CHAPTER IXTHE ART OF SEAMANSHIP
Seamanshipis the art of handling ships and is not to be confused with navigation, which is the mathematical science of determining ships’ positions and their courses. Only sailors who have had experience at sea can be adept at seamanship, but it is quite possible for a person who has never seen a ship to learn all the intricacies of navigation. Neither is a knowledge of one requisite to the mastery of the other.
In this chapter I shall devote myself to a few of the more obvious phases of seamanship, leaving navigation for the next chapter, where I shall also touch upon piloting, a related science.
Seamanship, being an art, can be acquired only by practice, and seamen being formerly an all-but-unlettered class, jealous of their calling, wrote no textbooks of their art until Captain John Smith, the famous old adventurer in Virginia, and Sir Henry Mainwayring, of the Elizabethan navy, wrote their treatises on the subject in the early part of the 17th Century. It is difficult, therefore, to say with any degree of certainty just what were the general practices of seamen of earlier times.
Because of this lack of definite information concerning ancient seamanship, I shall discuss the art only in its more modern aspects. It is interesting to mention again, however, what I have mentioned elsewhere, that the ancients were coasters rather than deep-sea sailors, who, until Columbus’stime, were unaccustomed to making long voyages out of sight of land save here and there, as, for instance, between Aden, at the mouth of the Red Sea, and India. On such a route they came and went with the monsoons, which blow alternately at different seasons of the year from and to the Indian coast. But, aside from such exceptions, the ancients, able seamen though they may sometimes have been, seldom sailed far out of sight of land. In ancient times a sailor, it would seem, was anxious to stay near shore, for then he could readily follow his route, indirect though that might be. To-day the sailor is more at ease if he is well away from land, for the perils of the deep sea are trifling by comparison with the perils of the coast. Storms at sea can usually be ridden out without danger. Storms that blow as ships approach the shore are cause for apprehension. The ancient sailor kept his eyes open for heavy weather and if he saw it coming he made straightway for the beach, and, if possible, pulled his little ship high and dry until it had passed. The sailor of to-day, too, keeps his eyes open for storms, but if they come he would rather be safely far out at sea than near the coast, unless he could ride it out in some safe harbour. These differences between the ancient and the modern seaman are due to the increase in the size and seaworthiness of ships, and to the universal use nowadays of the compass, an instrument unknown to the ancients. Nowadays, too, steam has changed things, for ships that carry, in their hulls, powerful engines capable of successfully combating the wind need fear that danger of the sea far less.
A PAGE OF KNOTS IN COMMON USE
A PAGE OF KNOTS IN COMMON USE
A PAGE OF KNOTS IN COMMON USE
Many books on seamanship have been written since Captain John Smith and Sir Henry Mainwayring published theirs. “Modern Seamanship,” by Admiral Austin M. Knight, U. S. N., is a deservedly popular work, even though it is largely given over to the art in its connection with ships of war. The fact, too, that it contains 250,000 or morewords shows how great the subject is, and how superficial my brief discussion must be.
The first duty of a sailor is to be familiar with his ship and the apparatus he is called upon to use. In the days of the clippers every sailor had to know how to perform almost every task. Many ships of that time carried cooks, sailmakers, and carpenters, it is true, and the duties of these men were for them alone. But every sailor was likely to be called upon to reef or steer, to handle an oar in a small boat, to splice lines and tie knots of all sorts, to re-rig spars and masts, man the pumps, paint, scrub, scrape woodwork, and perform a thousand other tasks with precision and rapidity. He had sometimes to “lay aloft” and in the blackness of bitter wintry nights to find his way along the foot-rope of a swaying spar far above the deck in order to reef sleet-covered sails that whipped repeatedly from his stiffening fingers. He had to know each of a thousand lines by name so as to belay or release the right one at a moment’s notice, even in the blackness of a night of storm. He had sometimes to make his way far out along the bowsprit to the jib boom or the flying jib boom in order to release some tangle of wind-whipped line, and to hold on for dear life as mountainous seas dashed their angry foam-flecked crests viciously at him as he maintained his precarious hold. He had to know what strain the whistling rigging could hold up under, and how to repair the damage wrought by storm. He had to beach his ship in far-distant ports and between the tides to scrape her bottom and calk her leaking seams. He had to know his ship from bow to stern, from truck to keel, and must ever have been ready to turn his hand to whatever task might momentarily have required him. It is no wonder that it took years to make a sailor. The wonder is that men were found to risk their lives in storm, to eat the disgusting food that such ships too often fed theircrews, to toil for months—for years—for trifling pay, beaten by their officers for minor as well as major breaches of discipline, yet willing, once a voyage was done, to spend their little savings in one wild fling and ship once more.
But most of that is gone. Sailors on the steamships that circle the earth to-day are mechanics and workmen. The man at the wheel can be taught his job passably well in a few hours. The men on deck are often not sailors at all, in the old meaning of the word, but merely labourers, who work at their appointed tasks under the direction of the officers, many of whom would be all but helpless if called upon to handle a square-rigged ship under sail.
BEARINGS AND POINTS OF SAILING
BEARINGS AND POINTS OF SAILING
BEARINGS AND POINTS OF SAILING
But that is no reflection on the sailors of to-day. Their jobs are different and the wide experience and knowledge of the sailor of earlier days would benefit them little. Of what use is the ability to reef a sail to a sailor on a ship where there is nothing made of canvas save tarpaulins and awnings? Why know the intricacies of a sailing ship’s complicated rigging when one comes in contact only with ships on whichthe rigging is limited to steel masts and cargo booms? Why should one develop an eye for changes in the weather when a barometer can foretell it for one? Some of the old ways still leave their mark, but mechanics are of more service on the ships of to-day than sailors.
Here and there one still finds sailors comparable or even superior to the rough-and-ready men of years gone by. The fishermen of Gloucester are such men, but an able captain could more easily take a steamer across the ocean with a crew of mechanics who never before saw the sea, than with a crew of Gloucester fishermen who had had no experience with machinery. All of this was proved during the World War when Britain largely manned her M L’s, those tiny motor cruisers built to hunt for submarines, with men who first went to sea in those unsteady ships of war. And America, in 1917 and 1918, sent across the Atlantic scores of craft only slightly larger—the 110-footers—most of them officered and manned with college boys and others who had had no experience at sea. And of all the scores that went over and came back in the service of the United States Navy, not one was lost because of storm or shipwreck.
But I do not mean to imply by this that the need for seamanship is gone. Far from it. Seamanship has changed, not disappeared, and more knowledge, though of a different sort, is needed to operate a steamer than to operate a sailing ship.
A sailor still has need to know the many knots that earlier seamen used so constantly. The square knot and the bowline are, perhaps, the most important of the lot, but the fishermen’s bend and the timber hitch, the catspaw and the sheepshank, the single and double Blackwall hitches, the figure of eight, the bowline on a bight, the rolling hitch, and a dozen others are useful still. But nowadays wire ropeis commoner than formerly, so thimble eyes and wire rope clips, turnbuckles, shackles, and other apparatus used with wire rope are useful things with which to be familiar. And still it is advisable to know how to splice both hemp and wire rope. But the Turk’s head, the double Matthew Walker, and others of that type are less in evidence than formerly.
More rope is used to-day in the movement of cargo than in rigging, but sailors have little to do with the cargoes of ships. Crews are used nowadays merely to handle the ships, while stevedores at every port load and unload, stow and break out the freight that fills the great holds.
HOW A FORE-AND-AFT SAIL IS REEFEDThe sail is partly lowered, the reef points are tied beneath the sail and above the boom, and the sail is then raised. A part of the sail, however, has been held by the reef points and is not spread to the wind.
HOW A FORE-AND-AFT SAIL IS REEFEDThe sail is partly lowered, the reef points are tied beneath the sail and above the boom, and the sail is then raised. A part of the sail, however, has been held by the reef points and is not spread to the wind.
HOW A FORE-AND-AFT SAIL IS REEFED
The sail is partly lowered, the reef points are tied beneath the sail and above the boom, and the sail is then raised. A part of the sail, however, has been held by the reef points and is not spread to the wind.
The sail is partly lowered, the reef points are tied beneath the sail and above the boom, and the sail is then raised. A part of the sail, however, has been held by the reef points and is not spread to the wind.
Few really nautical things, in the old sense, are asked of modern sailors. They must be able to steer, although many ships have quartermasters whose duties are only those that have to do with the bridge. They must be able to handle the “ground tackle,” that is, the anchors and cables, but that is simple, for one has only to throw off a few lashings and pull a lever in order that the anchor may plunge to the bottom as the cable roars through the hawse pipe. To weigh anchor a steam valve is opened, or an electric switch is turned, and a windlass brings in link after link until the anchor once more is snugly in place, while the hawse pipe drips water and the anchor flukes drip mud. The sailor then has only to wash the mud from the flukes with a hose, clamp down a “slip stopper” to make the cable secure, and the task is done.
Sailors are supposed to know how to lower and handle the lifeboats, and many of them do, but alas, the smartness ofsmall boats under oars is almost gone. Such a thing takes practice and coördination, and few indeed are the merchant ships to-day that can muster a boat crew worthy of the name. And even that is less necessary than it was, for motor boats do the work in ports, and lifeboats need only float for a time before they are picked up by some ship that has caught the radio call for help. And to float they need no seamen, for nowadays they are both noncapsizable and practically unsinkable.
If a ship goes aground where there is no help, the old method of using small boats to carry an anchor out to seaward and of hauling the ship off by means of a cable made fast to the anchor, is seldom enough in these days of large ships to accomplish the task. The unfortunate ship is either beyond help, save for her crew, or needs a sea-going tug or two and a crew of professional salvagers.
And so I could go on through many more phases of seamanship, proving that the knowledge required of deck hands is less than formerly. But the knowledge required of officers is another matter.
A FREIGHTER TIED UP TO A PIERThe lines shown running from the ship to the pier are often used in slightly different arrangements, but always it is advisable to run lines diagonally in order that slight movements of the ship away from the pier may be checked gradually and without breaking the lines. Furthermore, this arrangement prevents movement ahead or astern.
A FREIGHTER TIED UP TO A PIERThe lines shown running from the ship to the pier are often used in slightly different arrangements, but always it is advisable to run lines diagonally in order that slight movements of the ship away from the pier may be checked gradually and without breaking the lines. Furthermore, this arrangement prevents movement ahead or astern.
A FREIGHTER TIED UP TO A PIER
The lines shown running from the ship to the pier are often used in slightly different arrangements, but always it is advisable to run lines diagonally in order that slight movements of the ship away from the pier may be checked gradually and without breaking the lines. Furthermore, this arrangement prevents movement ahead or astern.
The lines shown running from the ship to the pier are often used in slightly different arrangements, but always it is advisable to run lines diagonally in order that slight movements of the ship away from the pier may be checked gradually and without breaking the lines. Furthermore, this arrangement prevents movement ahead or astern.
Officers must know an infinite number of things that a deck hand need not trouble himself to learn. They must know how to manœuvre to avoid collision, an important matter in these days of many ships and busy sea lanes. They must know the rules of the road, for every ship one passes close to must be signalled in order that her officers may know exactly what the approaching ship is planning to do. An officer must know a hundred different arrangements of lights at night, which may mark ships under sail, under power, at anchor, with barges in tow, ships not under command, buoys, lighthouses, cable vessels, pilot ships, fishermen with their gear drifting about them, open boats, and a variety of other things. He should be able to signal in the International Code with a flashlight. He must knowhow to handle his ship in heavy weather in order that her hull shall not be unduly strained, her upper works unduly battered, or her cargo shifted. He should be adept at handling his ship around a dock, and must be equally adept at making her fast alongside pier or quay. He must know what to do in case of collision, in case of fire, in case any of a score of contingencies arise. He must be familiar with first aid and the use of medicines, for few ships carry doctors. He must be seaman enough for all his crew, for on him rests a great responsibility—the responsibility for a great and costly machine, for valuable cargoes, for the health, and even for the lives, of many men. Should a man ashore be employed to manage a factory as costly as a ten-thousand-ton ship, with an output as valuable as the cargoes of such a ship, he would be paid many times what a captain is paid, and, should fire destroy his factory or tornado crush it, hewould probably be given the insurance money in order to build another. Not so the captain. His responsibility is as great or greater; his experience and ability must be at least as great; his pay is little; and should a tempest tear his ship apart beneath him he is likely to be doomed for ever after to stay ashore, a broken captain, and probably a broken-hearted man.
The captain of a sailing ship must be familiar with many things that the captain of a steamer need not know. As in practically every other line of modern endeavour, the handling of ships has developed specialists. The chief engineer is responsible for the motive power of ships to-day. And he need know nothing more than how to operate the machinery. The captain need only know, so far as power is concerned, whether he wants the propeller to drive him ahead or astern and how fast, and how to use his propellers in tight places. The argument as to who is more important to the ship, despite its futility, still sometimes waxes strong. Both are essential, for the engineer harnesses the steam that drives the ship. He must be subject to the commands of the captain, who formerly had need himself to know how to harness power by means of sails, which were his engines.
A FEW TYPES OF SAILING SHIPS COMMON IN EUROPEAN AND AMERICAN WATERS
A FEW TYPES OF SAILING SHIPS COMMON IN EUROPEAN AND AMERICAN WATERS
A FEW TYPES OF SAILING SHIPS COMMON IN EUROPEAN AND AMERICAN WATERS
To a traveller unfamiliar with ships the captain of a steamer seems generally to have an easy job. The mates stand the watches on the bridge, the engineers below, and often a captain is actively engaged in handling his ship only in leaving and arriving at ports. For the remainder of his time at sea he reads or paces the deck, takes his meals regularly, and does little else save make observations with his sextant in the morning, at noon, and in the afternoon, spending at this task hardly more than a few minutes each day. These are his activities during fine weather, which, fortunately, is most of the time. If fog and storm intervene, the story is a different one, and every captain finds it necessary,at times, to spend whole days and nights on the bridge, his food brought to him, his every sense alert to take advantage of each opportunity the elements present to ease his ship, to keep her on her course, to watch, if land is near, lest breakers and black rocks should be his port of call.
Nor should a captain content himself with knowing how to handle his ship in heavy weather. A knowledge of the causes and actions of storms is highly important. From a barometer much can be deduced about changes in the weather, and if one knows what to expect he is likely better to be able to meet it.
I said that a man could be taught to steer passably well in a few hours, and that is trueat sea. But the steering of a ship amounts to more than holding her to her course across wide stretches of smooth water. Many a ship has been saved from collision because her officers knew accurately her “turning circle,” her “pivoting point,” her “kick,” and other fine points of her steering. It could readily happen if two ships were approaching each other “bow on” that they could safely pass if each put her rudder half over to the right, and that their sterns or even their sides would collide if each put her rudder full over to the right. Such a thing is due to the fact that ships steer with their sterns. To change a ship’s direction to the right the rudder moves her stern to the left. It is as if an automobile were being backed. To turn a corner its hind wheels would not change their course until the front wheels had been swung sharply to one side.
A FEW TYPES OF SAILING BOATS TO BE FOUND AROUND THE WORLD
A FEW TYPES OF SAILING BOATS TO BE FOUND AROUND THE WORLD
A FEW TYPES OF SAILING BOATS TO BE FOUND AROUND THE WORLD
Then, too, ships steer differently in shallow water than in deep. Sometimes a ship which, at sea, is responsive to the lightest shift of her rudder will behave like mad in a shallow channel. This is due to the shape of the hull and the paths followed by the displaced water as it flows past her sides and beneath her keel. In shallow water, the water that normally would flow beneath her cannot all do so, and the result islikely to be a difference in the way she answers her helm. For other reasons a ship must not be driven too rapidly through a shallow channel. I once saw a ship drawing seventeen feet ground sharply in the eighteen-foot channel leading into St. George, Bermuda, for at the speed she was making she was pushing a part of the water ahead of her and lowering the water level of the channel by more than a foot. Ships running on parallel courses at a considerable speed should not permit their courses to be too close, else a similar thing might happen, bringing them forcibly together. This happened to theOlympicand a British cruiser years ago in the English Channel.
These are only a few of the many things that might arise in handling ships. Other possible contingencies are almost infinite in number. Furthermore, it is the experience of sailors that no two ships, no matter how nearly they may be alike, are identical in their actions. This belief (and it has a very great deal of truth behind it) has probably had more than a little to do with the habit, that seems natural to seamen, of personifying ships. In addition to the fact that all ships have characteristic ways of their own, most ships react differently under different conditions of loading and when carrying their varying cargoes. A tramp loaded with iron ore will sometimes be uncomfortable in heavy weather even though she may be thoroughly comfortable in a similar storm when loaded with coal. The reason for this lies in the fact that iron ore, being heavy, loads a ship to her Plimsoll mark without filling her holds. Thus the heavy cargo gives the ship a low “centre of gravity” and she may roll heavily and constantly. Coal, on the other hand, is lighter than ore, and a cargo fills her hold to overflowing, raising her centre of gravity and reducing the roll. The captain, however, must know just how his ship handles whether she is carrying ore, or coal, or any of a score of different cargoes.
Let us take an imaginary voyage on a ship in order to see what seamanship is required of her officers and crew. Suppose we board a ship of 3,500 tons, loaded with coal, at Philadelphia, bound for Havana. The voyage is short, but a variety of conditions of weather and of climate will be contended with and the voyage will be a test of seamanship. Remember, however, that such a ship is far different from ships intended for passengers. Heavy weather will dash waves across her decks when the decks of passenger ships will remain entirely dry. This ship was not built for passengers and her decks are low and are unprotected from the sea.
The ship casts off from the pier above the city with the first mate in command, the captain being still ashore attending to the requirements laid down by law and seeing his owners. The tide being slack, and the currents temporarily stilled, a tug is not called. The steamer is lying with her stern to the river and with her starboard or right side next the pier. Six lines make her fast: a line leading from the starboard bow well up the dock—the bow line; a line leading from the same pair of “bits” directly to the dock—the bow breast line; a third line from about the same point at the bow, along the pier for a distance toward the stern—the bow spring. From “bits” on the starboard quarter—that is, at the right side, a little forward of the stern—three other lines are led similarly to the pier, and are named stern spring, stern breast, and stern lines, the last reaching as far astern as the bow line reaches ahead.
The lines, except for the bow spring, are cast off, and with this one line still fast from the bow aft along the pier, the mate orders the helmsman to throw his helm hard over to port. This brings the rudder to starboard, that is, toward the dock, and when the mate signals the engine room for “slow speed ahead” the stream of water from the propelleragainst the rudder swings the stern slowly away from the pier for the line from the bow to the pier does not permit the ship to forge ahead. When the stern is well clear of the pier the mate signals “stop” to the engine room, orders the last line thrown off, the helm amidships, that is, neither to the right nor to the left, signals “slow speed astern,” and the ship slowly backs out of the slip. As she slides clear of the end of the pier the helm is put over to port once more, the stern swings gradually upstream, and as the bow swings around parallel to the shore the helm is again brought amidships, the engines are stopped and then signalled for “slow speed ahead” once more, and the voyage is begun.
As the ship loafs slowly down past the foot of Market Street a tug puffs up alongside, our captain steps from its bow to the rail of our ship, for we are deeply laden, and the lowest sections of our decks are hardly more than four feet above water, waves to the skipper of the tug, mounts to the bridge, speaks to the mate, orders “half speed ahead,” and we steam sedately through the ferry lanes and gradually leave the busy section of the river behind.
Usually a pilot is aboard, but sometimes port rules permit captains to take their own ships out, and with an American ship loaded with coal out of Philadelphia that is the case, saving the owners the expense of the pilot. So our captain, sitting on a high office stool, which looks very much out of place on the bridge, takes us down the river, turning here and there as he makes out the buoys, which are red and conical to port and black and cylindrical to starboard as we leave the port.
As the deeper water of Delaware Bay is reached the speed is increased to its maximum, which is only about nine knots an hour, and the captain, after hours on the bridge, is relieved by the first mate and goes below.
The ship, having been loaded with coal, at a “coal pocket,”where tons and tons have roared down into her holds through great chutes, is covered with a thick layer of coal dust, and looks like an unfit habitation for men. The deck hands are set to work cleaning the deck amidships, but one wonders if the ship will ever be clean again. And then the first of the swells from the Atlantic raises her bow gently. Another follows and another, and then one climbs straight over the blunt bow, cascades over the forecastle, and one begins to realize that the tumbling waves are already at work cleaning the dust from the grimy ship.
Dusk has fallen, and the Fourteen-Foot-Bank Lighthouse and the one on Cape May gleam mysteriously, and as darkness hides the restless sea the lights still gleam. A steamer passes us, her running lights and range lights clear green and red and white, and then we are alone, bound outward to the heaving bosom of the great Atlantic. The light on Cape May fades from sight, and only the fading ray from the Fourteen-Foot-Bank Lighthouse is left to bind us to the busy world of North America—and finally that, too, is gone, and we are alone upon the dark and pathless sea beneath a clouded sky, dependent for our directions upon a swaying compass card lighted by a dim lamp mounted in the side of the brass binnacle.
As we passed the Fourteen-Foot-Bank Lighthouse, and were able accurately to check our position on the chart, the log, a sort of nautical odometer that tells with a fair degree of accuracy the mileage travelled, was set in motion by heaving the rotator over the stern at the end of the log line. This rotator, set in motion by the passage of the water, twists the line to which it is attached, and the line, in turn, rotates the mechanism that records the mileage. It is very similar to the speedometer on the dash of the automobile except that it shows only the mileage.
If we visit the bridge we may learn from the mate on dutythat the barometer has fallen a little, and that we probably will have a touch of heavy weather by morning.
We turn in in a comfortable stateroom situated in the deck house just aft the bridge, and, leaving the port open, for ventilation, go almost instantly to sleep, forgetful of the man at the wheel, who stands with his eyes fixed on the slightly moving compass card, turning the wheel first this way and then that, absolutely confident in the unerring compass.
Outside, pacing back and forth on the bridge, is a mate, who went on watch at eight and will be relieved at twelve. As he leans over the port rail for a moment, the red rays from the port running light palely illuminate his tanned face. He is confident of his ship, confident of the engineers and firemen below, confident of the man at the wheel, and is calm and contented.
THE RIGGING OF A THREE-MASTED SHIP(1) Foremast; (2) Mainmast; (3) Mizzenmast; (4) Fore, main, and mizzen-topmasts; (5) Fore, main, and mizzen topgallant masts; (6) Fore, main, and mizzen royal and skysail masts; (7) Fore yard; (8) Main yard; (9) Crossjack yard; (10) Fore, main, and mizzen lower topsail yards; (11) Fore, main, and mizzen upper topsail yards; (12) Fore, main, and mizzen lower topgallant yards; (13) Fore, main, and mizzen upper topgallant yards; (14) Fore, main, and mizzen royal yards; (15) Fore, main, and mizzen skysail yards; (16) Spanker gaff; (17) Fore and main trysail gaffs; (18) Lower shrouds; (19) Topmast shrouds; (20) Back stays; (21) Fore skysail stay; (22) Fore royal stay; (23) Flying jib stay; (24) Fore topgallant stay; (25) Jib stay; (26) Fore topmast stays; (27) Fore stays; (28) Main skysail stay; (29) Main topgallant stay; (30) Main topmast stay; (31) Mizzen skysail stay; (32) Fore and main lifts; (33) Topsail lifts; (34) Topgallant lifts; (35) Spanker boom; (36) Bowsprit; (37) Jib boom; (38) Flying jib-boom; (39) Martingale or dolphin striker; (40) Braces (named from the yard to which they are attached); (41) Bobstays; (42) Martingale stays.
THE RIGGING OF A THREE-MASTED SHIP(1) Foremast; (2) Mainmast; (3) Mizzenmast; (4) Fore, main, and mizzen-topmasts; (5) Fore, main, and mizzen topgallant masts; (6) Fore, main, and mizzen royal and skysail masts; (7) Fore yard; (8) Main yard; (9) Crossjack yard; (10) Fore, main, and mizzen lower topsail yards; (11) Fore, main, and mizzen upper topsail yards; (12) Fore, main, and mizzen lower topgallant yards; (13) Fore, main, and mizzen upper topgallant yards; (14) Fore, main, and mizzen royal yards; (15) Fore, main, and mizzen skysail yards; (16) Spanker gaff; (17) Fore and main trysail gaffs; (18) Lower shrouds; (19) Topmast shrouds; (20) Back stays; (21) Fore skysail stay; (22) Fore royal stay; (23) Flying jib stay; (24) Fore topgallant stay; (25) Jib stay; (26) Fore topmast stays; (27) Fore stays; (28) Main skysail stay; (29) Main topgallant stay; (30) Main topmast stay; (31) Mizzen skysail stay; (32) Fore and main lifts; (33) Topsail lifts; (34) Topgallant lifts; (35) Spanker boom; (36) Bowsprit; (37) Jib boom; (38) Flying jib-boom; (39) Martingale or dolphin striker; (40) Braces (named from the yard to which they are attached); (41) Bobstays; (42) Martingale stays.
THE RIGGING OF A THREE-MASTED SHIP
(1) Foremast; (2) Mainmast; (3) Mizzenmast; (4) Fore, main, and mizzen-topmasts; (5) Fore, main, and mizzen topgallant masts; (6) Fore, main, and mizzen royal and skysail masts; (7) Fore yard; (8) Main yard; (9) Crossjack yard; (10) Fore, main, and mizzen lower topsail yards; (11) Fore, main, and mizzen upper topsail yards; (12) Fore, main, and mizzen lower topgallant yards; (13) Fore, main, and mizzen upper topgallant yards; (14) Fore, main, and mizzen royal yards; (15) Fore, main, and mizzen skysail yards; (16) Spanker gaff; (17) Fore and main trysail gaffs; (18) Lower shrouds; (19) Topmast shrouds; (20) Back stays; (21) Fore skysail stay; (22) Fore royal stay; (23) Flying jib stay; (24) Fore topgallant stay; (25) Jib stay; (26) Fore topmast stays; (27) Fore stays; (28) Main skysail stay; (29) Main topgallant stay; (30) Main topmast stay; (31) Mizzen skysail stay; (32) Fore and main lifts; (33) Topsail lifts; (34) Topgallant lifts; (35) Spanker boom; (36) Bowsprit; (37) Jib boom; (38) Flying jib-boom; (39) Martingale or dolphin striker; (40) Braces (named from the yard to which they are attached); (41) Bobstays; (42) Martingale stays.
(1) Foremast; (2) Mainmast; (3) Mizzenmast; (4) Fore, main, and mizzen-topmasts; (5) Fore, main, and mizzen topgallant masts; (6) Fore, main, and mizzen royal and skysail masts; (7) Fore yard; (8) Main yard; (9) Crossjack yard; (10) Fore, main, and mizzen lower topsail yards; (11) Fore, main, and mizzen upper topsail yards; (12) Fore, main, and mizzen lower topgallant yards; (13) Fore, main, and mizzen upper topgallant yards; (14) Fore, main, and mizzen royal yards; (15) Fore, main, and mizzen skysail yards; (16) Spanker gaff; (17) Fore and main trysail gaffs; (18) Lower shrouds; (19) Topmast shrouds; (20) Back stays; (21) Fore skysail stay; (22) Fore royal stay; (23) Flying jib stay; (24) Fore topgallant stay; (25) Jib stay; (26) Fore topmast stays; (27) Fore stays; (28) Main skysail stay; (29) Main topgallant stay; (30) Main topmast stay; (31) Mizzen skysail stay; (32) Fore and main lifts; (33) Topsail lifts; (34) Topgallant lifts; (35) Spanker boom; (36) Bowsprit; (37) Jib boom; (38) Flying jib-boom; (39) Martingale or dolphin striker; (40) Braces (named from the yard to which they are attached); (41) Bobstays; (42) Martingale stays.
During the next seven or eight hours the storm gradually approaches. Higher and higher roll the waves, deeper and deeper rolls the ship, and suddenly we are aroused by the crash of a sea that mounts the side, dashes across the deck, and pours in a great stream through our open port. Shocked instantly into consciousness we leap from our bunks, into the inch or two of water that is swishing about the stateroom, and close the port, just too late to save ourselves from a wetting. But our interest is aroused by the dull gray sea, the rising and falling waves, the driving spray, and, quickly dressing, we hurry out on deck and up to the bridge, fearful, perhaps, that trouble is at hand. But once on the bridge everyone is calm—no one is worried. Another mate, now on duty, sings out a cheery “Good morning”; the man at the wheel looks up, nods, and drops his eyes once more to the compass card. We tell of our wetting and are laughed at, and the ships goes rolling and pitching on, the waves piling one after another over her weather rail, filling the low deck forward of the bridge, gurgling around the hatches,and finally pouring back into the sea in cascades through the scuppers. Now and again the combination of the ship’s roll and an advancing wave forces a great foamy cloud high over the bow, where the spray is caught by the wind which whistles aft with it, stinging our faces and leaving a pleasant taste of salt upon our lips.
The sky is still overcast, and as eight o’clock comes the clouds grow heavier, if anything, making it impossible for the officers to take the elevation of the sun with their sextants in order to work out our position. But the record of the log is taken, a line is drawn from our “point of departure” off Cape May, drawn at the angle from that point that our helmsmen have been steering, and the distance we have run—92 miles, since the evening before—is marked on that line, giving us our position according to dead reckoning.
Our course has been south, and so, while in the position we have there may be an error of two or three miles marked, we know that we are not far wrong, and that we are safely out at sea, about fifty miles due east of Cape Charles, which is at the entrance to Chesapeake Bay.
The captain now has a decision to make: The action of the barometer suggests that heavy weather will continue for a while—which is not surprising, for we are approaching Cape Hatteras, where storms are perennial. If the sky remains overcast we will not be able to get a glimpse of the sun, and consequently will not be able to work out our position, and dead reckoning, while accurate enough for short runs, is liable to grow progressively inaccurate if the run is long. In addition to all this we must either change our course to the east in order to cross the Gulf Stream, or a little to the west in order to stay between it and the coast, for it is wasted effort to go against a strong current when it isn’t necessary. Even if we cross the Gulf Stream to its outer edge we may have to go for several days without a sight of the sun. If we stay inside it we probably won’t see the sun any sooner, but we can pass close to Diamond Shoal Lightship, which lies off Cape Hatteras, and so check up our position.
The captain decides for this latter course, after studying the barometer again and deciding that the chance for more violent weather is slight, and with a mark on the chart forour position at 8A.M.the course is changed slightly to the west of south.
All day we roll and pitch, not badly, but very steadily, but from the calmness of everyone about us we, too, view the gale as of no great importance. Nor is it, for, while the wind is kicking up a rough sea, the waves are far from mountainous, and in our deeply laden condition almost anything more than a ripple would wash over our low forward deck.
We have our meals and return after each one to the bridge—always the most interesting place on a ship, particularly in heavy weather—but by the time darkness has returned we have seen nothing on the gray and “smoky” sea save, in the distance, a steamer, that has been lost to view again, and a schooner under double-reefed sails that passed us bound north during the afternoon.
We are ready to turn in early, for all day on the bridge with the spray-laden wind blowing strongly in our faces has been tiring. We leave word to be called when Diamond Shoal Lightship is sighted, and roll into our bunks.
At four-thirty in the morning we are called, and bundling ourselves into our clothes we stumble out on deck. The wind has increased, and sweeps back from the bow furiously and heavy with moisture. The ship is rolling deeply, and ever and anon a huge wave pounds heavily on the high steel bow.
Up on the bridge the captain is pacing in his oilskins, and with him is the mate, but the night is dark and we stumble against them ere our unaccustomed eyes can make them out.
“She’s blowing a bit,” shouts the captain, and we silently agree to his very obvious remark.
“Have you picked up Diamond Shoal Lightship?” we shout in return.
“There it is,” he replies, “two points off the starboard bow.”
But search as we will in the blackness ahead we cannotmake it out, until, our eyes having become more accustomed to the darkness, it shows up like a pin prick in a black curtain, showing now and then, and lost to sight as much as it is visible.
The gale has grown stronger and is almost from dead ahead, while the huge waves cascade over the forecastle, roaring and tumbling—gray with phosphorescence in the darkness.
The eastern sky pales slowly, and gradually the morning comes, ghostly and without colour. The sky is gray, the sea is gray, flecked everywhere with white, and nothing is in sight as daylight comes. The lightship is invisible, and everywhere about us is the tumbling water.
We go below and have breakfast from a table on which the racks are placed to keep the dishes from crashing to the deck. We return to the bridge, and still the lightship is not visible. Have we passed it? No, we learn. For the last four hours we have made, perhaps, two miles, for a heavily laden freighter capable of only nine knots at the best is not able to make much headway against the current and such a gale off Hatteras.
By noon the lightship can be seen intermittently in its waste of boiling sea, and all afternoon we can see it occasionally as it slowly passes astern. But we have checked our position from it and have a new “point of departure” from which to lay our course for the south.
During the evening the captain tells us that the barometer has risen somewhat and that we may look for fine weather in the morning. We turn in, hoping for fine weather, but glad to have been through a Cape Hatteras blow.
And in the morning we look out through our port on to a summer sea. A swell is running, it is true, and the ship still rolls, but the sky is blue, the sea is blue, and a school of porpoises are leaping gaily from the water alongside.
THE SAILS OF A FOUR-MASTED SHIP(1) Foresail; (2) Mainsail; (3) Crossjack; (4) Jigger; (5) Lower foretopsail; (6) Lower main topsail; (7) Lower mizzen topsail; (8) Lower jigger topsail; (9) Upper fore topsail; (10) Upper main topsail; (11) Upper mizzen topsail; (12) Upper jigger topsail; (13) Fore topgallant sail; (14) Main topgallant sail; (15) Mizzen topgallant sail; (16) Jigger topgallant sail; (17) Fore royal; (18) Main royal; (19) Mizzen royal; (20) Jigger royal; (21) Fore skysail; (22) Main skysail; (23) Mizzen skysail; (24) Jigger skysail; (25) Flying jib; (26) Outer jib; (27) Jib; (28) Fore topmast staysail; (29) Spanker; (30) Buntlines; (31) Leechlines; (32) Reeftackles; (33) Braces; (34) Foresheet; (35) Fore topmast staysail sheet; (36) Jib-sheet; (37) Outer jib-sheet; (38) Flying jib-sheet.
THE SAILS OF A FOUR-MASTED SHIP(1) Foresail; (2) Mainsail; (3) Crossjack; (4) Jigger; (5) Lower foretopsail; (6) Lower main topsail; (7) Lower mizzen topsail; (8) Lower jigger topsail; (9) Upper fore topsail; (10) Upper main topsail; (11) Upper mizzen topsail; (12) Upper jigger topsail; (13) Fore topgallant sail; (14) Main topgallant sail; (15) Mizzen topgallant sail; (16) Jigger topgallant sail; (17) Fore royal; (18) Main royal; (19) Mizzen royal; (20) Jigger royal; (21) Fore skysail; (22) Main skysail; (23) Mizzen skysail; (24) Jigger skysail; (25) Flying jib; (26) Outer jib; (27) Jib; (28) Fore topmast staysail; (29) Spanker; (30) Buntlines; (31) Leechlines; (32) Reeftackles; (33) Braces; (34) Foresheet; (35) Fore topmast staysail sheet; (36) Jib-sheet; (37) Outer jib-sheet; (38) Flying jib-sheet.
THE SAILS OF A FOUR-MASTED SHIP
(1) Foresail; (2) Mainsail; (3) Crossjack; (4) Jigger; (5) Lower foretopsail; (6) Lower main topsail; (7) Lower mizzen topsail; (8) Lower jigger topsail; (9) Upper fore topsail; (10) Upper main topsail; (11) Upper mizzen topsail; (12) Upper jigger topsail; (13) Fore topgallant sail; (14) Main topgallant sail; (15) Mizzen topgallant sail; (16) Jigger topgallant sail; (17) Fore royal; (18) Main royal; (19) Mizzen royal; (20) Jigger royal; (21) Fore skysail; (22) Main skysail; (23) Mizzen skysail; (24) Jigger skysail; (25) Flying jib; (26) Outer jib; (27) Jib; (28) Fore topmast staysail; (29) Spanker; (30) Buntlines; (31) Leechlines; (32) Reeftackles; (33) Braces; (34) Foresheet; (35) Fore topmast staysail sheet; (36) Jib-sheet; (37) Outer jib-sheet; (38) Flying jib-sheet.
(1) Foresail; (2) Mainsail; (3) Crossjack; (4) Jigger; (5) Lower foretopsail; (6) Lower main topsail; (7) Lower mizzen topsail; (8) Lower jigger topsail; (9) Upper fore topsail; (10) Upper main topsail; (11) Upper mizzen topsail; (12) Upper jigger topsail; (13) Fore topgallant sail; (14) Main topgallant sail; (15) Mizzen topgallant sail; (16) Jigger topgallant sail; (17) Fore royal; (18) Main royal; (19) Mizzen royal; (20) Jigger royal; (21) Fore skysail; (22) Main skysail; (23) Mizzen skysail; (24) Jigger skysail; (25) Flying jib; (26) Outer jib; (27) Jib; (28) Fore topmast staysail; (29) Spanker; (30) Buntlines; (31) Leechlines; (32) Reeftackles; (33) Braces; (34) Foresheet; (35) Fore topmast staysail sheet; (36) Jib-sheet; (37) Outer jib-sheet; (38) Flying jib-sheet.
Our course has been changed to southwest, and after breakfast the captain and his mates take the sun’s altitude, work out our longitude, and compare notes. At noon our latitude is worked out, and about four o’clock our longitude again.
On the evening of the third day we check our position again when Cape Canaveral is picked up. The next afternoon we pass Palm Beach, with its hotels and bathers plainly visible as we hug the shore in order to keep away from the strong current of the Gulf Stream. We follow the curveof the Florida coast and the Florida Keys for another twenty-four hours, and then strike across the dark blue water of the Gulf Stream for Havana.
When we appear on deck the next morning we learn that, having reached the Cuban coast while it was still dark, we have been forced to lie to until daylight should bring the pilot boat out.
Finally the pilot appears and the ship heads for the narrow harbour entrance. A triangular pennant, which from its appearance might have been cut from an American flag, flies on a staff on Morro Castle, signalling the arrival of an American merchant ship. A motor boat comes up alongside and a port doctor comes aboard. We are all lined up while he looks us over hurriedly, signs his report, and leaves. The ship has made her way slowly into the little harbour, and finally her engines are stopped, her anchor is let go, and with the roar of the cable through the hawse pipe the voyage is ended.
Such a voyage as this is not unique. Thousands of ships on thousands of routes go through similar experiences. Whole voyages are often taken without a hint of storm. Whole voyages, again, are taken through continuous and unending storm. Ships sometimes come into Halifax or Boston caked with ice—their rigging inches thick with it, their bulwarks buried. Again, typhoons drive ships upon dark rocks, or overladen ships capsize because of storm. But consider the thousands that sail the sea—consider the fact that not a storm can blow across the great stretches of the unfrozen seas without engulfing many ships within its mighty grasp. Yet with all this one rarely reads of shipwreck—there are few ships that find their ends in storm.
And this is because men build ships sturdily and handle them adeptly. Their art is seamanship, and after all, they are artists.