Chapter 2

(a) A LARGE DAILY TASK. —Each man in the establishment, high or low, should daily have a clearly defined task laid out before him. This task should not in the least degree be vague nor indefinite, but should be circumscribed carefully and completely, and should not be easy to accomplish.

(b) STANDARD CONDITIONS. —Each man's task should call for a full day's work, and at the same time the workman should be given such standardized conditions and appliances as will enable him to accomplish his task with certainty.

(c) HIGH PAY FOR SUCCESS. —He should be sure of large pay when he accomplishes his task.

(d) LOSS IN CASE OF FAILURE. —When he fails he should be sure that sooner or later he will be the loser by it.

When an establishment has reached an advanced state of organization, in many cases a fifth element should be added, namely: the task should be made so difficult that it can only be accomplished by a first-class man.

There is nothing new nor startling about any of these principles and yet it will be difficult to find a shop in which they are not daily violated over and over again. They call, however, for a greater departure from the ordinary types of organization than would at first appear. In the case, for instance, of a machine shop doing miscellaneous work, in order to assign daily to each man a carefully measured task, a special planning department is required to lay out all of the work at least one day ahead. All orders must be given to the men in detail in writing; and in order to lay out the next day's work and plan the entire progress of work through the shop, daily returns must be made by the men to the planning department in writing, showing just what has been done. Before each casting or forging arrives in the shop the exact route which it is to take from machine to machine should be laid out. An instruction card for each operation must be written out stating in detail just how each operation on every piece of work is to be done and the time required to do it, the drawing number, any special tools, jigs, or appliances required, etc. Before the four principles above referred to can be successfully applied it is also necessary in most shops to make important physical changes. All of the small details in the shop, which are usually regarded as of little importance and are left to be regulated according to the individual taste of the workman, or, at best, of the foreman, must be thoroughly and carefully standardized; such. details, for instance, as the care and tightening of the belts; the exact shape and quality of each cutting tool; the establishment of a complete tool room from which properly ground tools, as well as jigs, templates, drawings, etc., are issued under a good check system, etc.; and as a matter of importance (in fact, as the foundation of scientific management) an accurate study of unit times must be made by one or more men connected with the planning department, and each machine tool must be standardized and a table or slide rule constructed for it showing how to run it to the best advantage.

At first view the running of a planning department, together with the other innovations, would appear to involve a large amount of additional work and expense, and the most natural question would be is whether the increased efficiency of the shop more than offsets this outlay? It must be borne in mind, however, that, with the exception of the study of unit times, there is hardly a single item of work done in the planning department which is not already being done in the shop. Establishing a planning department merely concentrates the planning and much other brainwork in a few men especially fitted for their task and trained in their especial lines, instead of having it done, as heretofore, in most cases by high priced mechanics, well fitted to work at their trades, but poorly trained for work more or less clerical in its nature.

There is a close analogy between the methods of modern engineering and this type of management. Engineering now centers in the drafting room as modern management does in the planning department. The new style engineering has all the appearance of complication and extravagance, with its multitude of drawings; the amount of study and work which is put into each detail; and its corps of draftsmen, all of whom would be sneered at by the old engineer as "non-producers." For the same reason, modern management, with its minute time study and a managing department in which each operation is carefully planned, with its many written orders and its apparent red tape, looks like a waste of money; while the ordinary management in which the planning is mainly done by the workmen themselves, with the help of one or two foremen, seems simple and economical in the extreme.

The writer, however, while still a young man, had all lingering doubt as to the value of a drafting room dispelled by seeing the chief engineer, the foreman of the machine shop, the foreman of the foundry, and one or two workmen, in one of our large and successful engineering establishments of the old school, stand over the cylinder of an engine which was being built, with chalk and dividers, and discuss for more than an hour the proper size and location of the studs for fastening on the cylinder head. This was simplicity, but not economy. About the same time he became thoroughly convinced of the necessity and economy of a planning department with time study, and with written instruction cards and returns. He saw over and over again a workman shut down his machine and hunt up the foreman to inquire, perhaps, what work to put into his machine next, and then chase around the shop to find it or to have a special tool or template looked up or made. He saw workmen carefully nursing their jobs by the hour and doing next to nothing to avoid making a record, and he was even more forcibly convinced of the necessity for a change while he was still working as a machinist by being ordered by the other men to slow down to half speed under penalty of being thrown over the fence.

No one now doubts the economy of the drafting room, and the writer predicts that in a very few years from now no one will doubt the economy and necessity of the study of unit times and of the planning department.

Another point of analogy between modern engineering and modern management lies in the fact that modern engineering proceeds with comparative certainty to the design and construction of a machine or structure of the maximum efficiency with the minimum weight and cost of materials, while the old style engineering at best only approximated these results and then only after a series of breakdowns, involving the practical reconstruction of the machine and the lapse of a long period of time. The ordinary system of management, owing to the lack of exact information and precise methods, can only approximate to the desired standard of high wages accompanied by low labor cost and then only slowly, with marked irregularity in results, with continued opposition, and, in many cases, with danger from strikes. Modern management, on the other hand, proceeds slowly at first, but with directness and precision, step by step, and, after the first few object lessons, almost without opposition on the part of the men, to high wages and low labor cost; and as is of great importance, it assigns wages to the men which are uniformly fair. They are not demoralized, and their sense of justice offended by receiving wages which are sometimes too low and at other times entirely too high.

One of the marked advantages of scientific management lies in its freedom from strikes. The writer has never been opposed by a strike, although he has been engaged for a great part of his time since 1883 in introducing this type of management in different parts of the country and in a great variety of industries. The only case of which the writer can think in which a strike under this system might be unavoidable would be that in which most of the employees were members of a labor union, and of a union whose rules were so inflexible and whose members were so stubborn that they were unwilling to try any other system, even though it assured them larger wages than their own. The writer has seen, however, several times after the introduction of this system, the members of labor unions who were working under it leave the union in large numbers because they found that they could do better under the operation of the system than under the laws of the union.

There is no question that the average individual accomplishes the most when he either gives himself, or some one else assigns him, a definite task, namely, a given amount of work which he must do within a given time; and the more elementary the mind and character of the individual the more necessary does it become that each task shall extend over a short period of time only. No school teacher would think of telling children in a general way to study a certain book or subject. It is practically universal to assign each day a definite lesson beginning on one specified page and line and ending on another; and the best progress is made when the conditions are such that a definite study hour or period can be assigned in. which the lesson must be learned. Most of us remain, through a great part of our lives, in this respect, grown-up children, and do our best only under pressure of a task of comparatively short duration. Another and perhaps equally great advantage of assigning a daily task as against ordinary piece work lies in the fact that the success of a good workman or the failure of a poor one is thereby daily and prominently called to the attention of the management. Many a poor workman might be willing to go along in a slipshod way under ordinary piece work, careless as to whether he fell off a little in his output or not. Very few of them, however, would be willing to record a daily failure to accomplish their task even if they were allowed to do so by their foreman; and also since on ordinary piece work the price alone is specified without limiting the time which the job is to take, a quite large falling off in output can in many cases occur without coming to the attention of the management at all. It is for these reasons that the writer has above indicated "a large daily task" for each man as the first of four principles which should be included in the best type of management.

It is evident, however, that it is useless to assign a task unless at the same time adequate measures are taken to enforce its accomplishment. As Artemus Ward says, "I can call the spirits from the windy deep, but damn `em they won't come!" It is to compel the completion of the daily task then that two of the other principles are required, namely, "high pay for success" and "loss in case of failure." The advantage of Mr. H. L. Gantt's system of "task work with a bonus," and the writer's "differential rate piece work" over the other systems lies in the fact that with each of these the men automatically and daily receive either an extra reward in case of complete success, or a distinct loss in case they fall off even a little.

The four principles above referred to can be successfully applied either under day work, piece work, task work with a bonus, or differential rate piece work, and each of these systems has its own especial conditions under which it is to be preferred to either of the other three. In no case, however, should an attempt be made to apply these principles unless accurate and thorough time study has previously been made of every item entering into the day's task.

They should be applied under day work only when a number of miscellaneous jobs have to be done day after day, none of which can occupy the entire time of a man throughout the whole of a day and when the time required to do each of these small jobs is likely to vary somewhat each day. In this case a number of these jobs can be grouped into a daily task which should be assigned, if practicable, to one man, possibly even to two or three, but rarely to a gang of men of any size. To illustrate: In a small boiler house in which there is no storage room for coal, the work of wheeling the coal to the fireman, wheeling out the ashes, helping clean fires and keeping the boiler room and the outside of the boilers clean can be made into the daily task for a man, and if these items do not sum up into a full day's work, on the average, other duties can be added until a proper task is assured. Or, the various details of sweeping, cleaning, and keeping a certain section of a shop floor windows, machines, etc., in order can be united to form a task. Or, in a small factory which turns out a uniform product and in uniform quantities day after day, supplying raw materials to certain parts of the factory and removing finished product from others may be coupled with other definite duties to form a task. The task should call for a large day's work, and the man should be paid more than the usual day's pay so that the position will be sought for by first-class, ambitious men. Clerical work can very properly be done by the task in this way, although when there is enough of it, piece work at so much per entry is to be preferred.

In all cases a clear cut, definite inspection of the task is desirable at least once a day and sometimes twice. When a shop is not running at night, a good time for this inspection is at seven o'clock in the morning, for instance. The inspector should daily sign a printed card, stating that he has inspected the work done by ——, and enumerating the various items of the task. The card should state that the workman has satisfactorily performed his task, "except the following items," which should be enumerated in detail.

When men are working on task work by the day they should be made to start to work at the regular starting hour. They should, however, have no regular time for leaving. As soon as the task is finished they should be allowed to go home; and, on the other hand, they should be made to stay at work until their task is done, even if it lasts into the night, no deduction being made for shorter hours nor extra pay allowed for overtime. It is both inhuman and unwise to ask a man, working on task work, to stay in the shop after his task is finished "to maintain the discipline of the shop," as is frequently done. It only tends to make men eye servants.

An amusing instance of the value of task work with freedom to leave when the task is done was given the writer by his friend, Mr. Chas. D. Rogers, for many years superintendent of the American Screw Works, of Providence, R. I., one of the greatest mechanical geniuses and most resourceful managers that this country has produced, but a man who, owing to his great modesty, has never been fully appreciated outside of those who know him well. Mr. Rogers tried several modifications of day and piece work in an unsuccessful endeavor to get the children who were engaged in sorting over the very small screws to do a fair day's work. He finally met with great success by assigning to each child a fair day's task and allowing him to go home and play as soon as his task was done. Each child's playtime was his own and highly prized while the greater part of his wages went to his parents.

Piece work embodying the task idea can be used to advantage when there is enough work of the same general character to keep a number of men busy regularly; such work, for instance, as the Bethlehem yard labor previously described, or the work of bicycle ball inspection referred to later on. In piece work of this class the task idea should always be maintained by keeping it clearly before each man that his average daily earnings must amount to a given high sum (as in the case of the Bethlehem laborers, $1.85 per day), and that failure to average this amount will surely result in his being laid off. It must be remembered that on plain piece work the less competent workmen will always bring what influence and pressure they can to cause the best men to slow down towards their level and that the task idea is needed to counteract this influence. Where the labor market is large enough to secure in a reasonable time enough strictly first-class men, the piece work rates should be fixed on such a basis that only a first-class man working at his best can earn the average amount called for. This figure should be, in the case of first-class men as stated above, from 30 per cent to 100 per cent beyond the wages usually paid. The task idea is emphasized with this style of piece work by two things—the high wages and the laying off, after a reasonable trial, of incompetent men; and for the success of the system, the number of men employed on practically the same class of work should be large enough for the workmen quite often to have the object lesson of seeing men laid off for failing to earn high wages and others substituted in their places.

There are comparatively few machine shops, or even manufacturing establishments, in which the work is so uniform in its nature as to employ enough men on the same grade of work and in sufficiently close contact to one another to render piece work preferable to the other systems. In the great majority of cases the work is so miscellaneous in its nature as to call for the employment of workmen varying greatly in their natural ability and attainments, all the way, for instance, from the ordinary laborer, through the trained laborer, helper, rough machinist, fitter, machine hand, to the highly skilled special or all-round mechanic. And while in a large establishment there may be often enough men of the same grade to warrant the adoption of piece work with the task idea, yet, even in this case, they are generally so scattered in different parts of the shop that laying off one of their number for incompetence does not reach the others with sufficient force to impress them with the necessity of keeping up with their task.

It is evident then that, in the great majority of cases, the four leading principles in management can be best applied through either task work with a bonus or the differential piece rate in spite of the slight additional clerical work and the increased difficulty in planning ahead incident to these systems of paying wages. Three of the principles of management given above, namely, (a) a large daily task, (b) high pay for success, and (c) loss in case of failure form the very essence of both of these systems and act as a daily stimulant for the men. The fourth principle of management is a necessary preliminary, since without having first thoroughly standardized all of the conditions surrounding work, neither of these two plans can be successfully applied.

In many cases the greatest good resulting from the application of these systems of paying wages is the indirect gain which comes from the enforced standardization of all details and conditions, large and small, surrounding the work. All of the ordinary systems can be and are almost always applied without adopting and maintaining thorough shop standards. But the task idea can not be carried out without them.

The differential rate piece work is rather simpler in its application than task work with bonus and is the more forceful of the two. It should be used wherever it is practicable, but in no case until after all the accompanying conditions have been perfected and completely standardized and a thorough time study has been made of all of the elements of the work. This system is particularly useful where the same kind of work is repeated day after day, and also whenever the maximum possible output is desired, which is almost always the case in the operation of expensive machinery or of a plant occupying valuable ground or a large building. It is more forceful than task work with a bonus because it not only pulls the man up from the top but pushes him equally hard from the bottom. Both of these systems give the workman a large extra reward when he accomplishes his full task within the given time. With the differential rate, if for any reason he fails to do his full task, he not only loses the large extra premium which is paid for complete success, but in addition he suffers the direct loss of the piece price for each piece by which he falls short. Failure under the task with a bonus system involves a corresponding loss of the extra premium or bonus, but the workman, since he is paid a given price per hour, receives his ordinary day's pay in case of failure and suffers no additional loss beyond that of the extra premium whether he may have fallen short of the task to the extent of one piece or a dozen.

In principle, these two systems appear to be almost identical, yet this small difference, the slightly milder nature of task work with a bonus, is sufficient to render it much more flexible and therefore applicable to a large number of cases in which the differential rate system cannot be used. Task work with a bonus was invented by Mr. H. L. Gantt, while he was assisting the writer in organizing the Bethlehem Steel Company. The possibilities of his system were immediately recognized by all of the leading men engaged on the work, and long before it would have been practicable to use the differential rate, work was started under this plan. It was successful from the start, and steadily grew in volume and in favor, and today is more extensively used than ever before.

Mr. Gantt's system is especially useful during the difficult and delicate period of transition from the slow pace of ordinary day work to the high speed which is the leading characteristic of good management. During this period of transition in the past, a time was always reached when a sudden long leap was taken from improved day work to some form of piece work; and in making this jump many good men inevitably fell and were lost from the procession. Mr. Gantt's system bridges over this difficult stretch and enables the workman to go smoothly and with gradually accelerated speed from the slower pace of improved day work to the high speed of the new system.

It does not appear that Mr. Gantt has recognized the full advantages to be derived through the proper application of his system during this period of transition, at any rate he has failed to point them out in his papers and to call the attention to the best method of applying his plan in such cases.

No workman can be expected to do a piece of work the first time as fast as he will later. It should also be recognized that it takes a certain time for men who have worked at the ordinary slow rate of speed to change to high speed. Mr. Gantt's plan can be adapted to meet both of these conditions by allowing the workman to take a longer time to do the job at first and yet earn his bonus; and later compelling him to finish the job in the quickest time in order to get the premium. In all cases it is of the utmost importance that each instruction card should state the quickest time in which the workman will ultimately be called upon to do the work. There will then be no temptation for the man to soldier since he will see that the management know accurately how fast the work can be done.

There is also a large class of work in addition to that of the period of transition to which task work with a bonus is especially adapted. The higher pressure of the differential rate is the stimulant required by the workman to maintain a high rate of speed and secure high wages while he has the steady swing that belongs to work which is repeated over and over again. When, however, the work is of such variety that each day presents an entirely new task, the pressure of the differential rate is some times too severe. The chances of failing to quite reach the task are greater in this class of work than in routine work; and in many such cases it is better, owing to the increased difficulties, that the workman should feel sure at least of his regular day's rate, which is secured him by Mr. Gantt's system in case he falls short of the full task. There is still another case of quite frequent occurrence in which the flexibility of Mr. Gantt's plan makes it the most desirable. In many establishments, particularly those doing an engineering business of considerable variety or engaged in constructing and erecting miscellaneous machinery, it is necessary to employ continuously a number of especially skilful and high-priced mechanics. The particular work for which these men are wanted comes, however, in many cases, at irregular intervals, and there are frequently quite long waits between their especial jobs. During such periods these men must be provided with work which is ordinarily done by less efficient, lower priced men, and if a proper piece price has been fixed on this work it would naturally be a price suited to the less skilful men, and therefore too low for the men in question. The alternative is presented of trying to compel these especially skilled men to work for a lower price than they should receive, or of fixing a special higher piece price for the work. Fixing two prices for the same piece of work, one for the man who usually does it and a higher price for the higher grade man, always causes the greatest feeling of injustice and dissatisfaction in the man who is discriminated against. With Mr. Gantt's plan the less skilledworkman would recognize the justice of paying his more experienced companion regularly a higher rate of wages by the day, yet when they were both working on the same kind of work each man would receive the same extra bonus for doing the full day's task. Thus, with Mr. Gantt's system, the total day's pay of the higher classed man would be greater than that of the less skilled man, even when on the same work, and the latter would not begrudge it to him. We may say that the difference is one of sentiment, yet sentiment plays an important part in all of our lives; and sentiment is particularly strong in the workman when he believes a direct injustice is being done him.

Mr. James M. Dodge, the distinguished Past President of The American Society of Mechanical Engineers, has invented an ingenious system of piece work which is adapted to meet this very case, and which has especial advantages not possessed by any of the other plans.

It is clear, then, that in carrying out the task idea after the required knowledge has been obtained through a study of unit times, each of the four systems, (a) day work, (b) straight piece work, (c) task work with a bonus, and (d) differential piece work, has its especial field of usefulness, and that in every large establishment doing a variety of work all four of these plans can and should be used at the same time. Three of these systems were in use at the Bethlehem Steel Company when the writer left there, and the fourth would have soon been started if he had remained.

Before leaving this part of the book which has been devoted to pointing out the value of. the daily task in management, it would seem desirable to give an illustration of the value of the differential rate piece work and also of the desirability of making each task as simple and short as practicable.

The writer quotes as follows from a paper entitled "A Piece Rate System," read by him before The American Society of Mechanical Engineers in 1895:

"The first case in which a differential rate was applied during the year 1884, furnishes a good illustration of what can be accomplished by it. A standard steel forging, many thousands of which are used each year, had for several years been turned at the rate of from four to five per day under the ordinary system of piece work, 50 cents per piece being the price paid for the work. After analyzing the job, and determining the shortest time required to do each of the elementary operations of which it was composed, and then summing up the total, the writer became convinced that it was possible to turn ten pieces a day. To finish the forgings at this rate, however, the machinists were obliged to work at their maximum pace from morning to night, and the lathes were run as fast as the tools would allow, and under a heavy feed. Ordinary tempered tools 1 inch by 1 1/2 inch, made of carbon tool steel, were used for this work.

"It will be appreciated that this was a big day's work, both for men and machines, when it is understood that it involved removing, with a single 16-inch lathe, having two saddles, an average of more than 800 lbs of steel chips in ten hours. In place of the 50 cent rate, that they had been paid before, the men were given 35 cents per piece when they turned them at the speed of 10 per day; and when they produced less than ten they received only 25 cents per piece.

"It took considerable trouble to induce the men to turn at this high speed, since they did not at first fully appreciate that it was the intention of the firm to allow them to earn permanently at the rate of $3.50 per day. But from the day they first turned ten pieces to the present time, a period of more than ten years, the men who understood their work have scarcely failed a single day to turn at this rate. Throughout that time until the beginning of the recent fall in the scale of wages throughout the country, the rate was not cut.

"During this whole period, the competitors of the company never succeeded in averaging over half of this production per lathe, although they knew and even saw what was being done at Midvale. They, however, did not allow their men to earn from over $2.00 to $2.50 per day, and so never even approached the maximum output.

"The following table will show the economy of paying high wages under the differential rate in doing the above job:

ORDINARY SYSTEM OF PIECE WORK—Man's wages $2.50 Machine cost 3.37 Total cost per day 5.87 5 pieces produced; Cost per piece $1.17

DIFFERENTIAL RATE SYSTEM—Man's wages $3.50 Machine cost 3.37 Total cost per day 6.87 10 pieces produced; Cost per piece $0.69

"The above result was mostly though not entirely due to the differential rate. The superior system of managing all of the small details of the shop counted for considerable."

The exceedingly dull times that began in July, 1893, and were accompanied by a great fall in prices, rendered it necessary to lower the wages of machinists throughout the country. The wages of the men in A. the Midvale Steel Works were reduced at this time, and the change was accepted by them as fair and just.

Throughout the works, however, the principle of the differential rate was maintained, and was, and is still, fully appreciated by both the management and men. Through some error at the time of the general reduction of wages in 1893, the differential rate on the particular job above referred to was removed, and a straight piece work rate of 25 cents per piece was substituted for it. The result of abandoning the differential proved to be the best possible demonstration of its value. Under straight piece work, the output immediately fell to between six and eight pieces per day, and remained at this figure for several years, although under the differential rate it had held throughout a long term of years steadily at ten per day.

When work is to be repeated many times, the time study should be minute and exact. Each job should be carefully subdivided into its elementary operations, and each of these unit times should receive the most thorough time study. In fixing the times for the tasks, and the piece work rates on jobs of this class, the job should be subdivided into a number of divisions, and a separate time and price assigned to each division rather than to assign a single time and price for the whole job. This should be done for several reasons, the most important of which is that the average workman, in order to maintain a rapid pace, should be given the opportunity of measuring his performance against the task set him at frequent intervals. Many men are incapable of looking very far ahead, but if they see a definite opportunity of earning so many cents by working hard for so many minutes, they will avail themselves of it.

As an illustration, the steel tires used on car wheels and locomotives were originally turned in the Midvale Steel Works on piece work, a single piece-work rate being paid for all of the work which could be done on a tire at a single setting. A fixed price was paid for this work, whether there was much or little metal to be removed, and on the average this price was fair to the men. The apparent advantage of fixing a fair average rate was, that it made rate-fixing exceedingly simple, and saved clerk work in the time, cost and record keeping.

A careful time study, however, convinced the writer that for the reasons given above most of the men failed to do their best. In place of the single rate and time for all of the work done at a setting, the writer subdivided tire-turning into a number of short operations, and fixed a proper time and price, varying for each small job, according to the amount of metal to be removed, and the hardness and diameter of the tire. The effect of this subdivision was to increase the output, with the same men, methods, and machines, at least thirty-three per cent.

As an illustration of the minuteness of this subdivision, an instruction card similar to the one used is reproduced in Figure 1 on the next page. (This card was about 7 inches long by 4 inches wide.)

[Transcriber's note — Figure 1 not shown]

The cost of the additional clerk work involved in this change was so insignificant that it practically did not affect the problem. This principle of short tasks in tire turning was introduced by the writer in the Midvale Steel Works in 1883 and is still in full use there, having survived the test of over twenty years' trial with a change of management.

In another establishment a differential rate was applied to tire turning, with operations subdivided in this way, by adding fifteen per cent to the pay of each tire turner whenever his daily or weekly piece work earnings passed a given figure.

Another illustration of the application of this principle of measuring a man's performance against a given task at frequent intervals to an entirely different line of work may be of interest. For this purpose the writer chooses the manufacture of bicycle balls in the works of the Symonds Rolling Machine Company, in Fitchburg, Mass. All of the work done in this factory was subjected to an accurate time study, and then was changed from day to piece work, through the assistance of functional foreman ship, etc. The particular operation to be described however, is that of inspecting bicycle balls before they were finally boxed for shipment. Many millions of these balls were inspected annually. When the writer undertook to systematize this work, the factory had been running for eight or ten years on ordinary day work, so that the various employees were "old hands," and skilled at their jobs. The work of inspection was done entirely by girls—about one hundred and twenty being employed at it—all on day work.

This work consisted briefly in placing a row of small polished steel balls on the back of the left hand, in the crease between two of the fingers pressed together, and while they were rolled over and over, with the aid of a magnet held in the right hand, they were minutely examined in a strong light, and the defective balls picked out and thrown into especial boxes. Four kinds of defects were looked for—dented, soft, scratched, and fire cracked—and they were mostly 50 minute as to be invisible to an eye not especially trained to this work. It required the closest attention and concentration. The girls had worked on day work for years, ten and one-half hours per day, with a Saturday half-holiday.

The first move before in any way stimulating them toward a larger output was to insure against a falling off in quality. This was accomplished through over-inspection. Four of the most trustworthy girls were given each a lot of balls which had been examined the day before by one of the regular inspectors. The number identifying the lot having been changed by the foreman so that none of the over-inspectors knew whose work they were examining. In addition, one of the lots inspected by the four over-inspectors was examined on the following day by the chief inspector, selected on account of her accuracy and integrity.

An effective expedient was adopted for checking the honesty and accuracy of the over-inspection. Every two or three days a lot of balls was especially prepared by the foreman, who counted out a definite number of perfect balls, and added a recorded number of defective balls of each kind. The inspectors had no means of distinguishing this lot from the regular commercial lots. And in this way all temptation to slight their work or make false returns was removed.

After insuring in this way against deterioration in quality, effective means were at once adopted to increase the output. Improved day work was substituted for the old slipshod method. An accurate daily record, both as to quantity and quality, was kept for each inspector. In a comparatively short time this enabled the foreman to stir the ambition of all the inspectors by increasing the wages of those who turned out a large quantity and good quality, at the same time lowering the pay of those who fell short, and discharging others who proved to be incorrigibly slow or careless. An accurate time study was made through the use of a stop watch and record blanks, to determine how fast each kind of inspection should be done. This showed that the girls spent a considerable part of their time in partial idleness, talking and half working, or in actually doing nothing.

Talking while at work was stopped by seating them far apart. The hours of work were shortened from 10 1/2 per day, first to 9 1/2, and later to 8 1/2; a Saturday half holiday being given them even with the shorter hours. Two recesses of ten minutes each were given them, in the middle of the morning and afternoon, during which they were expected to leave their seats, and were allowed to talk.

The shorter hours and improved conditions made it possible for the girls to really work steadily, instead of pretending to do so. Piece work was then introduced, a differential rate being paid, not for an increase in output, but for greater accuracy in the inspection; the lots inspected by the over-inspectors forming the basis for the payment of the differential. The work of each girl was measured every hour, and they were all informed whether they were keeping up with their tasks, or how far they had fallen short and an assistant was sent by the foreman to encourage those who were falling behind, and help them to catch up.

The principle of measuring the performance of each workman against a standard at frequent intervals, of keeping them informed as to their progress, and of sending an assistant to help those who were falling down, was carried out throughout the works, and proved to be most useful.

The final results of the improved system in the inspecting department were as follows:

(a) Thirty-five girls did the work formerly done by one hundred and twenty.

(b) The girls averaged from $6.50 to $9.00 per week instead of $3.50 to $4.50, as formerly.

(c) They worked only 8 1/2 hours per day, with Saturday a half-holiday, while they had formerly worked 10 1/2 hours per day.

(d) An accurate comparison of the balls which were inspected under the old system of day work with those done under piece work, with over-inspection, showed that, in spite of the large increase in output per girl, there were 58 per cent more defective balls left in the product as sold under day work than under piece work. In other words, the accuracy of inspection under piece work was one-third greater than that under day work.

That thirty-five girls were able to do the work which formerly required about one hundred and twenty is due, not only to the improvement in the work of each girl, owing to better methods, but to the weeding out of the lazy and unpromising candidates, and the substitution of more ambitious individuals.

A more interesting illustration of the effect of the improved conditions and treatment is shown in the following comparison. Records were kept of the work of ten girls, all "old hands," and good inspectors, and the improvement made by these skilled hands is undoubtedly entirely due to better management. All of these girls throughout the period of comparison were engaged on the same kind of work, viz.: inspecting bicycle balls, three-sixteenths of an inch in diameter.

The work of organization began in March, and although the records for the first three months were not entirely clear, the increased output due to better day work amounted undoubtedly to about 33 per cent. The increase per day from June on day work, to July on piece work, the hours each month being 10 1/2 per day, was 37 per cent. This increase was due to the introduction of piece work. The increase per day from July to August (the length of working days in July being 10 1/2 hours, and in August 9 1/2 hours, both months piece work) was 33 per cent.

The increase from August to September (the length of working day in August being 9 1/2 hours, and in September 8 1/2 hours) was 0.08 per cent This means that the girls did practically the same amount of work per day in September, in 8 1/2 hours, that they did in August in 9 1/2 hours.

To summarize: the same ten girls did on an average each day in September, on piece work, when only working 8 1/2 hours per day, 2.42 times as much, or nearly two and one-half times as much, in a day (not per hour, the increase per hour was of course much greater) as they had done when working on day work in March with a working day of 10 1/2 hours. They earned $6.50 to $9.00 per week on piece work, while they had only earned $3.50 to $4.50 on day work. The accuracy of inspection under piece work was one-third greater than under day work.

The time study for this work was done by my friend, Sanford E. Thompson, C. E. who also had the actual management of the girls throughout the period of transition. At this time Mr. H. L. Gantt was general superintendent of the company, and the work of systematizing was under the general direction of the writer. It is, of course, evident that the nature of the organizations required to manage different types of business must vary to an enormous extent, from the simple tonnage works (with its uniform product, which is best managed by a single strong man who carries all of the details in his head and who, with a few comparatively cheap assistants, pushes the enterprise through to success) to the large machine works, doing a miscellaneous business, with its intricate organization, in which the work of any one man necessarily counts for but little.

It is this great difference in the type of the organization required that so frequently renders managers who have been eminently successful in one line utter failures when they undertake the direction of works of a different kind. This is particularly true of men successful in tonnage work who are placed in charge of shops involving much greater detail.

In selecting an organization for illustration, it would seem best to choose one of the most elaborate. The manner in which this can be simplified to suit a less intricate case will readily suggest itself to any one interested in the subject. One of the most difficult works to organize is that of a large engineering establishment building miscellaneous machinery, and the writer has therefore chosen this for description.

Practically all of the shops of this class are organized upon what may be called the military plan. The orders from the general are transmitted through the colonels, majors, captains, lieutenants and noncommissioned officers to the men. In the same way the orders in industrial establishments go from the manager through superintendents, foremen of shops, assistant foremen and gang bosses to the men. In an establishment of this kind the duties of the foremen, gang bosses, etc., are so varied, and call for an amount of special information coupled with such a variety of natural ability, that only men of unusual qualities to start with, and who have had years of special training, can perform them in a satisfactory manner. It is because of the difficulty—almost the impossibility of getting suitable foremen and gang bosses, more than for any other reason, that we so seldom hear of a miscellaneous machine works starting in on a large scale and meeting with much, if any, success for the first few years. This difficulty is not fully realized by the managers of the old well established companies, since their superintendents and assistants have grown up with the business, and have been gradually worked into and fitted for their especial duties through years of training and the process of natural selection. Even in these establishments, however, this difficulty has impressed itself upon the managers so forcibly that most of them have of late years spent thousands of dollars in re-grouping their machine tools for the purpose of making their foremanship more effective. The planers have been placed in one group, slotters in another, lathes in another, etc., so as to demand a smaller range of experience and less diversity of knowledge from their respective foremen.

For an establishment, then, of this kind, starting up on a large scale, it may be said to be an impossibility to get suitable superintendents and foremen.

The writer found this difficulty at first to be an almost insurmountable obstacle to his work in organizing manufacturing establishments; and after years of experience, overcoming the opposition of the heads of departments and the foremen and gang bosses, and training them to their new duties, still remains the greatest problem in organization. The writer has had comparatively little trouble in inducing workmen to change their ways and to increase their speed, providing the proper object lessons are presented to them, and time enough is allowed for these to produce their effect. It is rarely the case, however, that superintendents and foremen can find any reasons for changing their methods, which, as far as they can see, have been successful. And having, as a rule, obtained their positions owing to their unusual force of character, and being accustomed daily to rule other men, their opposition is generally effective.

In the writer's experience, almost all shops are under-officered. Invariably the number of leading men employed is not sufficient to do the work economically. Under the military type of organization, the foreman is held responsible for the successful running of the entire shop, and when we measure his duties by the standard of the four leading principles of management above referred to, it becomes apparent that in his case these conditions are as far as possible from being fulfilled. His duties may be briefly enumerated in the following way. He must lay out the work for the whole shop, see that each piece of work goes in the proper order to the right machine, and that the man at the machine knows just what is to be done and how he is to do it. He must see that the work is not slighted, and that it is done fast, and all the while he must look ahead a month or so, either to provide more men to do the work or more work for the men to do. He must constantly discipline the men and readjust their wages, and in addition to this must fix piece work prices and supervise the timekeeping.

The first of the four leading principles in management calls for a clearly defined and circumscribed task. Evidently the foreman's duties are in no way clearly circumscribed. It is left each day entirely to his judgment what small part of the mass of duties before him it is most important for him to attend to, and he staggers along under this fraction of the work for which he is responsible, leaving the balance to be done in many cases as the gang bosses and workmen see fit. The second principle calls for such conditions that the daily task can always be accomplished. The conditions in his case are always such that it is impossible for him to do it all, and he never even makes pretence of fulfilling his entire task. The third and fourth principles call for high pay in case the task is successfully done, and low pay in case of failure. The failure to realize the first two conditions, however, renders the application of the last two out of the question.

The foreman usually endeavors to lighten his burdens by delegating his duties to the various assistant foremen or gang bosses in charge of lathes, planers, milling machines, vise work, etc. Each of these men is then called upon to perform duties of almost as great variety as those of the foreman himself. The difficulty in obtaining in one man the variety of special information and the different mental and moral qualities necessary to perform all of the duties demanded of those men has been clearly summarized in the following list of the nine qualities which go to make up a well rounded man:

Brains.

Education.

Special or technical knowledge; manual dexterity or strength.

Tact.

Energy.

Grit.

Honesty.

Judgment or common sense and

Good health.

Plenty of men who possess only three of the above qualities can be hired at any time for laborers' wages. Add four of these qualities together and you get a higher priced man. The man combining five of these qualities begins to be hard to find, and those with six, seven, and eight are almost impossible to get. Having this fact in mind, let us go over the duties which a gang boss in charge, say, of lathes or planers, is called upon to perform, and note the knowledge and qualities which they call for. First. He must be a good machinist—and this alone calls for years of special training, and limits the choice to a comparatively small class of men.

Second. He must be able to read drawings readily, and have sufficient imagination to see the work in its finished state clearly before him. This calls for at least a certain amount of brains and education.

Third. He must plan ahead and see that the right jigs, clamps, and appliances, as well as proper cutting tools, are on hand, and are used to set the work correctly in the machine and cut the metal at the right speed and feed. This calls for the ability to concentrate the mind upon a multitude of small details, and take pains with little, uninteresting things.

Fourth. He must see that each man keeps his machine clean and in good order. This calls for the example of a man who is naturally neat and orderly himself.

Fifth. He must see that each man turns out work of the proper quality. This calls for the conservative judgment and the honesty which are the qualities of a good inspector.

Sixth. He must see that the men under him work steadily and fast. To accomplish this he should himself be a hustler, a man of energy, ready to pitch in and infuse life into his men by working faster than they do, and this quality is rarely combined with the painstaking care, the neatness and the conservative judgment demanded as the third, fourth, and fifth requirements of a gang boss.

Seventh. He must constantly look ahead over the whole field of work and see that the parts go to the machines in their proper sequence, and that the right job gets to each machine.

Eighth. He must, at least in a general way, supervise the timekeeping and fix piece work rates. Both the seventh and eighth duties call for a certain amount of clerical work and ability, and this class of work is almost always repugnant to the man suited to active executive work, and difficult for him to do; and the rate-fixing alone requires the whole time and careful study of a man especially suited to its minute detail.

Ninth. He must discipline the men under him, and readjust their wages; and these duties call for judgment, tact, and judicial fairness.

It is evident, then, that the duties which the ordinary gang boss is called upon to perform would demand of him a large proportion of the nine attributes mentioned above; and if such a man could be found he should be made manager or superintendent of a works instead of gang boss. However, bearing in mind the fact that plenty of men can be had who combine four or five of these attributes, it becomes evident that the work of management should be so subdivided that the various positions can be filled by men of this caliber, and a great part of the art of management undoubtedly lies in planning the work in this way. This can, in the judgment of the writer, be best accomplished by abandoning the military type of organization and introducing two broad and sweeping changes in the art of management:

(a) As far as possible the workmen, as well as the gang bosses and foremen, should be entirely relieved of the work of planning, and of all work which is more or less clerical in its nature. All possible brain work should be removed from the shop and centered in the planning or laying-out department, leaving for the foremen and gang bosses work strictly executive in its nature. Their duties should be to see that the operations planned and directed from the planning room are promptly carried out in the shop. Their time should be spent with the men, teaching them to think ahead, and leading and instructing them in their work.

(b) Throughout the whole field of management the military type of organization should be abandoned, and what may be called the' "functional type" substituted in its place. "Functional management" consists in so dividing the work of management that each man from the assistant superintendent down shall have as few functions as possible to perform. If practicable the work of each man in the management should be confined to the performance of a single leading function. Under the ordinary or military type, the workmen are divided into groups. The men in each group receive their orders from one man only, the foreman or gang boss of that group. This man is the single agent through which the various functions of the management are brought into contact with the men. Certainly the most marked outward characteristic of functional management lies in the fact that each workman, instead of coming in direct contact with the management at one point only, namely, through his gang boss, receives his daily orders and help directly from eight different bosses, each of whom performs his own particular function. Four of these bosses are in the planning room and of these three send their orders to and receive their returns from the men, usually in writing. Four others are in the shop and personally help the men in their work, each boss helping in his own particular `line or function only. Some of these bosses come in contact with each man only once or twice a day and then for a few minutes perhaps, while others are with the men all the time, and help each man frequently. The functions of one or two of these bosses require them to come in contact with each workman for so short a time each day that they can perform their particular duties perhaps for all of the men in the shop, and in their line they manage the entire shop. Other bosses are called upon to help their men so much and so often that each boss can perform his function for but a few men, and in this particular line a number of bosses are required, all performing the same function but each having his particular group of men to help. Thus the grouping of the men in the shop is entirely changed, each workman belonging to eight different groups according to the particular functional boss whom he happens to be working under at the moment.

The following is a brief description of the duties of the four types of executive functional bosses which the writer has found it profitable to use in the active work of the shop: (1) gang bosses, (2) speed bosses, (3) inspectors, and (4) repair bosses.

The gang boss has charge of the preparation of all work up to the time that the piece is set in the machine. It is his duty to see that every man under him has at all times at least one piece of work ahead at his machine, with all the jigs, templates, drawings, driving mechanism, sling chains, etc., ready to go into his machine as soon as the piece he is actually working on is done. The gang boss must show his men how to set their work in their machines in the quickest time, and see that they do it. He is responsible for the work being accurately and quickly set, and should be not only able but willing to pitch in himself and show the men how to set the work in record time.

The speed boss must see that the proper cutting tools are used for each piece of work, that the work is properly driven, that the cuts are started in the right part of the piece, and that the best speeds and feeds and depth of cut are used. His work begins only after the piece is in the lathe or planer, and ends when the actual machining ends. The speed boss must not only advise his men how best to do this work, but he must see that they do it in the quickest time, and that they use the speeds and feeds and depth of cut as directed on the instruction card In many cases he is called upon to demonstrate that the work can be done in the specified time by doing it himself in the presence of his men.

The inspector is responsible for the quality of the work, and both the workmen and speed bosses must see that the work is all finished to suit him. This man can, of course, do his work best if he is a master of the art of finishing work both well and quickly.

The repair boss sees that each workman keeps his machine clean, free from rust and scratches, and that he oils and treats it properly, and that all of the standards established for the care and maintenance of the machines and their accessories are rigidly maintained, such as care of belts and shifters, cleanliness of floor around machines, and orderly piling and disposition of work.

The following is an outline of the duties of the four functional bosses who are located in the planning room, and who in their various functions represent the department in its connection with the men. The first three of these send their directions to and receive their returns from the men, mainly in writing. These four representatives of the planning department are, the (1) order of work and route clerk, (2) instruction card clerk, (3) time and cost clerk, and (4) shop disciplinarian.

Order of Work and Route Clerk. After the route clerk in the planning department has laid out the exact route which each piece of work is to travel through the shop from machine to machine in order that it may be finished at the time it is needed for assembling, and the work done in the most economical way, the order of work clerk daily writes lists instructing the workmen and also all of the executive shop bosses as to the exact order in which the work is to be done by each class of machines or men, and these lists constitute the chief means for directing the workmen in this particular function.

Instruction Card Clerks. The "instruction card," as its name indicates, is the chief means employed by the planning department for instructing both the executive bosses and the men in all of the details of their work. It tells them briefly the general and detail drawing to refer to, the piece number and the cost order number to charge the work to, the special jigs, fixtures, or tools to use, where to start each cut, the exact depth of each cut, and how many cuts to take, the speed and feed to be used for each cut, and the time within which each operation must be finished. It also informs them as to the piece rate, the differential rate, or the premium to be paid for completing the task within the specified time (according to the system employed); and further, when necessary, refers them by name to the man who will give them especial directions. This instruction card is filled in by one or more members of the planning department, according to the nature and complication of the instructions, and bears the same relation to the planning room that the drawing does to the drafting room. The man who sends it into the shop and who, in case difficulties are met with in carrying out the instructions, sees that the proper man sweeps these difficulties away, is called the instruction card foreman.

Time and Cost Clerk. This man sends to the men through the "time ticket" all the information they need for recording their time and the cost of the work, and secures proper returns from them. He refers these for entry to the cost and time record clerks in the planning room.

Shop Disciplinarian. In case of insubordination or impudence, repeated failure to do their duty, lateness or unexcused absence, the shop disciplinarian takes the workman or bosses in hand and applies the proper remedy. He sees that a complete record of each man's virtues and defects is kept. This man should also have much to do with readjusting the wages of the workmen. At the very least, he should invariably be consulted before any change is made. One of his important functions should be that of peace-maker.

Thus, under functional foremanship, we see that the work which, under the military type of organization, was done by the single gang boss, is subdivided among eight men: (1) route clerks, (2) instruction card clerks, (3) cost and time clerks, who plan and give directions from the planning room; (4) gang bosses, (5) speed bosses, (6) inspectors, (7) repair bosses, who show the men how to carry out their instructions, and see that the work is done at the proper speed; and (8) the shop disciplinarian, who performs this function for the entire establishment.

The greatest good resulting from this change is that it becomes possible in a comparatively short time to train bosses who can really and fully perform the functions demanded of them, while under the old system it took years to train men who were after all able to thoroughly perform only a portion of their duties. A glance at the nine qualities needed for a well rounded man and then at the duties of these functional foremen will show that each of these men requires but a limited number of the nine qualities in order to successfully fill his position; and that the special knowledge which he must acquire forms only a small part of that needed by the old style gang boss. The writer has seen men taken (some of them from the ranks of the workmen, others from the old style bosses and others from among the graduates of industrial schools, technical schools and colleges) and trained to become efficient functional foremen in from six to eighteen months. Thus it becomes possible with functional foremanship to thoroughly and completely equip even a new company starting on a large scale with competent officers in a reasonable time, which is entirely out of the question under the old system. Another great advantage resulting from functional or divided foremanship is that it becomes entirely practicable to apply the four leading principles of management to the bosses as well as to the workmen. Each foreman can have a task assigned him which is so accurately measured that he will be kept fully occupied and still will daily be able to perform his entire function. This renders it possible to pay him high wages when he is successful by giving him a premium similar to that offered the men and leave him with low pay when he fails.

The full possibilities of functional foremanship, however, will not have been realized until almost all of the machines in the shop are run by men who are of smaller calibre and attainments, and who are therefore cheaper than those required under the old system. The adoption of standard tools, appliances, and methods throughout the shop, the planning done in the planning room and the detailed instructions sent them from this department, added to the direct help received from the four executive bosses, permit the use of comparatively cheap men even on complicated work. Of the men in the machine shop of the Bethlehem Steel Company engaged in running the roughing machines, and who were working under the bonus system when the writer left them, about 95 per cent were handy men trained up from laborers. And on the finishing machines, working on bonus, about 25 per cent were handy men.

To fully understand the importance of the work which was being done by these former laborers, it must be borne in mind that a considerable part of their work was very large and expensive. The forgings which they were engaged in roughing and finishing weighed frequently many tons. Of course they were paid more than laborer's wages, though not as much as skilled machinists. The work in this shop was most miscellaneous in its nature.

Functional foremanship is already in limited use in many of the best managed shops. A number of managers have seen the practical good that arises from allowing two or three men especially trained in their particular lines to deal directly with the men instead of at second hand through the old style gang boss as a mouthpiece. So deep rooted, however, is the conviction that the very foundation of management rests in the military type as represented by the principle that no workman can work under two bosses at the same time, that all of the managers who are making limited use of the functional plan seem to feel it necessary to apologize for or explain away their use of it; as not really in this particular case being a violation of that principle. The writer has never yet found one, except among the works which he had assisted in organizing, who came out squarely and acknowledged that he was using functional foremanship because it was the right principle.

The writer introduced five of the elements of functional foremanship into the management of the small machine shop of the Midvale Steel Company of Philadelphia while he was foreman of that shop in 1882-1883: (1) the instruction card clerk, (2) the time clerk, (3) the inspector, (4) the gang boss, and (5) the shop disciplinarian. Each of these functional foremen dealt directly with the workmen instead of giving their orders through the gang boss. The dealings of the instruction card clerk and time clerk with the workmen were mostly in writing, and the writer himself performed the functions of shop disciplinarian, so that it was not until he introduced the inspector, with orders to go straight to the men instead of to the gang boss, that he appreciated the desirability of functional foremanship as a distinct principle in management. The prepossession in favor of the military type was so strong with the managers and owners of Midvale that it was not until years after functional foremanship was in continual use in this shop that he dared to advocate it to his superior officers as the correct principle.

Until very recently in his organization of works he has found it best to first introduce five or six of the elements of functional foremanship quietly, and get them running smoothly in a shop before calling attention to the principle involved. When the time for this announcement comes, it invariably acts as the proverbial red rag on the bull. It was some years later that the writer subdivided the duties of the "old gang boss" who spent his whole time with the men into the four functions of (1) speed boss, (2) repair boss, (3) inspector, and (4) gang boss, and it is the introduction of these four shop bosses directly helping the men (particularly that of the speed boss) in place of the single old boss, that has produced the greatest improvement in the shop.

When functional foremanship is introduced in a large shop, it is desirable that all of the bosses who are performing the same function should have their own foreman over them; for instance, the speed bosses should have a speed foreman over them, the gang bosses, a head gang boss; the inspectors, a chief inspector, etc., etc. The functions of these over-foremen are twofold. The first part of their work is to teach each of the bosses under them the exact nature of his duties, and at the start, also to nerve and brace them up to the point of insisting that the workmen shall carry out the orders exactly as specified on the instruction cards. This is a difficult task at first, as the workmen have been accustomed for years to do the details of the work to suit themselves, and many of them are intimate friends of the bosses and believe they know quite as much about their business as the latter. The second function of the over-foreman is to smooth out the difficulties which arise between the different types of bosses who in turn directly help the men. The speed boss, for instance, always follows after the gang boss on any particular job in taking charge of the workmen. In this way their respective duties come in contact edgeways, as it were, for a short time, and at the start there is sure to be more or less friction between the two. If two of these bosses meet with a difficulty which they cannot settle, they send for their respective over-foremen, who are usually able to straighten it out. In case the latter are unable to agree on the remedy, the case is referred by them to the assistant superintendent, whose duties, for a certain time at least, may consist largely in arbitrating such difficulties and thus establishing the unwritten code of laws by which the shop is governed. This serves as one example of what is called the "exception principle" in management, which is referred to later.

Before leaving this portion of the subject the writer wishes to call attention to the analogy which functional foremanship bears to the management of a large, up-to-date school. In such a school the children are each day successively taken in hand by one teacher after another who is trained in his particular specialty, and they are in many cases disciplined by a man particularly trained in this function. The old style, one teacher to a class plan is entirely out of date.

The writer has found that better results are attained by placing the planning department in one office, situated, of course, as close to the center of the shop or shops as practicable, rather than by locating its members in different places according to their duties. This department performs more or less the functions of a clearing house. In doing their various duties, its members must exchange information frequently, and since they send their orders to and receive their returns from the men in the shop, principally in writing, simplicity calls for the use, when possible, of a single piece of paper for each job for conveying the instructions of the different members of the planning room to the men and another similar paper for receiving the returns from the men to the department. Writing out these orders and acting promptly on receipt of the returns and recording same requires the members of the department to be close together. The large machine shop of the Bethlehem Steel Company was more than a quarter of a mile long, and this was successfully run from a single planning room situated close to it. The manager, superintendent, and their assistants should, of course, have their offices adjacent to the planning room and, if practicable, the drafting room should be near at hand, thus bringing all of the planning and purely brain work of the establishment close together. The advantages of this concentration were found to be so great at Bethlehem that the general offices of the company, which were formerly located in the business part of the town, about a mile and a half away, were moved into the middle of the works adjacent to the planning room.

The shop, and indeed the whole works, should be managed, not by the manager, superintendent, or foreman, but by the planning department. The daily routine of running the entire works should be carried on by the various functional elements of this department, so that, in theory at least, the works could run smoothly even if the manager, superintendent and their assistants outside the planning room were all to be away for a month at a time.

The following are the leading functions of the planning department:

(a) The complete analysis of all orders for machines or work taken by the company.

(b) Time study for all work done by hand throughout the works, including that done in setting the work in machines, and all bench, vise work and transportation, etc.

(c) Time study for all operations done by the various machines.

(d) The balance of all materials, raw materials, stores and finished parts, and the balance of the work ahead for each class of machines and workmen.

(e) The analysis of all inquiries for new work received in the sales department and promises for time of delivery.

(f) The cost of all items manufactured with complete expense analysis and complete monthly comparative cost and expense exhibits.

(g) The pay department.

(h) The mnemonic symbol system for identification of parts and for charges.

(i) Information bureau.

(j) Standards.

(k) Maintenance of system and plant, and use of the tickler.

(l) Messenger system and post office delivery.

(m) Employment bureau.

(n) Shop disciplinarian.

(o) A mutual accident insurance association.

(p) Rush order department.

(q) Improvement of system or plant.

These several functions may be described more in detail as follows:

(a) THE COMPLETE ANALYSIS OF ALL ORDERS FOR MACHINES OR WORK TAKEN BY THE COMPANY.

This analysis should indicate the designing and drafting required, the machines or parts to be purchased and all data needed by the purchasing agent, and as soon as the necessary drawings and information come from the drafting room the lists of patterns, castings and forgings to be made, together with all instructions for making them, including general and detail drawing, piece number, the mnemonic symbol belonging to each piece (as referred to under (h) below) a complete analysis of the successive operations to be done on each piece, and the exact route which each piece is to travel from place to place in the works.


Back to IndexNext