before referred to; therefore, to make assurance doubly sure, let him dry his washed metal powder on the shovel over the fire, then carefully place it in a small, clean, dry vial-bottle with a little quicksilver. Shake and rattle it well about until all the particles have been brought well in contact with the mercury. Such fragments as it will not take up are not gold; but to find that which it has converted into an amalgam, place the mercury in a piece of clean chamois leather, press it carefully, and the mercury will force its way in minute globules through the leather, leaving the gold in a soft mass within. This, by being heated to redness, throws off the remaining quicksilver, and can be estimated as gold. Silver will alsoamalgamate with mercury, but can always be distinguished from gold by the nitric acid and salt test before described. Lead ore is rarely mistaken for anything else, its peculiar colour, cubical form of crystallisation, and gravity being generally sufficient to identify it. A small quantity, reduced to a fine powder and mixed with a little fused borax, readily fuses on a charcoal slip before the blowpipe, and is then ordinary lead. The silver often associated with lead ores can alone be estimated by a regular assay, requiring the use of crucibles, cupels, furnace, &c. Sulphuret of antimony, although massive and somewhat lead-coloured, leaves a thick rough deposit on the charcoal, and fuses into a brittle crystalline regulus, in no way resembling lead. Small specimens of galena, or lead ore, should always be preserved for future investigation, as it is at times extremely rich in silver, whilst at others a mere trace only remains. We have analysed lead ore from Cornwall which yielded between 90oz. and 100oz. of silver to the ton, whilst other samples, raised in Wisconsin, although yielding 85 per cent. of lead, did not contain enough silver to render its extraction remunerative. The points of distinction between minerals and metals we have thus been briefly laying down do not properly apply to the investigations of the regular gold-digger, but are mainly intended for the use of those who are engaged in exploration and research. The professed gold-seeker, as a rule, casts all aside save the one great centre of his hopes and pursuit. He, in his prospecting expeditions, makes use of the broad shallow metal pan shown in the illustration which represents “Searching for Gold.” The quantity of gold brought to light by its aid guides him in his choice of a locality. If it is considered rich enough, he, with his mates, sinks down to “the pay dirt,” or deposit containing the gold; this is either washed out at once on the cradle, or piled in heaps for future treatment. With gold quartz-crushing, amalgamation on a large scale, or the washing down of drift by hydraulic power and the use of flumes as practised in California, we cannot deal here, as the appliances are far more complicated and ponderous than the mere traveller could carry with him.
Base metal, to detect.
It sometimes happens that imposition is attempted in far-off lands, and imitation gold ornaments offered to the traveller. To test the quality of these, it will be requisite to have a bit of black terra-cotta pot, or a fragment of any hard smooth black stone. Rub the suspected ornament on this until a metallic streak is left, dip one of your bits of glass rod in your nitric acid, and let a drop or two fall on the track left by the metal. If of base material, the particles will rapidly turn green and dissolve; if gold, they will remain unchanged; and if an alloy, the combined metal will be removed, and the gold wall remain stationary on the black surface. The exact standard of mixture or combination can only be arrived at by the use of a set of touch-needles, which are rubbed and compared with the doubtful marks on the stone.
Stone, to quarry.
There are many situations in which stone may be advantageously used for the erection of houses, forts, or defensible depôts. On the discovery of a bed of rock adapted for the purpose, the head or covering earth should be removed, either by the agency of water obtained by diverting some neighbouring stream for the purpose, or by digging with the spade or shovel. Careful examination will now generally disclose veins or seams traversing the stone, such of these as run in favourable directions should be selected, and the gads or wedges before described had recourse to. It is well to have, at least, a dozen of these for stone splitting. They should be about 5in. long, 1½in. wide, and ½in. thick, tapering to the edge, which should not be too sharp. All gads should be made of the best gad steel, carefully pointed and tempered. In entering the gads, it will be well to insert them in the selected seam at about 1ft. apart; then, with the heavy hammer or pick-head, strike each gad a blow or two in succession, which will serve to open the seam, and not unfrequently detach the required fragment.jumping barWhen large square or oblong blocks are required, it is well to first mark out the size required on the rock with the pick’s point, and then with either the borer before described, or a jumping bar (of form shown in the annexed illustration), drill a row of holes about 8in. apart on the line before marked out, in depth proportioned to the intended thickness of the stone, in each hole should be placed a pair of gad cheeks—these are pieces of half-round iron bar. The rounded sides rest against the sidesof the holes as the gad is driven between the flat surfaces, thus forcing open the grain of the rock without breaking away the sides of the holes by gad clinching. As in the former case, each gad is gradually driven home until the line of holes run into one long fissure and the block is detached. In breaking out flat slabs of comparatively thin stone, it will be found a good plan, after measuring and marking the size decided on, to sink a shallow groove either with the pick’s point or a stonecutter’s chisel across the extreme length of the slab; then, by inserting the gads at the outer face or edge of the deposit, the slab will not only be raised but evenly broken off. Fire is a most powerful agent and aid in stone-breaking, especially when assisted by water. The huge and massive boulder of rock which bids defiance to the sledge-hammer may very soon be reduced to fragments by making a strong fire round it, and, when thoroughly heated, throwing buckets of water over it.
canthook
The treatment of stone.
Some Indians are particularly clever in the art of stone dividing. They build a double wall of clay the whole length of the stone, leaving about six inches of bare rock between them. They then lay more clay on the outsides of the walls, nearly the width of the stone. Then between the walls of clay they make a long line of fire with dry cow dung and chips of hard, dry wood. An incredibly short space of time elapses before the division of the stone is completed, when the fire is carefully extinguished with earth or sand, and the stone allowed to cool. Rocks, so placed as to prevent recourse being had to either of the expedients described, may be split out by the action of a small charge of powder, fired, as before directed, in a hole made by the jumping bar. To drill a hole with this no hammer man is required, but the weight of the protuberance on the instrument, when aided by a jumping and rotatory motion, is sufficient to cut away the rock. Water swab, shell scraper, &c., are used with these implements, just as they are with the miner’s borer, which can be used in confined spaces and under outlying works, where the jumper would be useless. A crowbar or two will be found very useful for lifting out broken pieces of stone, &c. There is also an instrument much used in America called a “canthook,” which ishererepresented. It is extremely valuable for moving both stones of large size and logs of unwieldy dimensions. The handle, or lever, is made of tough, well-seasoned timber, and is usually from 6ft. to 7ft. long. The claw is of sound, tough, wrought iron, and proportioned in weight and spread to the bodies it is applied to. Two or three sizes of claws fit one handle, just as a dentist’s key is adapted to the size of the tooth it is to grasp. An oblong square hole is cut through the lever for the claw’s end to pass through, and a stout iron pin, with a hole in the end for a split stop to go into, keeps the claw at its proper point of adjustment. The boulder claw is another most useful implement. It is used for turning over and rolling out large boulders of rock, lifting out logs, &c. These claws, and the chains and rings to which they are attached, should be made of the best Swedish iron; the claw point should be of gad steel, welded in. The form of the hook or claw is very important, as, if not turned to the exact bend, it will not grip or hold. The above illustrations will serve to show both the form of the claw and its mode of action when in use.
THE BOULDER CLAW.
THE BOULDER CLAW.
Miners’ pump, to make.
When water settles in a comparatively shallow pit, too large to be conveniently emptied by the aid of buckets, a very simple form of pump will be found useful. Nail four long planks togetherin the form of a narrow square box or tube, say 1ft. square; now procure a stout pole a little longer than the box, nail a flat board to one end of it just as a table is attached to its stand, cut away the edges until it fits the box loosely, then nail a bordering of old boot leather or hide round the edges until it fits tight enough to suck; cut a large square hole in it, and fasten over this with tacks a piece of tapping leather or raw hide backed with wood for a valve; bore a hole in the upper end of the pole to put a cross handle through; bore an auger hole through the lower end of your box about 1ft. from the opening, and through this drive a stout stick to keep the sucker from coming too far down; your pump is now complete. Place it in a slightly slanting direction in the pond, and secure it with a crooked stick driven in by its side; push the sucker to the bottom, pour a bucket of water or so in to make it draw, and you will, by working the piston steadily up and down, soon have the water pouring in a flood over the upper edge of the box, where it can be caught in a hollow log or a pit lined with clay. One of these box pumps is shown in the full page illustration “Searching for Gold.”
Charcoal burning.
charcoal burning
The traveller will find it extremely useful to be able to manufacture his own charcoal. There are several methods by which he can do this, all depending on the same general principles. Pieces of wood of suitable length and convenient size are prepared. We show here the most effective arrangements.
making charcoal
The pile, when evenly and completely built up, is covered with turf and a little sand or earth—leaving one fair-sized orifice as a draught hole. Fire is introduced either at the bottom of the pile through a hole left for it, or dropped down through the space left by the withdrawal of the centre post. The orifices of all charcoal pits or chambers should remain open until the fire has become well distributed through the mass of wood, but should be covered witha stopper of turf or clay directly the light grey smoke of active combustion shows itself. The contents of the pile may from time to time be tested by removing a small portion of the stopping or covering turf and inserting a hooked iron rod, by the aid of which a sample of the baking may be withdrawn for examination. Immediately on being satisfied that the charcoal has been sufficiently burned, more earth, turf, sand, &c., should be heaped on the top of the pile, until every crevice is stopped completely. The fire will then soon die out, and the contents of the pile can be removed. We alsorepresenta contrivance for preparing charcoal for gunpowder making. A small cask has one head removed, a stout pole run through the bung-hole, and is then evenly packed with selected billets of light suitable wood. (See “Gunpowder, to make,”p. 247.) The head is then replaced, the cask covered with well-worked clay, and then sunk in a pit prepared for its reception. The pole is then withdrawn, and a good quantity of red-hot embers thrown down the hole. The cask, after being used for charcoal making, is very useful for an oven, as will be shown when cookery is under consideration.
contrivance for gunpowder making
Timber felling.
timber felling
logging up
Before proceeding to give directions for building huts and houses, it may not be amiss to give a few hints on felling trees. Hints they can only be, as it is just as impossible to teach the art of wielding the backwoodsman’s axe by writing as it is to communicate the faculty of tracking wild animals through the forest by verbal directions. Experience and close observation are the only two true masters in both cases; still, we may be enabled to give such general directions as may save our readers from some of the humiliating predicaments we have seen the inexperienced wood-chopper placed in.timber fellingNothing is more common than to see one of this class hopelessly pinching his axe at every cut, from having commenced his chop too narrow. The length of the chop, or chip as it is sometimes called, will, of course, depend on the size of the tree; but in all cases it should be made in a long wedge form, as shown in the annexed illustration. By cutting in this way, the surface of the stump is left as level as a planed board, and the log which is separated from it has, when it falls, a wedge-shaped end. It will, in most cases, be found that the tree which you are about to fell will lean more or less in one direction. Station yourself, axe in hand, on the side towards which the tree leans; then measure yourdistance by placing the edge of your axe on the centre of the boll of the tree, at such a height from the ground that the axe lays in a straight and true line according to the stature of the axe man. The check or flange at the end of the axe helve should rest in the hands as the arms are extended towards the tree. This will give the distance at which the axe blade may be best brought to bear on the tree trunk. In delivering the cuts, which should follow the distance test, the axe should be dexterously and powerfully whirled round the head; sometimes obliquely from above downwards, and at others in a straight and direct sweep across the line of the log. The horizontal form of the lower cut and the wedge shape of the upper will be thus preserved until the tree is half cut through, when exactly the same system of operation should be followed out on the side of the tree opposite to that on which the first incision was made. On the second chop being nearly completed, the tree will fall directly away from the axe man in the line of its inclination. On all the tops, lops, and branches being removed, and the log cleared from surrounding impediments, it may become a question as to what purpose it is to be applied.logging upIf it is of great length, and comparatively short pieces are required, the process known as “logging up” must be had recourse to. This is carried out as follows: After measuring the length of the log, and dividing it into the requisite number of pieces by marking it with the axe, stand on the tree trunk, with your feet pointing across the grain of the wood, then with your axe proceed to cut two sloping or wedge-shaped cuts, as shown in the annexed illustration, carrying them into the log until half through it; then face about, and make two on the other side, which, when finished, should meet the others at their widest diameter, which will be that of the tree. Some settlers in wild countries burn down the trees in order to save labour; others girdle them. To perform this latterprocess, it is necessary to cut a wide band of bark from the butt of the tree near the ground. This prevents the sap from ascending, and thus quickly destroys vegetation. Where timber is scarce and valuable, the cross-cut saw may be made to aid the axe, and the tree taken off almost level with the ground. It sometimes, although not frequently, happens that trees are found too large to be felled by the axe or saw. This was the case with the so-called “big tree,” one of the “mammoth trees” of California. It was felled by boring a complete circle of holes round and into its immense trunk with augers. Five men were occupied during twenty-two days in completing the final overthrow of the tree, which was effected, after all the holes had converged, by the introduction of a number of wedges. Its period of growth was estimated at 3000 years; it measured 302ft. high, and was 96ft. in circumference at the butt. The bark measured nearly 1ft. in thickness.
When to cut timber.
The quality, strength, and durability of timber are much influenced by the season of the year in which it is felled. In all temperate regions the autumn or winter season should be chosen, as at that time little sap is flowing through the vessels of the tree. In this country it but too often happens that well-grown oak timber is all but sacrificed in order that the bark may be procured. Early spring, the season for bark rending, is the very worst that could by any possibility be chosen for cutting timber. Charged as it is with vegetable juices, rich in saccharine matter and albumen, the seeds of dry rot and decay are carried with it, which no after treatment will serve to eradicate. In tropical climates it is well to fell such timber as is intended to be kept for future use at the end of the dry season and before the setting in of the rains; all logs intended for rails, posts, &c., should be split up, immediately after felling, into the rough forms of the objects into which, when fully seasoned, they will be converted. The bark should be all stripped off, and the rough timber placed under cover in such a situation as will admit of light and air penetrating freely through it. Timber cut and thus treated one season, should not be used until the next. The durability of seasoned timber is infinitely greater than that of green.
Timber, to split.
wedgewedging beetle
wedge
wedging beetle
For efficient timber splitting, a set of thoroughly well-made and correctly-formed iron wedges, and a number of equally well-shaped wooden wedges or gluts, are needed.wedgeThe iron wedges should be made of the very best tough iron, tipped with gad steel, as in the form of the annexed illustration. All the edges and corners should be slightly rounded off in order to give freedom in driving; the length, from head to point, should be 10 in., the width across the wedge 2½ in., and the thickness of metal across the edge at the head 2 in. Some judgment is required in tempering wedges, as they must be hard enough at the point to prevent bending, and yet not hard enough to break. The file test is as good as any. The edge of the wedge point should never be hammered thin before tempering, but left rather thick to be reduced to the proper degree of sharpness on the grinding stone. The wooden gluts are usually considerably larger than the iron wedges; these are to be made from hard, tough, well-seasoned timber—round stout poles are convenient for making them. The proper lengths, which are mainly dependent on the size of the logs to be operated on, are sawn off. The sides or cheeks of these pieces are then chopped off with the axe in approximately true wedge form, an even surface and exact pitch is afterwards given to them with a cooper’s drawing knife or a spoke shave.wedging beetleWedges, whether of iron or wood, should never be driven with an iron hammer. A wedging beetle, of form shown in the accompanying illustration, should be always made use of. The hardest and toughest wood to be obtained should be used to form the head; the ends are usually hooped with flat iron rings, and the handle fashioned from some tough elastic wood, such as ash or hickory. Scarcely any two men use the same size beetle, but the following will be found fair average dimensions from which to make one: Length of beetle head 9in., binding hoops 1¼in. wide and ½in. thick, diameter of beetle head 5½in., length of handle 2ft. 8in. Great care should be taken in fitting in the handle, as it isessential to the efficiency of the instrument that it and the head should be exactly true with each other.A slightly flattened handle lies in the hand more compactly, and works more freely, than a perfectly round one. Nearly all logs split best from the small or crown end towards the butt. If it is intended to divide the log into four pieces, the wedges must be inserted as shown in the annexed illustration (A), if into three they are placed as at B. When rails, &c., are to be made, the log must be divided into quarters, by first making a cross-shaped cut in the end of the log, and striking the back of the axe with the beetle until the edge enters deep enough to afford a hold for the iron wedges. Longitudinal cuts with the axe are now to be made, the whole length of the log corresponding with the cross. The wedges, gluts, and beetle do the rest when the latter implement is properly wielded.Logs for shingle making are quartered much in the same way, only instead of being split out in the full length, the log is cut up into short lengths before quartering. The shingles may be 15in. long by 9in. wide, and in form like that represented in the above illustration. The axe and beetle may be used for splitting off these wooden flakes, but the lath render’sfroeis a far more convenient instrument for the purpose.
The diagrams in the next page will serve to show the mode by which the long log quarters are split up into rails, &c. Someparticular species of tree will split without the aid of wedges; the axe alone being used to cleave them. Two axe men attack a log, one chops in his axe blade in the line of grain, the other follows behind and chops in his, when the first man becomes the second, and so on until the cut is complete and the log is split.
creating rails
Such posts as are intended to be driven into the earth require accurate and careful pointing. Each cheek of the timber should be smoothly and evenly sloped off to about the proportion shown in the illustration representing the wedge. The centre of the post will thus become the point.
splitting rails
railing
simple fence
The accompanying illustration represents a log clip for holding a post whilst undergoing the process of pointing. The side wedge holds the post securely in the notched piece of log laid to receive it. A camp, garden, or cattle inclosure may be easily and expeditiously fenced in by either of the plans shown in the following illustrations. The first system of railing consists in driving double posts into the earth at equal distances, and then dropping trimmed poles and pieces of wood or stones alternately between them. A wooden pin driven through the heads of both posts at each nip keeps all compact and secure. To erect a fence by the second plan, posts are driven into the ground singly, in the position shown in the diagram on the next page, and then poles are laid with their ends crossing at a sufficient inclination to rest against and be held by the posts. The rails can be adjusted to any distance apart, by fitting in short pieces or junks of pole between the ends of thelong bars. A very simple and useful fence for marking the bounds of a camp, or piece of cultivated ground, is formed by planting short stout poles obliquely in the earth, so that they may cross each other like the letters XX. The points at which the poles cross are secured with a twisted withy, a bit of raw hide, a strip of twisted bark or root. Fences of this kind are very useful to show natives the nearest point to which they may stray towards the packs and bales of goods.
The natives of British Columbia and some other countries laboriously hew and chop away the two cheeks of a log with their primitive hatchets until they form a plank by the reduction of a whole tree. In India and China the natives make use of a long cross-handled saw, not unlike our pit saw, for the division of a log into planks. They do not, however, sink a sawpit as we do in this country, but set up a pair of cross legs or shears, and run the log obliquely across the upper fork until it is some distance in the air. They then saw down to the fork of the shears, and, when that is reached, reverse the log, end for end, by tilting it, and commence at the other extremity. The hunter or explorer will, as a rule, be mainly dependent on his skill as a woodsman, and wielder of the axe, for a comfortable dwelling amongst the forests. The number of a party and the duration of a visit to any particular locality will influence the kind of structure it will be best to erect. A single trapper or hunter naturalist can content himself with very moderate accommodation.
Board wigwam.
Log house, to build.
board wigwam
log house
A simple form of wigwam can be thus built with the aid of the axe only, in a very short time; search out and cut four stout fork ended posts between 6ft. and 7ft. long, sharpen their ends, drive two of them into the earth firmly at 9ft. apart, then cut a couple of straight strong poles of about 1ft. girth and 10ft. long, lay one of these in the forks of the two posts and fasten it there with a twisted withy or a bit of raw hide; then measure off 5ft. from one of the posts, and, parallel with it, set up one of the others, plant the remaining one at the other end, lay in the second pole,secure it as before, and the framework is complete. Now look out for a free splitting tree, log it up into 13 ft. lengths, split these into boards, place them in a sloping direction against the poles which rest in the forks, and arrange them so that the upper ends do not meet, but leave a good wide opening for the smoke to come out. Split up a log or two the length required to board up the ends of the wigwam; this can be done by setting the boards upright, leaving a wide one movable to form a door, drive in a few hard wood pegs so as to catch the bottoms of the boards and all is made secure. During the day a board or two to leeward may be slid aside to let in light, by night air enough comes in through the chinks.Log house, to build.As a more permanent home for a party who are about wintering in the woods, it is best to construct a log hut of the description represented in the following illustration; its size must, of course, depend on the number of its proposed occupants; it can be made either oblong or square. When a sufficient number of trees of convenient bulk for handling have been felled and logged up into proper lengths, the ends should be notched with the axe, as shown in the illustration. The four ground logs are then laid and keyed together by their notches; the second row are then placed on these, either by the aid of skid bars placed in a slanting direction on the lower logs, or by manual labour.When all the walls are high enough, the doorway must be cut in the following manner: Begin on the upper log and chop through at each end, the exact width of the proposed opening follow down, cutting log by log until the ground log is reached; cut this nearly half through and then split out the piece, the other portion below forms your threshold. Take a fresh log, and in it split out a space exactly to correspond with that in the ground log, place this as a crowning log with three others, uncut, to form your wall plate, the split-out piece will form the top of your doorway; the square hole for the window or shutter is chopped out in the same way. The gable ends and ridge log must be adjusted at such a pitch as to insure a free run for rain water or melted snow; the four ends or butts of the gable angles should rest and be firmly wedged in four holes axed out for them in the ends of the upper row of wall-plate logs; where the gable peak crosses, the logs should be notched together and pinned; the ridge log will then rest in the crutches formed by the intersection. Now, after having selected the most convenient spot for a fire-place, chop a hole through the logs, including that on the ground, about 3ft. wide and 4ft. 6in. high. There are several ways of forming a chimney and fire-back; one is to build a beehive-shaped wall outside the opening, plastering the inside with clay, and forming a rough chimney stack with turf and stones. All chinks or crevices between the logs are stopped with clay and moss. Some American trappers and hunters proceed as follows: They cut a number of poles long enough to reach the top of the proposed chimney, which is, of course, a little higher than the ridge of the roof; they then plant the sharpened ends of the poles in the earth in such a way as to form a semicircular hedge surrounding the back of the hole in the logs, and about 6ft. at its widest part from them. An inner hedge of sticks about 6ft. long is now planted within the row of long poles, at about 8in. from them; a number of bushy twigs are now collected and interwoven between the poles and sticks until a sort of double wall of basket work is formed between these wicker partitions; a quantity of wet clay and small gravel is firmly impacted, and rammed down until the space will hold no more. The long poles are then gathered together into a sort of inverted funnel form, a hole being left where their small endsmeet for the smoke to pass through; a thorough slap-dashing with thin wet clay within and without finishes the affair. The inner layer of basket work consumes in time, but leaves the clay and stone hard enough to resist an ordinary heat. Huts of this description are either half log-roofed or shingled; that represented in the illustration is covered by the former mode. Logs of fitting size and length are split in halves; the surfaces of one-half of these are slightly hollowed with the axe or adze, and then placed side by side with the round surface downward on the ridge bar and wall plate; on the hollowed faces of these over every interval is laid face downward one of the flat-faced pieces. (See illustration,p. 275.)
Temporary wigwams.
shingling
board siding
To roof-in one of these log huts with the shingles we have before described, the builder must proceed in a different manner; rows of rafters must be pinned on to catch the shingles. The first row, or that at the wall plate, should project some inches beyond it; on the heels of these a long flat lath or batten of wood is secured by wood pegs driven in here and there, this nips the row of shingles and keeps them in place. The second row is laid over and beyond the batten and so on, much as slates or tiles are laid for the roof of an English house.shinglingDoors and shutters for log houses are usually made of boards obtained from split logs pinned together with cross-bars, and are generally calleddowel hinged; an auger hole is bored a few inches into both frame and door, a hard wood peg placed half-way into each hole gives perfect freedom of motion, and will last as long as the house. A flooring is very easily made by splitting a large log into rough boards, and much increases the comfort of the establishment. The above illustration represents a rough temporary wigwam, which may be easily made as follows: Select either a large fallen log or high bank for a back;drive two stout forked pieces sufficiently far from the back and far apart to give space for the interior; lay another pole across the crutches for a front wall plate, and two side poles from the back, long enough to rest on and be secured to this.sidingThatch with hemlock or balsam fir branches, arranging them layer upon layer, butt end upwards. The gable ends can be closed with either branches or grass-covered hurdles or frames. Another kind is made by placing all the posts double, and then dropping the planks down between them, so that they are nipped by the uprights, as shown in the accompanying sketch.
The huts of savages.
As an almost invariable rule, the huts built by savage nations are round, or approximate more or less to the circular form. But sometimes they are shapeless things, like the rude “gunyah” of the Australian, which consists merely of a sheet of bark of the tea-tree (one of the Eucalypti) broken across the middle and set up in a triangular form to shelter “the body” from the inclemency of the weather; while small fires are lighted all around for warmth and defence against the mosquitoes, or a dry log, 6ft. or 8ft. long, is laid on either side, and set on fire in several places. Equally simple is the hut of the desert bushman. A few sticks are set up against each other, so as to form an irregular cone, with one side left open to admit “the body” of the sleeper, as shown in the illustration onp. 279. In almost all tribes the commencement is made in the same manner. A circle is traced or imagined on the ground, and the women, squatting down, with sharp pointed sticks work holes a foot or more apart all round it; long flexible wands are inserted, and their tops bent over and lashed together, and if the hut be large, one or more poles are placed inside the circle as supports. In Kafirland the fire-place is simply a flat hearth, occupying the centre, so that the poles, when there are any, arearranged round it. Smaller rods are wattled all round, or bound tightly to the ribs with strips of the inner bark of the mimosa, or other tree, and the hut is thatched with reeds, grass, or whatever may be the favourite or most convenient material of the country.
Kafir hearth
In Kafirland the huts are hemispherical, like beehives, or rather like inverted bowls, slightly flattened on the top. The thatching is very neatly and compactly done, and generally small ropes of grass are carried many times round and round outside the hut, and laced with smaller strips through the thatching to theinnerframe. The floor is nicely clayed with a compost of “kraal mist” or cattle dung, and the fine clay of ant-hills broken up and well mixed. Sometimes the inner wall for 2ft. or 3ft. high is plastered with the same, and pumpkin seeds stuck into it in fanciful patterns, and picked off again, when the clay is dry, leaving a glazed film sparkling in the hollow.
In one of our sketching trips through Kafirland in 1848 we had been advised by Captain Roper, of the Rifle Brigade, who commanded at the Buffalo Mouth, always to go to a hut or village at night, as should any accident befall us our “spoor” could be traced, and the owner of the hut or headman of the village be held responsible; while, on the contrary, should we sleep in the bush, and our horse be stolen, and the thieves act on the principle that “dead men tell no tales,” it would be very long before we were missed, and tracing might be impossible.
There is one fault in these Kafir huts. They resemble an inverted bowl; the door is cut out of the edge, and there is no other aperturewhatever. The consequence is that if one stands up his lower extremities may be absolutely chilled, while from the waist upward he is immersed in a bath of smoke or heated air; and when the fire has gone low, and the intensely cold air of the early morning fills the lower part, driving the warm air above the level of the doorway, the sleeper is glad to wrap himself more closely in his mantle.
Kafir hut
In countries where stratified rocks, as sandstone, &c., which split easily into flat slabs, abound, huts are frequently built of stone. A circle of blocks is laid on the ground, then another on them, with the edges projecting a little inward, so that the circumference of each course is less than that of the one immediately beneath it; a large slab covers the top, and finishes the building. Such huts are found in the north-eastern part of the Free State in South Africa, formerly the Orange River Sovereignty.
Among the various Bechuana tribes in and beyond the Free State, the building of a hut is a more elaborate and artistic affair; in fact, it deserves rather to be called a house, consisting, as it does, of walls and a roof perfectly distinct from each other. In its simplest form it consists of a row of stakes from 4ft. to 7ft. high, set up in a circular form, and of a conical roof, the frame of which is mostly made separately on the ground, and then lifted into its place, and bound firmly upon the upright wall. In the larger huts a smaller concentric circle of stakes (of course much longer than the first, as they have to reach the roof at a higher point) forms an inner chamber, and generally the eaves of the roof are extended, so as to form also a verandah, or shade, all round; and, besides this, there will be a larger circular wall inclosing a courtyard, frequently of considerable dimensions.
CHIEF’S HUT, VAAL RIVER.
CHIEF’S HUT, VAAL RIVER.
Sometimes, as on the Lower Zambesi, the row of stakes forming the outer wall of the house is plastered round with a broad central horizontal band of red or yellow clay, leaving about a third above and belowit open for ventilation, and sometimes the whole is elaborately smoothed with a mixture of the fine clay of broken ant-hills and cattle dung, which, being left of its natural colour, has the appearance of a light greyish stone. All this is performed by the women, who put it down and smooth it with their hands, finishing not only the house, but the outer walls and even the floor of the courtyard, with so much nicety that, as good housewives say at home, “you might eat off it.” Raised seats are generally built in the form of segments of a circle, and these are as carefully smoothed over as the rest. The hut of a Bechuana chief at Vaal River was a model of neatness in its way; the walls had been marked off into blocks, zigzag lines had been traced on them, and uncouth patterns were painted in black or coloured clay over the low door of his inner chamber, which, hung round with antelope skins, was, as he said, very nice and warm—in fact, insufferably hot. The outer apartment was 3ft. or 4ft. broad, and ran all round the inner. The part nearest the door served as a reception room, and the remoter regions were used for the stowage of rough skins, household gear, the musket and ammunition, and large pots and calabashes of outchulla or native beer, which kept up a constant simmering as it fermented, and to the taste seemed very like spoiledvinegar. Large frames are made of wattled work, and coated with clay till they resemble capacious jars; in these the corn is stored, small roofs are raised over them, and the timber around is wastefully heaped up to form a kind of shelter from the sun for the chief and council to sit under.
The hartebeeste hut shown in the full-pagecamp scenein Kafirland, mostly used by colonial Hottentots, is simple and easy enough to make. It has one straight side, and one lean-to, and derives its name from its resemblance to the sloping back of the animal.
The huts of the Damaras are generally of very rude construction. A circle of sticks is planted in the ground, and the tops bent over and lashed together, generally with their own bark; they are then roughly wattled, and plastered over with clay and “kraal mist.” Rain so seldom falls that they seem to take no precaution against it, preferring rather to risk the few drenching showers of the wet season than to take the trouble of making their huts waterproof. Sometimes the hides of the few cattle they slaughter are spread over their huts, and kept in their places by stones or heavy poles laid on them. In one respect only they have an advantage over the Kafir hut, and that is, the smoke escapes through the cracks and interstices of the roof. Internally there may be a dried hide to sit or sleep on, an earthen pot for cooking, a calabash or two, or a bambuse or wooden bowl for milk or water; two or three skins stripped off whole, as sacks for “uintjies” or earth nuts; and it may be an axe, of Ovampo, or more rarely of European, manufacture.