Chapter 8

cask raft

A couple of spare topmasts brought together at their heads, and extended by a shorter spar at their heels, so as to form a triangle more or less acute, form a good foundation for a raft; the space between may then be filled with whatever buoyant material you possess, whether casks, boxes, or smaller spars. No rules can be considered absolute in raft making; anything that will float, and can be lashed together in any manner, must be used; if a portion of the vessel’s deck can be cut out by axe or saw it may form a good foundation; if the raft can be built on board the wreck, or on the beach beside her, so much the better, but it would be better to throw the materials overboard, and, at the cost of any extra labour, construct it in the water, than not be able fairly to launch it when completed. We have seen the waist stanchions of a waterlogged vessel cut away for such a purpose, or in extreme cases the hull may be expected to go down, and then the only anxiety will be to complete the raft so that it may be capable of floating off the sinking vessel. In the water a rectangular raft is best built alongside the vessel, but the triangular one must be built astern.

Pot raft.

Of buoyant merchandise formed into rafts for the purpose of floating down rivers to the markets, we have an example in the pottery floats upon the Nile, where a number of jars having been made, are bound together, and a platform of reeds laid on them. Tho long timber rafts upon the Rhine and on the rivers of Canada and North America are also examples of this principle.

Sedge-grass rafts.

On some of the larger rivers of Africa, as the Okovango, discovered by our late friend C. J. Andersson, the Teoughe and others, rafts of sedgegrass are used; sometimes these, if only intended to carry a few persons across a river, are small and comparatively manageable, and have even an attempt at comfort and security in a kind of rail raised round them of faggots of the same material. Others, used in hippopotamus hunting, are mere floats on which the small canoes are drawn up, and their chief merit is that they are so like natural accumulations that the animal does not think of getting out of their way.

On a still larger heap of these Mr. Andersson descended the tortuous course of the Teoughe for many miles; and Mr. Oscar T. Lindholm, who accompanied the eminent but unfortunate Swedish naturalist Wahlberg, gave us a most graphic account of a similar voyage. Immense quantities of sedge was collected, and bundles of it were thrown upon the water in some quiet nook, without any regularity and with no other fastening than its own natural cohesion and entanglement when one layer was thrown almost at random across another. A small hut was built upon the heap when it had acquired sufficient size, and the whole, when ready, was forced out into the stream, which brought it down at an average rate of two and a half miles per hour. If it took the ground, the only consequence was the loss of a few reeds from the bottom layer as the mass swung round and cleared itself. Snags, projecting points, or other impediments might tear off more, but nothing could stay the quiet but irresistible movement of the great raft, which, as the grass below became densely pressed and sodden, began to draw nearly 6ft. of water, and sank deeper every day; to remedy which, fresh grass was cut and thrown daily upon the upper layers. Frequently overhanging trees tore off portions, and once a large trunk lay so close to the water that it fairly swept the decks fore and aft; the occupants saved themselves by climbing over the tree, but the hut, with many valuables, was carried right away. With this exception the voyage was accomplished safely, but it was a task of great difficulty to prevent the unwieldy mass being swept by the stream into Lake Ngami, in the still waters of which it might have floated for an indefinite period without coming nearer to the shore.

The obelisk of Luxor was removed by laying a vessel ashore, with her head towards it, when the river was at its highest; themasts were lifted and shored up from the deck, so as to allow an immense packing case to be built upon the keelson; ways like those for launching a ship were built, and on them the heavy monolith was forced onward till it lay at length fairly in the vessel, occupying nearly her entire length; a deep channel cut from the vessel to the river, and at the next rise of the water she floated off. But without forgetting this, we do not remember a case of more ingenious and persevering adaptation of apparently insufficient means to great and important ends, than that of the conveyance by our countryman Layard of the great human-headed bulls and lions from the magnificent ruins in which he found them to the point of embarkation on the Tigris, and thence, by rafts so frail that we almost wonder how the ponderous masses were supported, to a place where vessels more adequate to the carriage of such a burden could receive them. It would be a pity to curtail the brief and graphic description, and we therefore give it in his own words:—

“I did not doubt that the skins, once blown up, would support the sculptures without difficulty as far as Baghdad. The journey would take eight or ten days, under favourable circumstances. But there they would require to be opened and refilled, or the rafts would scarcely sustain so heavy a weight all the way to Busrak; the voyage from Baghdad to that port being considerably longer, in point of time, than that from Mosul to Baghdad. However carefully the skins are filled, the air gradually escapes. Rafts bearing merchandise are generally detained several times during their descent to enable the raftmen to examine and refill the skins. If the sculptures rested upon only one framework, the beams being almost on a level with the water, the raftmen would be unable to get beneath them to reach the mouths of the skins, when they require replenishing, without moving the cargo. This would have been both inconvenient and difficult to accomplish; I was, therefore, desirous of raising the lion and bull as much as possible above the water, so as to leave room for the men to creep under them.

“It may interest the reader to know how these rafts, which have probably formed for ages the only means of traffic on the upper parts of the rivers of Mesopotamia, are constructed. The skins of full-grown sheep and goats are used. They are taken off with as few incisions as possible, and then dried and prepared. The air is forced in by the lungs through an aperture, which is afterwards tied up with string. A square framework, formed of poplar beams, branches of trees, and reeds, having been constructed of the size of the intended raft, the inflated skins are tied to it by osier and other twigs, the whole being firmly bound together. The raft is then removed to the water and launched. Care is taken to place the skins with their mouths upwards, that, in case any should burst or require filling, they can be easily opened by the raftmen. Upon the framework of wood are piled bales of goods and property belonging to merchants and travellers. When any person of rank or wealth descends the river in this fashion, small huts are constructed on the raft, by covering a common wooden “takht,” or bedstead of the country, with a hood formed of reeds and lined with felt. In these huts the travellers live and sleep during the journey. The poorer passengers seek shade or warmth by burying themselves amongst bales of goods and other merchandise, and sit patiently, almost in one position, until they reach their destination. They carry with them a small earthen “mangal,” or chafing-dish, containing a charcoal fire, which serves to light their pipes and to cook their coffee and food. The only real danger to be apprehended on the river is from the Arabs, who, when the country is in a disturbed state, invariably attack and pillage the rafts.

INFLATED FLOATS.

INFLATED FLOATS.

“The raftmen guide their rude vessels by long oars—straight poles, at the end of which a few split canes are fastened by a piece of twine. They skilfully avoid the rapids, and, seated on the bales of goods, work continually, even in the hottest sun. They will seldom travel after dark before reaching Tekrit, on account of the rocks and shoals which abound in the upper part of the river; but when they have passed that place they resign themselves, night and day, to the sluggish stream. During the floods in the spring, or after violent rains, small rafts may float from Mosul to Baghdad in about eighty-four hours; but the large rafts are generally six or seven days in performing thevoyage. In summer, and when the river is low, they are frequently nearly a month in reaching their destination. When the rafts have been unloaded, they are broken up, and the beams, wood, and twigs are sold at a considerable profit, forming one of the principal branches of trade between Mosul and Baghdad. The skins are washed and afterwards rubbed with a preparation of pounded pomegranate skins, to keep them from cracking and rotting. They are then brought back, either upon the shoulders of the raftmen or upon donkeys, to Mosul or Tekrit, where the men engaged in navigation of the Tigris usually reside.”

swimming with goatskin bladder

In one of the sculptures thus brought to our own country by the energetic traveller, an army is represented crossing a river, and the soldiers are supported each by an inflated goatskin held under the chest, while one of the legs being led upwards to the swimmer’s mouth enables him to keep it distended, should any air escape. In making these bags, the only sewing necessary is at the aperture through which the animal is skinned; the neck, cut close to the head, may be tightly bound up with a thong, and an over-hand knot cast in the three legs; the fourth being left with a tube for re-inflation.

Sir Samuel Baker says, when speaking of crossing the Atbara River, “I had eight inflated skins attached to the bedstead, on which I lashed our large circular sponging bath, 3ft. 8in. in diameter. This was perfectly safe for my wife, and dry for the baggage; the watertight iron box that contained the gunpowder was towed as a pinnace behind the raft. Four hippopotamus hunters harnessed themselves as tug steamers, and there were relays of swimmers. The raft answered well, and would support about 300lb.; the sponging bath would carry 190lb.”

American portable boat.

Colonel R. C. Buchanan, of the United States service, is the inventor of a very useful form of portable boat. It was used in several expeditions, in Oregon and Washington territory, with much advantage. It is thus described:—

“It consists of an exceedingly light framework of thin and narrow boards, in lengths suitable for packing, connected by hinges, the different, sections folding into so small a compass as to be convenientlycarried upon mules. The frame is covered with a sheet of stout cotton canvas or duck, secured to the gunwales with a cord running diagonally back, and put through eyelet holes in the upper edge. When first placed in the water, the boat leaks a little, but the canvas soon swells, so as to make it sufficiently tight for all practical purposes. The great advantage to be derived from the use of this boat is, that it is so compact and portable as to be admirably adapted to the requirements of campaigning in a country where the streams are liable to rise above a fordable depth, and where the allowance of transportation is small. It may be put together or taken apart and packed in a very few minutes, and one mule suffices to transport a boat, with all its appurtenances, capable of sustaining ten men. Should the canvas become torn, it is easily repaired by putting on a patch, and it does not rot or crack, like india-rubber or gutta-percha; moreover it is not affected by changes of climate or temperature.”

COLLAPSIBLE BOAT.

COLLAPSIBLE BOAT.

Collapsible boat.

We have not seen Colonel Buchanan’s boat, but we remember one perhaps not very dissimilar, it was, in fact, a collapsible boat—the gunwales, the keel, and all the intermediate pieces being exactly alike, and made of ¾in. plank from 4in. to 6in. wide; these were hinged together at the two ends, just as are the frames of the oval reticules, and covered with stout canvas; the thwarts have hinges below the centre, from which also the third board, serving as a stanchion, reaches downward to rest upon the keel. There is a ring-bolt near the centre of each of the midship thwarts, and when the boatis hoisted out of the water by tackles at either end, a couple of small lines from these rings jerk up the centre of the thwarts and allow the gunwales and all the corresponding boards on either side to fall down beside the keel, as shown in the upper figure of our illustration (p. 155). There are also ring-bolts to the gunwales, and a couple of lines from these are held fast while the boat is lowered; the gunwales rise, and a man sitting upon the thwarts presses them into their place and the boat assumes its proper shape: of course the segments of plank below the gunwales have to be cut a little shorter at each end as they come nearer to the keel, or the boat would not shut up on its hinges. A boat 4ft. wide would collapse into a width of not more than 1ft. Such a frame could be readily taken to pieces by withdrawing the bolts of the hinges, and if each piece, supposing the boat to be 4ft. wide and 16ft. long were hinged in its centre, it would not be much too long to carry on a mule, except the country were more than ordinarily difficult, when it might be hinged in three lengths.

At the meeting of the British Association, in Birmingham, we saw some model boats of good form, but with very little projection of keel or stem or stern post, so that one might be fitted into the other without rising more than a few inches above the gunwale of the first; the thwarts of the lower one are stowed between the two very conveniently, and three or four may be thus packed, the uppermost, however, retaining all her fittings in readiness for immediate use.

Canoe birch.

The aborigines of many countries make use of the bark of certain trees for the purpose of canoe building. The most important of these is the canoe birch (Betula papyracea); its range may be estimated at 37° north to 43° south. Trees of this description not unfrequently grow to 70ft. in height, and are proportionately thick, so that sheets of bark of very large size can be readily stripped from them. The bark canoes of the Canadians and Indian traders are often of a very large size.

In the absence of forest conservators, economic considerations go for very little. It may be convenient, when canoe building or repairing is the object, to “fall” the tree, and, in doing so, care must be taken that the bark shall not be rent or bruised, either by fracture of the tree or by falling across a rock or stump, whilethe log ought to lie with both ends somewhat supported, so that the required sheet of bark may not be crushed between it and the ground. Perhaps it will be found generally easier to detach the bark while the tree is standing, and in this case a cut must be made all round the tree at the lower end of the sheet; the most perfect side should be left for the bottom of the canoe, and the longitudinal slit should be so made as to cut right through any defective portion which may thus be cut out with the least possible waste of material. If the tree has an inclination, it will be easier work to make the slit on the upper side. The bark should be detached by broad round-edged spuds of soft wood, thrust gently and cautiously between it and the tree; and it may also be previously loosened by striking it with a broad log or mallet on the outside, taking care not to break its texture. Steps may be cut in the wood to stand in, and hand-holds also as the work proceeds; and the lower part of the bark should be made fast with cord or slips of bark, passed loosely round, so that it may not swing clear of the tree and split the upper part before it is finally detached.

CANADIAN BARK CANOE.

CANADIAN BARK CANOE.

Canadian bark canoe.

The sheet should now be taken to a plot of level ground, carefully spread out with the inside downward, and the outside should be cleaned from any knots, excrescences, or hard and brittle layers that increase its weight without adding to its strength; and it should then be cut nearly to the form shown in the sketch (Fig. 1). A sufficient number of ribs or hoops oflight flexible wood should be provided, and great care should be taken, in bending it, not to split or unduly to force any part so as to make an unsightly protuberance, which would also most probably become a leak. The holes should be carefully bored along the edges that come in contact, and they may be sewn with fibres from the roots of pine trees or from small cedar twigs, and rendered water-tight by the use of pine-tree gum. Flexible poles or laths are then stitched in for gunwales or thwart stringers, and the canoe is more or less tastefully trimmed off and ornamented, according to the taste of the builder, as in Fig. 2 (p. 157).

Nothing can be lighter or handier than these canoes, but their very lightness and want of “hold on the water” makes them difficult for Englishmen to handle until experience has been their instructor.

Queen Charlotte’s Island canoe.

Canoes of this description are wonderfully buoyant, and draw very little water; and, when managed by skilful hands, few boats are more reliable. Our friend, Mr. F. Poole, who has spent many years among the Indians of North-West America, and is a canoeman of no ordinary skill, has recently completed a tour of extraordinary extent and interest, paddling fearlessly, and alone, far out to sea. The dimensions of the canoe he uses, which was made expressly for him by the Indians of Queen Charlotte’s Island, are as follows: Length, 15ft.; width across beam, 3½ft.; depth, 15in.; weight, 100lb.

BIRCH BARK CANOE OF QUEEN CHARLOTTE’S ISLAND.

BIRCH BARK CANOE OF QUEEN CHARLOTTE’S ISLAND.

paddle

In her Mr. Poole started from Liverpool, paddling to New Brighton, from thence to Southport, Blackpool, Fleetwood, Dutton Sands, Whitehaven, Kirkcudbright, Whitehorn, Port William and Glen Luce. From thence by the use of wheels—two pairs of which, composed of iron, mounted on iron axles, are kept, until required, stowed away in the canoe—Mr. Poole proceeded overland to Stranraer; from thence paddled along the coast and up the river to Glasgow; then by canal to Grangemouth, and by sea to Leith. For two nights and the greater part of two days Mr. Poole was out of sight of land, and the voyage was prosecuted during the prevalence of the equinoctial gales. Such of our readers as may contemplate canoe voyaging will do well to borrow a few hints from Mr. Poole’s equipment. A powerful bull’s-eye lamp was always carried, lashed fast to the stem at night, and a mariner’s compass was provided to steer by.

The wheels before referred to are extremely useful in many ways. They are like those of an ordinary perambulator, only of light wrought iron; they are 1ft. in diameter; the axle is also of wrought iron, ¾in. square, and long enough to carry the wheels clear of the canoe’s sides when mounted on them. To travel the canoe on dry land, the axles, each covered with a strong common pillow, are brought under the fore and after portions of the canoe, like the axles of a long narrow carriage. Rope lashings are now brought from the thwarts down to the axle bars, through which iron belaying pins pass; these keep the lashings from shifting, and keep all secure when the canoe is pushed or drawn onwards. The wheels are an immense assistance in beaching the canoe and getting her above high-water mark, when there is but one voyager. They also serve as ballast, and are useful for a number of camping and make-shift purposes.

The paddle shown in the accompanying illustration, kindly furnished by Mr. Poole, is of the exact form requisite to obtain perfect efficiency. It is composed of red cedar, and is exactly one-tenth, diminished scale.

CEDAR-BARK CANOE.

CEDAR-BARK CANOE.

cedar-bark canoe outline

Cedar-bark canoe.

SHOE CANOE.

SHOE CANOE.

The bark of the cedar (Thuja gigantea) is also much used by certain Indians of North-West America for canoe building; but the form usually made from it differs materially from that just described. The cedar-bark canoes are in shape much like some of our iron-clad rams, having projecting beaks, or prows, almost in a line with their keels. The Indian paddling one of these frail craft, sits, or rather squats, at one extreme end of the bottom, which has the effect of tilting the bow end up in the air, burying the stern end deeply in the water. The sharp tail-like point thus immersed seems to impart speed and capability of evolution to a remarkable degree; much practice is required before the exact poise and adjustment of weight are acquired. The Indians, who half live in their canoes, manage them with extraordinary dexterity, ascend and descend rapid rivers, and cross wide stretches of lake fearlessly. The form of these canoes, and of the bark sheet used for making them, is shown in the above illustration. The mode ofsinking the stern of a canoe is also had recourse to by the Rockingham Bay savages, who manage the so-called shoe canoe with much skill. The frame is of rough wicker-work, the covering of hide, and the two short shovel-shaped paddles made use of are shown in ourillustration. A canoe of this kind is very easily made, and is not difficult to manage.

FUEGIAN CANOE.

FUEGIAN CANOE.

Fuegian canoe.

We have just seen a small canoe sent from Terra del Fuego by the Governor of the Falkland Islands to the Royal Geographical Society. It is small, and was paddled by a girl eight years of age; it is chiefly interesting as showing how small pieces of bark may be utilised. It is about 8ft. long, 22in. wide, and 18in. or 20in. deep; the centrepiece of the bottom is nearly 3ft. long and 10in. wide, and to this are stitched two pieces, each about 4ft. long, tapering to a point, and curving upward to a high peak at either end. The sides are pieces of bark nearly 8ft. long and 18in. deep, straight on the upper edge, and cut to the curve of the bottom on the lower. The whole are stitched together with wood fibre, for which sometimes strips of whalebone are substituted, and caulked with the fibre of the wild celery. The boat is kept in shape by ribs of winter bark twigs, not thicker than the little finger, and packed closely side by side through the whole length; nine small sticks lashed athwart the gunwales keep them in their proper shape, and a sheet of bark midships serves tosustain a patch of clay on which to keep a small fire. A bundle of weapons of the chase accompany this canoe.

The spears are pointed with bone, and the barbed one used for fish and cetaceans is only shipped loosely into the shaft, to which it is attached by a lanyard, so as to remain fast during the struggles of the animal; while that used for birds is serrated, and is firmly fastened into the shaft.

AUSTRALIAN BARK CANOE.

AUSTRALIAN BARK CANOE.

Australian bark canoe.

The tea-tree bark is sometimes used in Australia for canoes. We have seen a length of it roughly tied up at the ends, and strengthened a little by poles along the gunwales, in use at Moreton Bay, as shown in ourillustrationEB. It is just possible to make the bark of the gum tree answer the purpose in the absence of better material. We have often searched in Africa for a tree with bark fit to make a canoe of, but never succeeded in finding one. Along the eastern coast of Australia, especially towards Torres Strait, we frequently fell in with canoes, some with outriggers and others double. They were generally long straight logs, of very little breadth or depth; and the advantage of this seemed to be that though the ripple would frequently wash into them, yet, if they pitched ever so little, their great length and shallowness would tilt out the greater portion of the water. The outriggers were mostly logs of wood sharpened at either end, and with pegs set up in them, so that theoutrigger beams might not dip into the water and impede the motion of the canoe.

MANGROVE FLOATS.

MANGROVE FLOATS.

When we reached the Victoria River we found that the natives were accustomed to support themselves in crossing on logs of the light mangrove wood, either singly or tied up in bundles. The part near the roots seemed to be the favourite, as the stumps of the roots formed pegs on which to hang their spears, skins, or other possessions. The wood of the milk bush, which is about half the specific gravity of cork, is much used by the natives of equatorial Africa for the above purpose.

Long canoes.

At Shupanga, on the Zambesi, we have seen dug-out canoes, 50ft. long and about 5ft. wide and deep; at all events, a tall man standing beside them did not stoop much when he rested his arms upon the gunwale. These were hollowed and roughly shaped in their native forests, and hauled along nearly thirty miles, on rollers, by the long rope-like stems of the vines and creepers common in tropical forests. They were made only for the Portuguese. The upper part of the bows expanded into a platform sufficiently large for the chief boatman to stand on, while the stern was cut into an imitation of a run and dead wood, with a couple of holes in the after part, to which a rudder was secured by lashings. Nothing can be better for hollowing a canoe than the adze, but our Kroomen used a broad spud or chisel on a staff about 6ft. long, driven in a manner which will be best understood bya glance at the statue of “Michael overthrowing Satan.” The Krooman’s method of baling is characteristic. Should the canoe fill, all hands jump overboard, seize the gunwales, and sally her fore and aft till the water flies out at either end and leaves her absolutely free. We have seen a canoeman, near Lake Ngami, walk to one end of his leaky craft and, thus depressing it, cause the water to flow towards him, when, making his broad foot do duty for a scoop, by a succession of vigorous kicks, he soon had his canoe as free as he desired.

MASSOOLAH BOATS.

MASSOOLAH BOATS.

Massoolah boats.

In many parts of the world, boats of almost any size are built without metal fastenings, and the Massoolah boat of Madras may be taken as a fair type of those which are sewn or laced together. It will be seen in our illustration, copied by permission from a model in the United Service Museum, that the bottom boards are flat and form an oval elongated and pointed at the ends, so that the side planks curve naturally to meet the stem and stern-post, and give the boat an easy sheer. They are sewn together with coir yarn (or cocoa-nut husk fibre), the stitches crossing over a wadding of coir or straw, which presses on the seam and prevents much leakage. They are very elastic and give to the shock as they take the ground in the surf, which runs sometimes nearly 16ft. high; they are from 30ft. to 35ft. long, 10ft. or 11ft. wide, and 7ft. or 8ft. in depth; they pull double banked,six oars on a side, made of long rough poles with oval pieces of board lashed on the ends; they are steered by an oar. Our illustration shows also the catamaran or log float, on which the natives will pass to and from the shore when no other craft, not even the Massoolah boat, would venture. It must be remembered, however, that the men are themselves nearly amphibious, and care as little for being washed off their rafts as so many frogs; while the letters or small parcels they carry are kept dry only by being worn in a kind of oil-cloth turban.

Norwegian boats.

dowel construction

We have seen very nice boats built in Norway with dowels instead of nails; they were clinker built, and the dowels were about ½in., or fully as thick as the planking. A number of rods, from 3ft. to 4ft. long, are planed up to the required size, and cut into lengths say, when two thicknesses of ½in. plank are to be clinched, to 1½in., or, when the two planks and a timber of perhaps 1in. are to be fastened, to 2½in., so that both ends may project a little beyond the wood they are to fasten; the dowel is then split at each end with a sharp chisel, taking care that the cut is made at right angles to the grain of the plank or rib, wedges are driven in, and the end, being slightly spread out by the use of the clinch hammer, is trimmed off not too close; the wedges should be all neatly cut with a fine saw, and by sawing them in breadths from a board, and then splitting them to the required size, labour may be greatly economised. The holes should be bored with a sharp centre-bit; and if the dowels fit tightly the wedges may be dispensed with, as the ends will spread sufficiently under the clinch hammer without breaking the grain.

tree vice

In building, if any difficulty should be found in drawing down the end of the plank to the stem, it will be advisable, after having fitted it carefully, to slack up the centre, let the end come to its place, fasten it, and then again bend the plank downwards. In some boats, especially in the navy, the planks do not run fore and aft, but twothin layers are crossed over each other diagonally, and clinched together; this leaves the outside perfectly smooth, and is perhaps the strongest known method of boat building. In planing up the edges of planks, &c., it is absolutely necessary to have a vice of some kind, and nothing is better than a tree vice, unless you have a blacksmith’s. Saw off a young tree from 6in. to 8in. thick, at about 3½ft. from the ground; saw the stump down the middle as low as you can; bind the lower part tightly with thongs of raw hide to prevent its splitting, then insert wedges to open the upper part, put your planks in, withdraw the wedges, and it will hold tight enough. It is as well to cut the upper part of the opening sufficiently wide to admit an inch plank, as short pieces can easily be put in to fill up should you wish to hold a thinner one.

Portable steel boat.

We have already mentioned the principle on which Mr. E. D. Young’s portable steel boat for the Livingstone Search Expedition was built; and although, as we then said, none but a skilled workman could hope to turn up the edges of a curved sheet of metal, we think the principle might be applied to a flat-bottomed boat by merely snipping the flanges at the turn of the bilge, and bending upward the sides at any convenient angle; by cutting these more and more diagonally from the centre, the boat might be tapered to each end—not, indeed, in a true curve, but in a succession of short straight lines, which would tolerably represent one.

steel boat section

The number of pieces composing the “Search”—the boat used in the expedition sent in quest of Dr. Livingstone—were as follows:Thirty-six side pieces of steel, each being a load for one man; the midship piece required 2; the stern piece, 3; the bow piece, 3; the mast, 2; the boom, 2; the sails, 2; chain cable, 6; anchor, 1; and the whole with provisions, luggage, &c., made up 180 loads.

Captain Faulkner, who, as a volunteer, accompanied Mr. Young on the Search Expedition, has determined on returning with a party of ardent hunters and explorers, and an engineer, to Lake Nyassa, and for this purpose an iron steamer has been built 50ft. long, 5½ft. deep, and 11½ft. broad. The little craft, appropriately named the “Faugh-a-ballagh,” is composed of 75 sections, put together with 8000 screws, so that she may be carried, as was the “Search,” past the rapids and cataracts of the Shire River.

American life raft.

The life raft 'Nonpareil'

The American life raft “Nonpareil,” which recently made the voyage across the Atlantic, may be taken as a successful application of the tubular system. It will be seen that she was constructed of three parallel inflatable tubes, covered with stout canvas, connected by breadths of the same, and with a rectangular frame laid over all to support the masts and rudder fittings; but the sketch is introduced here also to show the use of the droge, by which the little craft may in effect be anchored in the open sea, or at least may have her drift effectually checked, while the sea itself is broken before it reaches her. The droge in the present instance is of canvas, stretched on a large hoop with four lines, so attached to its circumference that when the strain comes on it it stands vertically in the water, and opposes the resistance of its entire surface. The oars or mast, and sails of a boat, will also answer this purpose; and we have heard of one instance in which the imperilled crew added also a number of the skins of freshly-killed seals, the oil working out of which calmed the water for a considerable distance. It is necessary to watch the length of the sea, so that the boat may be veered as far from the droge or raft as it will serve to protect heragainst the breaking waves. We have heard the captain of a vessel say that he would never incur the risk of wearing in a gale, but would rather sacrifice some spar or piece of lumber to bring the ship’s head to the wind. In doing this, the hawser would be carried round from the droge on the weather bow, under the bobstays and bowsprit rigging to the lee bow, and finally to the quarter; the droge would be thrown over, sufficient line paid out, and then held on to till the ship’s head came to the wind; the strain would be then changed for a moment to the lee bow, and then to the quarter, whence it would be cut away as the ship fell off upon the other tack. A spar held by a hawser and bridle, with a stout sail bent to it—the clews, or lower corners, being weighted with shot, lead, or iron, to make them heavy—forms an excellent droge for a small craft to lie to under.

Temporary repairs of vessels.

Although this subject may seem almost beyond the province of our work, it is by no means improbable that explorers may have to turn their attention to it, or that shipwrecked crews, or dwellers on a lonely coast, may have to repair or build small craft for themselves. We have seen first-class waggons built by missionaries, and others have built vessels; and the reader may remember with advantage the description given by Ulysses of his laying down side by side ten or a dozen pine trees more or less smoothed off as a foundation on which to build his upper works.

During the progress of the North Australian Expedition, we were ascending the Victoria River with our little schooner, the “Tom Tough.” There was little or no wind, and with the boat ahead towing and the lead going we were drifting up with a strong flood-tide, and the captain, elated by success, and anxious to make the most of his opportunity, kept going onward instead of prudently anchoring while the tide was still rising. In consequence of this, when the vessel touched the ground, there was no subsequent rise of water to float her off; indeed, it was remarked that the water began to fall while the tide was still running upward, and she was left at low water on the 27th of September, 1855, on a mud bank, with her bows uncomfortably propped up by a projecting rock.

On the 29th she floated; but the flood-tide was so nearly done, that we had no time to choose an anchorage, and the schooner grounding with the ebb, parted her chain cable and heeled over with the force of the tide till we could barely stand upon her decks.

Day after day the schooner drifted to and fro upon this sand-bank, sometimes moving a length or two, and sometimes only a few feet during a tide; the sand scoured out from beneath her bow and stern, leaving holes with 6ft. or more of water there, while hillocks accumulated under her in midship; and the sand seemed to travel so evenly with her, that the usual criterion—a hand lead, allowed to trail upon the ground—was of no service in enabling us to estimate the distance she had moved.

On the 10th of October the decks had rifted, the combings of the main hatch had started up, the starboard side between the masts was hogged up 18in., and at the turn of the bilge, where the floor timbers join the ribs, one of the planks had split for 15ft. or more, leaving spaces into which the flat hand might easily be passed.

We laid broad strips of blanket and sheepskin well tarred on the principal rents, and nailed thin planks over them (Fig. 8, p. 170), but in another day or two she was just as bad on the other side; her stern was peaked into the air, while her bows dipped about 7ft. into a hole, the water pouring out of the fresh rifted planking as the tide fell. The mainmast rose up through the partners, so that we were obliged to slack off the rigging, and it became a question whether the stanchion under the main hatch should be knocked away to prevent its bursting up the deck, or whether it should remain so that the strength of the deck might keep the bottom a little longer from breaking.

On the 25th we again floated, after nearly a month of straining to and fro upon the sand-banks, and drifted rather than navigated the vessel up to the camp we had established below Steep-head.

Captain Gourlay with his crew, and some of the expedition men, found suitable trees some little distance up the river at Timber Creek, which, however, after a rather exciting adventure with some wandering natives, acquired the name of Cut-Stick Creek instead. Two long heavy gum trees as straight as possible were selected,brought to the vessel, and laid as sister keelsons (Fig. 2) alongside the real one, which, as well as all the original framework, is marked Fig. 1 in our illustration. Three or four pair of heavy crooks, each representing the half of a floor timber (Fig. 3), were then laid on the inner skin, with the inner ends abutting on the sister keelson, and the outer reaching up above the junction of the ribs with the floor heads. Heavy riders (Fig. 4) were placed upon them crossing the three keelsons, and were secured by clamps (Fig. 5) made of the tires of our dray wheels, which we had no hope of being able to put to their proper use. Being now above the rise and fall of the tide we could not beach the vessel, and, therefore, the frame could only be bolted to the true sides above the water line (Fig. 6), but it was pressed down upon the bottom not only by its own weight but by stanchions (Fig. 7) between it and the deck beams.

section of Captain Gourlay’s boat

The schooner being detained for repairs, it was decided to undertake an expedition to the Albert River in the long boat; and thus, by reaching Mr. Gregory in time to assure him that a vessel was coming, prevent his starting for the colony with insufficient supplies; Mr. George Phibbs, the overseer of the expedition, and Mr. Graham, the mate of the “Messenger,” volunteering for the trip, we commenced our preparations. The boat was cleaned, repainted, the leaks stopped; and two inflatable tubes were made, each of them of one piece of canvas, 14ft. long, lined with waterproofed calico, folded so that the two sides should come together, a rope along the seam, witheyes turned in at the corners, to make it fast by, and, with one of the screw valves from our worn-out boat (p. 48), let into the after end, to receive the nozzle of the bellows. These we at first intended to stretch beneath the thwarts, inside, but eventually laced them outside each gunwale, where they were less in the way, and, when kept in a state of semi-inflation, projected sufficiently to prevent a great deal of the ripple of the sea washing into the boat, and this advantage we made the most of when we were fairly at sea, by fitting light bamboo stanchions forward, and securing the tubes to them, so as to make a kind of raised wash streak round the bows.

BOAT FITTED WITH INFLATED TUBES.

BOAT FITTED WITH INFLATED TUBES.

We left the vessel on the 23rd of October off New Year’s Island, and at first had fine weather with good working breezes, but in a few days strong adverse gales came on. On the 2nd of November we worked all day clawing off a lee shore, the sea raging furiously over the shallow bottom; but our boat, though only 18ft. long and 6ft. beam, behaved well, and we weathered the rocks by less than a quarter of a mile after sunset. Darkness came on at once, and, as we dare not run in for shelter, we made the boat snug and hove to under foresail and mainsail all night. We ran through between the Crocodile islands, the crest of the short sea behind us foaming around our quarters, while ourbowsprit was actually dipping in the next, and began to fear that we should have to pass the islands without finding a shelter, when Phibbs volunteered to swim ashore. We let go our carronade as an anchor, and ran in to the full length of the line; he sprang overboard, and with some difficulty reached the shore, where he soon found a quiet little nook to which he beckoned us to steer.

We will only add that on the 17th of November, after having sailed nearly 750 miles, we reached the mouth of the Albert River, in the Gulf of Carpentaria.

Sails and their substitutes.

We cannot dismiss the subject of boats without appending a few remarks on such simple forms of sails as are likely to be of service in such small craft as a traveller might possess, and we shall take, as the maximum, one of those swift and handy fore and aft schooners in which the Americans push their trade in all quarters of the world. Each lower mast and topmast would most likely be in one piece, combining great strength with neatness, and obviating the necessity for much staying. The bowsprit is also of a single piece; the sails are a jib from the foremast head to the bowsprit end, a forestaysail set to the stem head, a foresail and mainsail on gaffs made to lower when the sail is reefed or taken in; the foot of the mainsail is always extended by a boom, and that of the foresail sometimes; if they are laced to the boom, as in the yacht “America,” which had booms even to the foot of her jibs, the sails sit flatter and better on a wind, but if they are not, there is the advantage of being able to reduce the sails without the trouble of reefing, by tricing up the foot; gaff topsails may be either jib-headed, like the fore, or on a gaff, like the main, in Fig. 1. The mainstay causes some little difficulty; if it goes from mast to mast, the tack and sheet of the fore gaff topsail must be passed over to leeward of it when the vessel goes about; if it leads down to the deck there must be two parts, one on each side the foresail, and the lee one ought to be slacked, and the weather one set up on each tack. If a foreyard, or rather a cross-jack, is carried, a flying squaresail, half the width of the yard, may be sent up on the weather side, and a topsail may be set in the same manner, the fore and aft sails supplying canvas enough on the lee side.

The cutter (No. 2) has a jib, a foresail on the stay, and a mainsail; the jib topsail runs with grummets on the topmast stay, but the halyards only reach the lowermast head; a lug-headed gaff topsail gives opportunity for a greater spread of canvas.

The boat (No. 3) is rigged with foresail and spritsail. An eye in the peak of the latter receives the upper point of the sprit, while the lower end is set into the eye of a snorter, a bight of rope passing round the mast and tightened chiefly by the strain of the sail upon it. Sometimes it is pushed up by hand while the sail shakes, so as to set it properly up, but it is better to have a small tackle as seen on page 171 to set it up with.


Back to IndexNext