PHYSIOLOGICAL PROBLEMSA study of the manned space flights and laboratory observations to date suggests that during long periods of weightlessness, some physiological difficulties may arise which may produce serious effects on human performance. Although recent experience gives no grounds for expecting insuperable difficulties, neither the quantity nor quality of the available observations permits the conclusion that long-term exposure to weightlessness willnothave serious consequences. The critical role to be played by the astronaut demands that every effort be made to identify in advancethose phenomena which may affect performance, and to study their qualitative and quantitative relationships so that proper precautions can be taken.Lawton ([ref.197]), in reviewing the literature on prolonged weightlessness, found few instances in which physiological function was truly gravity dependent. He stated that the physiological systems likely to be most affected by weightlessness were the musculoskeletal system, the cardiovascular system, and the equilibrium senses. Subsequent experience proved this to be the case. McCally and Lawton ([ref.198]) analyzed the data from experiments since 1961 and concluded that much more basic laboratory work is necessary. Studies using immobilization, immersion, and cabin-confinement techniques were recommended approaches toward simulating weightlessness.Much of the difficulty in obtaining precise information of anticipated problems arises from a lack of knowledge of normal mammalian physiology. Many of these deficiencies can be remedied in the laboratory. In space-flight development, however, two distinct investigational approaches can be adopted. The first of these may be characterized as empirical and incremental; that is, the capabilities of the astronaut are explored in successive flights involving relatively modest increases in difficulty or severity of the environmental conditions. In this way it is hoped to ascertain the human limitations without running too great a risk. The second approach can be described as fundamental: determining by a series of controlled experiments the effects of exposure to space-flight conditions upon comparative mammalian physiology, with emphasis on man. A fundamental understanding of the observed effects would be sought so that predictions for new situations and possible ways to control them could be made with confidence.It is not possible now to predict for flights of 30 days or more—The effects of sudden reimposition of reentry accelerations and terrestrial gravityChanges in body fluid distribution and compositionThe effects of violent physical effort on respiratory and cardiovascular systems in prolonged weightlessnessCentral nervous system functions, especially coordination, skilled motor performance, judgment, and sleep-wakefulness cyclesNASA has emphasized that planning for manned space programs involves a systematic extension from physiological observations in animals to man, and finally the establishment of man as part of the man-vehicle system design. Moreover, these studies require the evaluation of central nervous, cardiovascular, respiratory, gastrointestinal, and othersystems as a matrix in mutual interdependence. There is particular interest in the effects of weightlessness on flights exceeding 30 days.Mammalian flights of about 30 days also merit attention, including the development of the life-support systems which must precede such a program. Development of facilities for biological experiments may well be an important requirement for studies in anticipation of manned flights of longer duration than Apollo. Unless the biological satellite programs of the type mentioned above are successful in providing the necessary data, a manned orbiting laboratory may also be important in studies of shorter range.General Studies of Biological RhythmicityThe effects of weightlessness on the organism as a whole may be manifested by important changes in certain integrated behavioral patterns having an inherently rhythmic character. Modifications in basic behavioral patterns and performance may occur as disruptions of rhythmic physiological phenomena, which are themselves the end product of interrelated functional activity in a number of physiological systems, such as the neuroendocrine, cardiovascular, and central nervous systems.Measurements of interdependent components of biological rhythmicity are beginning to be analyzed by methods well established in physics—including correlation and spectral analyses, and phase modulation and variance in rhythmic processes. A wide variety of physiological functions can be treated as periodic variables in the analysis, including rhythmicities in cardiac output and blood pressure, respiration, brain waves, and the slower tides of appetite, and sleep-wakefulness. The importance of such investigations argues for their inclusion in forthcoming flight programs. Their experimental simplicity is an additional advantage. Biorhythms have been discussed in more detail in the section on "Environmental Biology."Effects of Weightlessness on the Cardiovascular SystemEarlobe oximetry, indirect measurements of blood flow and of blood pressure by finger plethysmography or impedance plethysmography, and ballistocardiographic techniques have potential application to manned space flight.Adaptation to prolonged exposure to weightlessness or to lunar gravity may cause difficulties when the astronaut is exposed again to reentry forces and terrestrial gravity. It is possible that these adaptive changes may thus produce unacceptable effects on performance or cause risk to life. It is important to obtain experimental evidence on this subject.It is common knowledge that following a stay in bed, dizziness,faintness, and weakness characterize arising, and that a feeling of general weakness may persist for several days. The phenomenon has been investigated in a number of laboratories. One approach has been to put healthy young subjects to bed, and even in extensive casts for periods of 2 or 3 weeks or more. Two major findings have emerged from these studies. First, a substantial adjustment in the blood circulatory system occurs, which is termed the "hypodynamic state." Second, there is a large decrease in the skeletal and muscle mass of the body.There are two kinds of evidence for the hypodynamic state: measurement of parameters of circulatory function, and measurement of the response of the individuals to a quantitatively imposed mild gravitational load. After 3 weeks in bed, otherwise healthy persons exhibit an increase of more than 20 percent in heart rate; a reduction of 10 to 20 percent in total blood volume, primarily as a result of reduction of plasma volume; and a decrease in heart size of about 8 percent. Coupled with these cardiovascular changes is a reduction of 10 percent in the basal metabolic rate. It appears as though the circulation and metabolism are reset to a lower functional level commensurate with the reduced demands placed on the whole organism.After 3 weeks of bed rest, all of the subjects tested showed pronounced orthostatic hypotension. After tilting, the average heart rate increased by 37 beats per minute, the systolic blood pressure fell some 12-mm Hg, and some of the subjects fainted. The measurements were continued for 16 days after the bed-rest period, and it was round that recovery was not quite complete when the experiment was terminated.There is little question that in prolonged exposures to the weightless state, there is a fair probability of extensive circulatory adjustments, the seriousness of which cannot yet be foretold. While it is likely that the astronauts will adapt successfully to long periods of weightlessness at some new circulatory functional level, the remote possibility exists that the circulatory changes may be progressive to the point of ultimate failure.
PHYSIOLOGICAL PROBLEMSA study of the manned space flights and laboratory observations to date suggests that during long periods of weightlessness, some physiological difficulties may arise which may produce serious effects on human performance. Although recent experience gives no grounds for expecting insuperable difficulties, neither the quantity nor quality of the available observations permits the conclusion that long-term exposure to weightlessness willnothave serious consequences. The critical role to be played by the astronaut demands that every effort be made to identify in advancethose phenomena which may affect performance, and to study their qualitative and quantitative relationships so that proper precautions can be taken.Lawton ([ref.197]), in reviewing the literature on prolonged weightlessness, found few instances in which physiological function was truly gravity dependent. He stated that the physiological systems likely to be most affected by weightlessness were the musculoskeletal system, the cardiovascular system, and the equilibrium senses. Subsequent experience proved this to be the case. McCally and Lawton ([ref.198]) analyzed the data from experiments since 1961 and concluded that much more basic laboratory work is necessary. Studies using immobilization, immersion, and cabin-confinement techniques were recommended approaches toward simulating weightlessness.Much of the difficulty in obtaining precise information of anticipated problems arises from a lack of knowledge of normal mammalian physiology. Many of these deficiencies can be remedied in the laboratory. In space-flight development, however, two distinct investigational approaches can be adopted. The first of these may be characterized as empirical and incremental; that is, the capabilities of the astronaut are explored in successive flights involving relatively modest increases in difficulty or severity of the environmental conditions. In this way it is hoped to ascertain the human limitations without running too great a risk. The second approach can be described as fundamental: determining by a series of controlled experiments the effects of exposure to space-flight conditions upon comparative mammalian physiology, with emphasis on man. A fundamental understanding of the observed effects would be sought so that predictions for new situations and possible ways to control them could be made with confidence.It is not possible now to predict for flights of 30 days or more—The effects of sudden reimposition of reentry accelerations and terrestrial gravityChanges in body fluid distribution and compositionThe effects of violent physical effort on respiratory and cardiovascular systems in prolonged weightlessnessCentral nervous system functions, especially coordination, skilled motor performance, judgment, and sleep-wakefulness cyclesNASA has emphasized that planning for manned space programs involves a systematic extension from physiological observations in animals to man, and finally the establishment of man as part of the man-vehicle system design. Moreover, these studies require the evaluation of central nervous, cardiovascular, respiratory, gastrointestinal, and othersystems as a matrix in mutual interdependence. There is particular interest in the effects of weightlessness on flights exceeding 30 days.Mammalian flights of about 30 days also merit attention, including the development of the life-support systems which must precede such a program. Development of facilities for biological experiments may well be an important requirement for studies in anticipation of manned flights of longer duration than Apollo. Unless the biological satellite programs of the type mentioned above are successful in providing the necessary data, a manned orbiting laboratory may also be important in studies of shorter range.General Studies of Biological RhythmicityThe effects of weightlessness on the organism as a whole may be manifested by important changes in certain integrated behavioral patterns having an inherently rhythmic character. Modifications in basic behavioral patterns and performance may occur as disruptions of rhythmic physiological phenomena, which are themselves the end product of interrelated functional activity in a number of physiological systems, such as the neuroendocrine, cardiovascular, and central nervous systems.Measurements of interdependent components of biological rhythmicity are beginning to be analyzed by methods well established in physics—including correlation and spectral analyses, and phase modulation and variance in rhythmic processes. A wide variety of physiological functions can be treated as periodic variables in the analysis, including rhythmicities in cardiac output and blood pressure, respiration, brain waves, and the slower tides of appetite, and sleep-wakefulness. The importance of such investigations argues for their inclusion in forthcoming flight programs. Their experimental simplicity is an additional advantage. Biorhythms have been discussed in more detail in the section on "Environmental Biology."Effects of Weightlessness on the Cardiovascular SystemEarlobe oximetry, indirect measurements of blood flow and of blood pressure by finger plethysmography or impedance plethysmography, and ballistocardiographic techniques have potential application to manned space flight.Adaptation to prolonged exposure to weightlessness or to lunar gravity may cause difficulties when the astronaut is exposed again to reentry forces and terrestrial gravity. It is possible that these adaptive changes may thus produce unacceptable effects on performance or cause risk to life. It is important to obtain experimental evidence on this subject.It is common knowledge that following a stay in bed, dizziness,faintness, and weakness characterize arising, and that a feeling of general weakness may persist for several days. The phenomenon has been investigated in a number of laboratories. One approach has been to put healthy young subjects to bed, and even in extensive casts for periods of 2 or 3 weeks or more. Two major findings have emerged from these studies. First, a substantial adjustment in the blood circulatory system occurs, which is termed the "hypodynamic state." Second, there is a large decrease in the skeletal and muscle mass of the body.There are two kinds of evidence for the hypodynamic state: measurement of parameters of circulatory function, and measurement of the response of the individuals to a quantitatively imposed mild gravitational load. After 3 weeks in bed, otherwise healthy persons exhibit an increase of more than 20 percent in heart rate; a reduction of 10 to 20 percent in total blood volume, primarily as a result of reduction of plasma volume; and a decrease in heart size of about 8 percent. Coupled with these cardiovascular changes is a reduction of 10 percent in the basal metabolic rate. It appears as though the circulation and metabolism are reset to a lower functional level commensurate with the reduced demands placed on the whole organism.After 3 weeks of bed rest, all of the subjects tested showed pronounced orthostatic hypotension. After tilting, the average heart rate increased by 37 beats per minute, the systolic blood pressure fell some 12-mm Hg, and some of the subjects fainted. The measurements were continued for 16 days after the bed-rest period, and it was round that recovery was not quite complete when the experiment was terminated.There is little question that in prolonged exposures to the weightless state, there is a fair probability of extensive circulatory adjustments, the seriousness of which cannot yet be foretold. While it is likely that the astronauts will adapt successfully to long periods of weightlessness at some new circulatory functional level, the remote possibility exists that the circulatory changes may be progressive to the point of ultimate failure.
PHYSIOLOGICAL PROBLEMSA study of the manned space flights and laboratory observations to date suggests that during long periods of weightlessness, some physiological difficulties may arise which may produce serious effects on human performance. Although recent experience gives no grounds for expecting insuperable difficulties, neither the quantity nor quality of the available observations permits the conclusion that long-term exposure to weightlessness willnothave serious consequences. The critical role to be played by the astronaut demands that every effort be made to identify in advancethose phenomena which may affect performance, and to study their qualitative and quantitative relationships so that proper precautions can be taken.Lawton ([ref.197]), in reviewing the literature on prolonged weightlessness, found few instances in which physiological function was truly gravity dependent. He stated that the physiological systems likely to be most affected by weightlessness were the musculoskeletal system, the cardiovascular system, and the equilibrium senses. Subsequent experience proved this to be the case. McCally and Lawton ([ref.198]) analyzed the data from experiments since 1961 and concluded that much more basic laboratory work is necessary. Studies using immobilization, immersion, and cabin-confinement techniques were recommended approaches toward simulating weightlessness.Much of the difficulty in obtaining precise information of anticipated problems arises from a lack of knowledge of normal mammalian physiology. Many of these deficiencies can be remedied in the laboratory. In space-flight development, however, two distinct investigational approaches can be adopted. The first of these may be characterized as empirical and incremental; that is, the capabilities of the astronaut are explored in successive flights involving relatively modest increases in difficulty or severity of the environmental conditions. In this way it is hoped to ascertain the human limitations without running too great a risk. The second approach can be described as fundamental: determining by a series of controlled experiments the effects of exposure to space-flight conditions upon comparative mammalian physiology, with emphasis on man. A fundamental understanding of the observed effects would be sought so that predictions for new situations and possible ways to control them could be made with confidence.It is not possible now to predict for flights of 30 days or more—The effects of sudden reimposition of reentry accelerations and terrestrial gravityChanges in body fluid distribution and compositionThe effects of violent physical effort on respiratory and cardiovascular systems in prolonged weightlessnessCentral nervous system functions, especially coordination, skilled motor performance, judgment, and sleep-wakefulness cyclesNASA has emphasized that planning for manned space programs involves a systematic extension from physiological observations in animals to man, and finally the establishment of man as part of the man-vehicle system design. Moreover, these studies require the evaluation of central nervous, cardiovascular, respiratory, gastrointestinal, and othersystems as a matrix in mutual interdependence. There is particular interest in the effects of weightlessness on flights exceeding 30 days.Mammalian flights of about 30 days also merit attention, including the development of the life-support systems which must precede such a program. Development of facilities for biological experiments may well be an important requirement for studies in anticipation of manned flights of longer duration than Apollo. Unless the biological satellite programs of the type mentioned above are successful in providing the necessary data, a manned orbiting laboratory may also be important in studies of shorter range.General Studies of Biological RhythmicityThe effects of weightlessness on the organism as a whole may be manifested by important changes in certain integrated behavioral patterns having an inherently rhythmic character. Modifications in basic behavioral patterns and performance may occur as disruptions of rhythmic physiological phenomena, which are themselves the end product of interrelated functional activity in a number of physiological systems, such as the neuroendocrine, cardiovascular, and central nervous systems.Measurements of interdependent components of biological rhythmicity are beginning to be analyzed by methods well established in physics—including correlation and spectral analyses, and phase modulation and variance in rhythmic processes. A wide variety of physiological functions can be treated as periodic variables in the analysis, including rhythmicities in cardiac output and blood pressure, respiration, brain waves, and the slower tides of appetite, and sleep-wakefulness. The importance of such investigations argues for their inclusion in forthcoming flight programs. Their experimental simplicity is an additional advantage. Biorhythms have been discussed in more detail in the section on "Environmental Biology."Effects of Weightlessness on the Cardiovascular SystemEarlobe oximetry, indirect measurements of blood flow and of blood pressure by finger plethysmography or impedance plethysmography, and ballistocardiographic techniques have potential application to manned space flight.Adaptation to prolonged exposure to weightlessness or to lunar gravity may cause difficulties when the astronaut is exposed again to reentry forces and terrestrial gravity. It is possible that these adaptive changes may thus produce unacceptable effects on performance or cause risk to life. It is important to obtain experimental evidence on this subject.It is common knowledge that following a stay in bed, dizziness,faintness, and weakness characterize arising, and that a feeling of general weakness may persist for several days. The phenomenon has been investigated in a number of laboratories. One approach has been to put healthy young subjects to bed, and even in extensive casts for periods of 2 or 3 weeks or more. Two major findings have emerged from these studies. First, a substantial adjustment in the blood circulatory system occurs, which is termed the "hypodynamic state." Second, there is a large decrease in the skeletal and muscle mass of the body.There are two kinds of evidence for the hypodynamic state: measurement of parameters of circulatory function, and measurement of the response of the individuals to a quantitatively imposed mild gravitational load. After 3 weeks in bed, otherwise healthy persons exhibit an increase of more than 20 percent in heart rate; a reduction of 10 to 20 percent in total blood volume, primarily as a result of reduction of plasma volume; and a decrease in heart size of about 8 percent. Coupled with these cardiovascular changes is a reduction of 10 percent in the basal metabolic rate. It appears as though the circulation and metabolism are reset to a lower functional level commensurate with the reduced demands placed on the whole organism.After 3 weeks of bed rest, all of the subjects tested showed pronounced orthostatic hypotension. After tilting, the average heart rate increased by 37 beats per minute, the systolic blood pressure fell some 12-mm Hg, and some of the subjects fainted. The measurements were continued for 16 days after the bed-rest period, and it was round that recovery was not quite complete when the experiment was terminated.There is little question that in prolonged exposures to the weightless state, there is a fair probability of extensive circulatory adjustments, the seriousness of which cannot yet be foretold. While it is likely that the astronauts will adapt successfully to long periods of weightlessness at some new circulatory functional level, the remote possibility exists that the circulatory changes may be progressive to the point of ultimate failure.
A study of the manned space flights and laboratory observations to date suggests that during long periods of weightlessness, some physiological difficulties may arise which may produce serious effects on human performance. Although recent experience gives no grounds for expecting insuperable difficulties, neither the quantity nor quality of the available observations permits the conclusion that long-term exposure to weightlessness willnothave serious consequences. The critical role to be played by the astronaut demands that every effort be made to identify in advancethose phenomena which may affect performance, and to study their qualitative and quantitative relationships so that proper precautions can be taken.
Lawton ([ref.197]), in reviewing the literature on prolonged weightlessness, found few instances in which physiological function was truly gravity dependent. He stated that the physiological systems likely to be most affected by weightlessness were the musculoskeletal system, the cardiovascular system, and the equilibrium senses. Subsequent experience proved this to be the case. McCally and Lawton ([ref.198]) analyzed the data from experiments since 1961 and concluded that much more basic laboratory work is necessary. Studies using immobilization, immersion, and cabin-confinement techniques were recommended approaches toward simulating weightlessness.
Much of the difficulty in obtaining precise information of anticipated problems arises from a lack of knowledge of normal mammalian physiology. Many of these deficiencies can be remedied in the laboratory. In space-flight development, however, two distinct investigational approaches can be adopted. The first of these may be characterized as empirical and incremental; that is, the capabilities of the astronaut are explored in successive flights involving relatively modest increases in difficulty or severity of the environmental conditions. In this way it is hoped to ascertain the human limitations without running too great a risk. The second approach can be described as fundamental: determining by a series of controlled experiments the effects of exposure to space-flight conditions upon comparative mammalian physiology, with emphasis on man. A fundamental understanding of the observed effects would be sought so that predictions for new situations and possible ways to control them could be made with confidence.
It is not possible now to predict for flights of 30 days or more—
The effects of sudden reimposition of reentry accelerations and terrestrial gravity
Changes in body fluid distribution and composition
The effects of violent physical effort on respiratory and cardiovascular systems in prolonged weightlessness
Central nervous system functions, especially coordination, skilled motor performance, judgment, and sleep-wakefulness cycles
NASA has emphasized that planning for manned space programs involves a systematic extension from physiological observations in animals to man, and finally the establishment of man as part of the man-vehicle system design. Moreover, these studies require the evaluation of central nervous, cardiovascular, respiratory, gastrointestinal, and othersystems as a matrix in mutual interdependence. There is particular interest in the effects of weightlessness on flights exceeding 30 days.
Mammalian flights of about 30 days also merit attention, including the development of the life-support systems which must precede such a program. Development of facilities for biological experiments may well be an important requirement for studies in anticipation of manned flights of longer duration than Apollo. Unless the biological satellite programs of the type mentioned above are successful in providing the necessary data, a manned orbiting laboratory may also be important in studies of shorter range.
General Studies of Biological RhythmicityThe effects of weightlessness on the organism as a whole may be manifested by important changes in certain integrated behavioral patterns having an inherently rhythmic character. Modifications in basic behavioral patterns and performance may occur as disruptions of rhythmic physiological phenomena, which are themselves the end product of interrelated functional activity in a number of physiological systems, such as the neuroendocrine, cardiovascular, and central nervous systems.Measurements of interdependent components of biological rhythmicity are beginning to be analyzed by methods well established in physics—including correlation and spectral analyses, and phase modulation and variance in rhythmic processes. A wide variety of physiological functions can be treated as periodic variables in the analysis, including rhythmicities in cardiac output and blood pressure, respiration, brain waves, and the slower tides of appetite, and sleep-wakefulness. The importance of such investigations argues for their inclusion in forthcoming flight programs. Their experimental simplicity is an additional advantage. Biorhythms have been discussed in more detail in the section on "Environmental Biology."
The effects of weightlessness on the organism as a whole may be manifested by important changes in certain integrated behavioral patterns having an inherently rhythmic character. Modifications in basic behavioral patterns and performance may occur as disruptions of rhythmic physiological phenomena, which are themselves the end product of interrelated functional activity in a number of physiological systems, such as the neuroendocrine, cardiovascular, and central nervous systems.
Measurements of interdependent components of biological rhythmicity are beginning to be analyzed by methods well established in physics—including correlation and spectral analyses, and phase modulation and variance in rhythmic processes. A wide variety of physiological functions can be treated as periodic variables in the analysis, including rhythmicities in cardiac output and blood pressure, respiration, brain waves, and the slower tides of appetite, and sleep-wakefulness. The importance of such investigations argues for their inclusion in forthcoming flight programs. Their experimental simplicity is an additional advantage. Biorhythms have been discussed in more detail in the section on "Environmental Biology."
Effects of Weightlessness on the Cardiovascular SystemEarlobe oximetry, indirect measurements of blood flow and of blood pressure by finger plethysmography or impedance plethysmography, and ballistocardiographic techniques have potential application to manned space flight.Adaptation to prolonged exposure to weightlessness or to lunar gravity may cause difficulties when the astronaut is exposed again to reentry forces and terrestrial gravity. It is possible that these adaptive changes may thus produce unacceptable effects on performance or cause risk to life. It is important to obtain experimental evidence on this subject.It is common knowledge that following a stay in bed, dizziness,faintness, and weakness characterize arising, and that a feeling of general weakness may persist for several days. The phenomenon has been investigated in a number of laboratories. One approach has been to put healthy young subjects to bed, and even in extensive casts for periods of 2 or 3 weeks or more. Two major findings have emerged from these studies. First, a substantial adjustment in the blood circulatory system occurs, which is termed the "hypodynamic state." Second, there is a large decrease in the skeletal and muscle mass of the body.There are two kinds of evidence for the hypodynamic state: measurement of parameters of circulatory function, and measurement of the response of the individuals to a quantitatively imposed mild gravitational load. After 3 weeks in bed, otherwise healthy persons exhibit an increase of more than 20 percent in heart rate; a reduction of 10 to 20 percent in total blood volume, primarily as a result of reduction of plasma volume; and a decrease in heart size of about 8 percent. Coupled with these cardiovascular changes is a reduction of 10 percent in the basal metabolic rate. It appears as though the circulation and metabolism are reset to a lower functional level commensurate with the reduced demands placed on the whole organism.After 3 weeks of bed rest, all of the subjects tested showed pronounced orthostatic hypotension. After tilting, the average heart rate increased by 37 beats per minute, the systolic blood pressure fell some 12-mm Hg, and some of the subjects fainted. The measurements were continued for 16 days after the bed-rest period, and it was round that recovery was not quite complete when the experiment was terminated.There is little question that in prolonged exposures to the weightless state, there is a fair probability of extensive circulatory adjustments, the seriousness of which cannot yet be foretold. While it is likely that the astronauts will adapt successfully to long periods of weightlessness at some new circulatory functional level, the remote possibility exists that the circulatory changes may be progressive to the point of ultimate failure.
Earlobe oximetry, indirect measurements of blood flow and of blood pressure by finger plethysmography or impedance plethysmography, and ballistocardiographic techniques have potential application to manned space flight.
Adaptation to prolonged exposure to weightlessness or to lunar gravity may cause difficulties when the astronaut is exposed again to reentry forces and terrestrial gravity. It is possible that these adaptive changes may thus produce unacceptable effects on performance or cause risk to life. It is important to obtain experimental evidence on this subject.
It is common knowledge that following a stay in bed, dizziness,faintness, and weakness characterize arising, and that a feeling of general weakness may persist for several days. The phenomenon has been investigated in a number of laboratories. One approach has been to put healthy young subjects to bed, and even in extensive casts for periods of 2 or 3 weeks or more. Two major findings have emerged from these studies. First, a substantial adjustment in the blood circulatory system occurs, which is termed the "hypodynamic state." Second, there is a large decrease in the skeletal and muscle mass of the body.
There are two kinds of evidence for the hypodynamic state: measurement of parameters of circulatory function, and measurement of the response of the individuals to a quantitatively imposed mild gravitational load. After 3 weeks in bed, otherwise healthy persons exhibit an increase of more than 20 percent in heart rate; a reduction of 10 to 20 percent in total blood volume, primarily as a result of reduction of plasma volume; and a decrease in heart size of about 8 percent. Coupled with these cardiovascular changes is a reduction of 10 percent in the basal metabolic rate. It appears as though the circulation and metabolism are reset to a lower functional level commensurate with the reduced demands placed on the whole organism.
After 3 weeks of bed rest, all of the subjects tested showed pronounced orthostatic hypotension. After tilting, the average heart rate increased by 37 beats per minute, the systolic blood pressure fell some 12-mm Hg, and some of the subjects fainted. The measurements were continued for 16 days after the bed-rest period, and it was round that recovery was not quite complete when the experiment was terminated.
There is little question that in prolonged exposures to the weightless state, there is a fair probability of extensive circulatory adjustments, the seriousness of which cannot yet be foretold. While it is likely that the astronauts will adapt successfully to long periods of weightlessness at some new circulatory functional level, the remote possibility exists that the circulatory changes may be progressive to the point of ultimate failure.