Chapter 3

"The tests were planned with a view of determining the amount of stress (tension and bond) developed in the stirrups. However, forvarious reasons, the results are of less value than was expected. The beams were not all made according to the plans. In the 1907 tests, the stirrups in a few of the beams were poorly placed and even left exposed at the face of the beam, and a variation in the temperature conditions of the laboratory also affected the results. It is evident from the results that the stresses developed in the stirrups are less than they were calculated to be, and hence the layout was not well planned to settle the points at issue. The tests, however, give considerable information on the effectiveness of stirrups in providing web resistance.""A feature of the tests of beams with stirrups is slow failure, the load holding well up to the maximum under increased deflection and giving warning of its condition.""Not enough information was obtained to determine the actual final occasion of failure in these tests. In a number of cases the stirrups slipped, in others it seemed that the steel in the stirrups was stretched beyond its elastic limit, and in some cases the stirrups broke.""As already stated, slip of stirrups and insufficient bond resistance were in many cases the immediate cause of diagonal tension failures, and therefore bond resistance of stirrups may be considered a critical stress."

"The tests were planned with a view of determining the amount of stress (tension and bond) developed in the stirrups. However, forvarious reasons, the results are of less value than was expected. The beams were not all made according to the plans. In the 1907 tests, the stirrups in a few of the beams were poorly placed and even left exposed at the face of the beam, and a variation in the temperature conditions of the laboratory also affected the results. It is evident from the results that the stresses developed in the stirrups are less than they were calculated to be, and hence the layout was not well planned to settle the points at issue. The tests, however, give considerable information on the effectiveness of stirrups in providing web resistance."

"A feature of the tests of beams with stirrups is slow failure, the load holding well up to the maximum under increased deflection and giving warning of its condition."

"Not enough information was obtained to determine the actual final occasion of failure in these tests. In a number of cases the stirrups slipped, in others it seemed that the steel in the stirrups was stretched beyond its elastic limit, and in some cases the stirrups broke."

"As already stated, slip of stirrups and insufficient bond resistance were in many cases the immediate cause of diagonal tension failures, and therefore bond resistance of stirrups may be considered a critical stress."

These quotations seem to indicate much more effectiveness in the action of vertical stirrups than the author would lead one to infer from his criticisms. It is rather surprising that he advocates so strongly the use of a suspension system of reinforcement. That variety has been used abroad for many years, and numerous German experiments have proved with practical conclusiveness that the suspension system is not as efficient as the one in which vertical stirrups are used with a proper arrangement. An example is the conclusion arrived at by Mörsch, in "Eisenbetonbau," from a series of tests carried out by him near the end of 1906:

"It follows that with uniform loads, the suspended system of reinforcement does not give any increase of safety against the appearance of diagonal tension cracks, or the final failure produced by them, as compared with straight rods without stirrups, and that stirrups are so much the more necessary."

"It follows that with uniform loads, the suspended system of reinforcement does not give any increase of safety against the appearance of diagonal tension cracks, or the final failure produced by them, as compared with straight rods without stirrups, and that stirrups are so much the more necessary."

Again, with regard to tests made with two concentrated loads, he writes:

"The stirrups, supplied on one end, through their tensile strength, hindered the formation of diagonal cracks and showed themselves essential and indispensable elements in the * * * [suspension] system. The limit of their effect is, however, not disclosed by these experiments. * * * In any case, from the results of the second group of experiments can be deduced the facts that the bending of the reinforcement according to the theory concerning the diagonal tensile stress * * * is much more effective than according to the suspension theory, in this case the ultimate loads being in the proportion of 34: 23.4: 25.6."

"The stirrups, supplied on one end, through their tensile strength, hindered the formation of diagonal cracks and showed themselves essential and indispensable elements in the * * * [suspension] system. The limit of their effect is, however, not disclosed by these experiments. * * * In any case, from the results of the second group of experiments can be deduced the facts that the bending of the reinforcement according to the theory concerning the diagonal tensile stress * * * is much more effective than according to the suspension theory, in this case the ultimate loads being in the proportion of 34: 23.4: 25.6."

It is the speaker's opinion that the majority of the failures described in Bulletin No. 29 of the University of Illinois Experiment Station, which are ascribed to diagonal tension, were actually due to deficient anchorage of the upper ends of the stirrups.

Some years ago the speaker demonstrated to his own satisfaction, the practical value of vertical stirrups. Several beams were built identical in every respect except in the size of wire used for web reinforcement. The latter varied from nothing to 3/8-in. round by five steps. The beams were similarly tested to destruction, and the ultimate load and type of failure varied in a very definite ratio to the area of vertical steel.

With regard to the author's seventh point, the speaker concurs heartily as far as it has to do with a criticism of the usual design of continuous beams, but his experience with beams designed as suggested by the author is that failure will take place eventually by vertical cracks starting from the top of the beams close to the supports and working downward so as to endanger very seriously the strength of the structures involved. This type of failure was prophesied by the speaker a number of years ago, and almost every examination which he has lately made of concrete buildings, erected for five years or longer and designed practically in accord with the author's suggestion, have disclosed such dangerous features, traceable directly to the ideas described in the paper. These ideas are held by many other engineers, as well as being advocated by the author. The only conditions under which the speaker would permit of the design of a continuous series of beams as simple members would be when they are entirely separated from each other over the supports, as by the introduction of artificial joints produced by a double thickness of sheet metal or building paper. Even under these conditions, the speaker's experience with separately moulded members, manufactured in a shop and subsequently erected, has shown that similar top cracking may take place under certain circumstances, due to the vertical pressures caused by the reactions at the supports. It is very doubtful whether the action described by the author, as to the type of failure which would probably take place with his method of design, would be as described by him, but the beams would be likely to crack as described above, in accordance with the speaker's experience, so that the whole load supported by the beam would be carried by the reinforcing rods which extend from the beam into the supports and are almost invariably entirely horizontal at such points. The load would thus be carried more nearly by the shearing strength of the steel than is otherwise possible to develop that type of stress. In every instance the latter is a dangerous element.

This effect of vertical abutment action on a reinforced beam was very marked in the beam built of bricks and tested by the speaker, as described in the discussion[J]of the paper by John S. Sewell, M. Am,Soc. S. E., on "The Economical Design of Reinforced Concrete Floor Systems for Fire-Resisting Structures." That experiment also went far toward showing the efficacy of vertical stirrups.

The same discussion also contains a description of a pair of beams tested for comparative purposes, in one of which adhesion between the concrete and the main reinforcing rods was possible only on the upper half of the exterior surfaces of the latter rods except for short distances near the ends. Stirrups were used, however. The fact that the beam, which was theoretically very deficient in adhesion, failed in compression, while the similar beam without stirrups, but with the most perfect adhesion, and anchorage obtainable through the use of large end hooks, failed in bond, has led the speaker to believe that, in affording adhesive resistance, the upper half of a bar is much more effective than the lower half. This seems to be demonstrated further by comparisons between simple adhesion experiments and those obtained with beams.

The speaker heartily concurs with the author's criticism of the amount of time usually given by designing engineers to the determination of the adhesive stresses developed in concrete beams, but, according to the speaker's recollection, these matters are not so poorly treated in some books as might be inferred by the author's language. For example, both Bulletin No. 29, of the University of Illinois, and Mörsch, in "Eisenbetonbau," give them considerable attention.

The ninth point raised by the author is well taken. Too great emphasis cannot be laid on the inadequacy of design disclosed by an examination of many T-beams.

Such ready concurrence, however, is not lent to the author's tenth point. While it is true that, under all usual assumptions, except those made by the author, an extremely simple formula for the resisting moment of a reinforced concrete beam cannot be obtained, still his formula falls so far short of fitting even with approximate correctness the large number of well-known experiments which have been published, that a little more mathematical gymnastic ability on the part of the author and of other advocates of extreme simplicity would seem very necessary, and will produce structures which are far more economical and amply safe structurally, compared with those which would be produced in accordance with his recommendations.

As to the eleventh point, in regard to the complex nature of the formulas for chimneys and other structures of a more or less complex beam nature, the graphical methods developed by numerous German and Italian writers are recommended, as they are fully as simple as the rather crude method advocated by the author, and are in almost identical accord with the most exacting analytical methods.

With regard to the author's twelfth point, concerning deflection calculations, it would seem that they play such a small part in reinforced concrete design, and are required so rarely, that any engineerwho finds it necessary to make analytical investigations of possible deflections would better use the most precise analysis at his command, rather than fall back on simpler but much more approximate devices such as the one advocated by the author.

Much of the criticism contained in the author's thirteenth point, concerning the application of the elastic theory to the design of concrete arches, is justified, because designing engineers do not carry the theory to its logical conclusion nor take into account the actual stresses which may be expected from slight changes of span, settlements of abutments, and unexpected amounts of shrinkage in the arch ring or ribs. Where conditions indicate that such changes are likely to take place, as is almost invariably the case unless the foundations are upon good rock and the arch ring has been concreted in relatively short sections, with ample time and device to allow for initial shrinkage; or unless the design is arranged and the structure erected so that hinges are provided at the abutments to act during the striking of the falsework, which hinges are afterward wedged or grouted so as to produce fixation of the arch ends—unless all these points are carefully considered in the design and erection, it is the speaker's opinion that the elastic theory is rarely properly applicable, and the use of the equilibrium polygon recommended by the author is much preferable and actually more accurate. But there must be consistency in its use, as well, that is, consistency between methods of design and erection.

The author's fourteenth point—the determination of temperature stresses in a reinforced concrete arch—is to be considered in the same light as that described under the foregoing points, but it seems a little amusing that the author should finally advocate a design of concrete arch which actually has no hinges, namely, one consisting of practically rigid blocks, after he has condemned so heartily the use of the elastic theory.

A careful analysis of the data already available with regard to the heat conductivity of concrete, applied to reinforced concrete structures like arches, dams, retaining walls, etc., in accordance with the well-known but somewhat intricate mathematical formulas covering the laws of heat conductivity and radiation so clearly enunciated by Fourier, has convinced the speaker that it is well within the bounds of engineering practice to predict and care for the stresses which will be produced in structures of the simplest forms, at least as far as they are affected by temperature changes.

The speaker concurs with the author in his criticism, contained in the fifteenth point, with regard to the design of the steel reinforcement in columns and other compression members. While there may be some question as to the falsity or truth of the theory underlying certain types of design, it is unquestioned that some schemes of arrangement undoubtedly produce designs with dangerous properties. The speakerhas several times called attention to this point, in papers and discussions, and invariably in his own practice requires that the spacing of spirals, hoops, or ties be many times less than that usually required by building regulations and found in almost every concrete structure. Mörsch, in his "Eisenbetonbau," calls attention to the fact that very definite limits should be placed on the maximum size of longitudinal rods as well as on their minimum diameters, and on the maximum spacing of ties, where columns are reinforced largely by longitudinal members. He goes so far as to state that:

"It is seen from * * * [the results obtained] that an increase in the area of longitudinal reinforcement does not produce an increase in the breaking strength to the extent which would be indicated by the formula. * * * In inexperienced hands this formula may give rise to constructions which are not sufficiently safe."

"It is seen from * * * [the results obtained] that an increase in the area of longitudinal reinforcement does not produce an increase in the breaking strength to the extent which would be indicated by the formula. * * * In inexperienced hands this formula may give rise to constructions which are not sufficiently safe."

Again, with regard to the spacing of spirals and the combination with them of longitudinal rods, in connection with some tests carried out by Mörsch, the conclusion is as follows:

"On the whole, the tests seem to prove that when the spirals are increased in strength, their pitch must be decreased, and the cross-section or number of the longitudinal rods must be increased."

"On the whole, the tests seem to prove that when the spirals are increased in strength, their pitch must be decreased, and the cross-section or number of the longitudinal rods must be increased."

In the majority of cases, the spiral or band spacing is altogether too large, and, from conversations with Considère, the speaker understands that to be the inventor's view as well.

The speaker makes use of the scheme mentioned by the author in regard to the design of flat slabs supported on more than two sides (noted in the sixteenth point), namely, that of dividing the area into strips, the moments of which are determined so as to produce computed deflections which are equal in the two strips running at right angles at each point of intersection. This method, however, requires a large amount of analytical work for any special case, and the speaker is mildly surprised that the author cannot recommend some simpler method so as to carry out his general scheme of extreme simplification of methods and design.

If use is to be made at all of deflection observations, theories, and formulas, account should certainly be taken of the actual settlements and other deflections which invariably occur in Nature at points of support. These changes of level, or slope, or both, actually alter very considerably the stresses as usually computed, and, in all rigorous design work, should be considered.

On the whole, the speaker believes that the author has put himself in the class with most iconoclasts, in that he has overshot his mark. There seems to be a very important point, however, on which he has touched, namely, the lack of care exercised by most designers with regard to those items which most nearly correspond with the so-called "details" of structural steel work, and are fully as important in reinforced concrete as in steel. It is comparatively a small matter to proportion a simple reinforced concrete beam at its intersection to resist a given moment, but the carrying out of that item of the work is only a start on the long road which should lead through the consideration of every detail, not the least important of which are such items as most of the sixteen points raised by the author.

The author has done the profession a great service by raising these questions, and, while full concurrence is not had with him in all points, still the speaker desires to express his hearty thanks for starting what is hoped will be a complete discussion of the really vital matter of detailing reinforced concrete design work.

Albin H. Beyer, Esq.—Mr. Goodrich has brought out very clearly the efficiency of vertical stirrups. As Mr. Godfrey states that explanations of how stirrups act are conspicuous in the literature of reinforced concrete by their absence, the speaker will try to explain their action in a reinforced concrete beam.

It is well known that the internal static conditions in reinforced concrete beams change to some extent with the intensity of the direct or normal stresses in the steel and concrete. In order to bring out his point, the speaker will trace, in such a beam, the changes in the internal static conditions due to increasing vertical loads.

Fig. 8.Fig. 8.

LetFig. 8represent a beam reinforced by horizontal steel rods of such diameter that there is no possibility of failure from lack of adhesion of the concrete to the steel. The beam is subjected to the vertical loads, ΣP. For low unit stresses in the concrete, the neutral surface,n n, is approximately in the middle of the beam. Gradually increase the loads, ΣP, until the steel reaches an elongation of from 0.01 to 0.02 of 1%, corresponding to tensile stresses in the steel of from 3,000 to 6,000 lb. per sq. in. At this stage plain concrete would have reached its ultimate elongation. It is known, however, that reinforced concrete, when well made, can sustain without rupture much greater elongations; tests have shown that its ultimate elongation may be as high as 0.1 of 1%, corresponding to tensions in steel of 30,000 lb. per sq. in.

Reinforced concrete structures ordinarily show tensile cracks at very much lower unit stresses in the steel. The main cause of these cracks is as follows: Reinforced concrete setting in dry air undergoes considerable shrinkage during the first few days, when it has very little resistance. This tendency to shrink being opposed by the reinforcement at a time when the concrete does not possess the necessary strength or ductility, causes invisible cracks or planes of weakness in the concrete. These cracks open and become visible at very low unit stresses in the steel.

Increase the vertical loads, ΣP, and the neutral surface will rise and small tensile cracks will appear in the concrete below the neutral surface (Fig. 8). These cracks are most numerous in the central part of the span, where they are nearly vertical. They decrease in number at the ends of the span, where they curve slightly away from the perpendicular toward the center of the span. The formation of these tensile cracks in the concrete relieves it at once of its highly stressed condition.

It is impossible to predict the unit tension in the steel at which these cracks begin to form. They can be detected, though not often visible, when the unit tensions in the steel are as low as from 10,000 to 16,000 lb. per sq. in. As soon as the tensile cracks form, though invisible, the neutral surface approaches the position in the beam assigned to it by the common theory of flexure, with the tension in the concrete neglected. The internal static conditions in the beam are now modified to the extent that the concrete below the neutral surface is no longer continuous. The common theory of flexure can no longer be used to calculate the web stresses.

To analyze the internal static conditions developed, the speaker will treat as a free body the shaded portion of the beam shown inFig. 8, which lies between two tensile cracks.

Fig. 9.Fig. 9.

InFig. 9are shown all the forces which act on this free body,C b b' C'.

At any section, let

and let ΔT=T'-T=C'-Crepresent the total transverse shear for the length,b-b'.

Assuming that the tension cracks extend to the neutral surface,n n, that portion of the beamC b b' C', acts as a cantilever fixed ata banda' b', and subjected to the unbalanced steel tension, ΔT. The vertical shear,J, is carried mainly by the concrete above the neutral surface, very little of it being carried by the steel reinforcement. In the case of plain webs, the tension cracks are the forerunners of the sudden so-called diagonal tension failures produced by the snapping off, below the neutral surface, of the concrete cantilevers. The logical method of reinforcing these cantilevers is by inserting vertical steel in the tension side. The vertical reinforcement, to be efficient, must be well anchored, both in the top and in the bottom of the beam. Experience has solved the problem of doing this by the use of vertical steel in the form of stirrups, that is, U-shaped rods. The horizontal reinforcement rests in the bottom of the U.

Sufficient attention has not been paid to the proper anchorage of the upper ends of the stirrups. They should extend well into the compression area of the beam, where they should be properly anchored. They should not be too near the surface of the beam. They must not be too far apart, and they must be of sufficient cross-section to develop the necessary tensile forces at not excessive unit stresses. A working tension in the stirrups which is too high, will produce a local disintegration of the cantilevers, and give the beam the appearance of failure due to diagonal tension. Their distribution should follow closely that of the vertical or horizontal shear in the beam. Practice must rely on experiment for data as to the size and distribution of stirrups for maximum efficiency.

The maximum shearing stress in a concrete beam is commonly computed by the equation:

Wheredis the distance from the center of the reinforcing bars to the surface of the beam in compression:

b= the width of the flange, andV= the total vertical shear at the section.

This equation gives very erratic results, because it is based on a continuous web. For a non-continuous web, it should be modified to

In this equationK b drepresents the concrete area in compression. The value ofKis approximately equal to 0.4.

Three large concrete beams with web reinforcement, tested at the University of Illinois[K], developed an average maximum shearing resistance of 215 lb. per sq. in., computed by Equation 1. Equation 2 would give 470 lb. per sq. in.

Three T-beams, having 32 by 3-1/4-in. flanges and 8-in. webs, tested at the University of Illinois, had maximum shearing resistances of 585, 605, and 370 lb. per. sq. in., respectively.[L]They did not fail in shear, although they appeared to develop maximum shearing stresses which were almost three times as high as those in the rectangular beams mentioned. The concrete and web reinforcement being identical, the discrepancy must be somewhere else. Based on a non-continuous concrete web, the shearing resistances become 385, 400, and 244 lb. per sq. in., respectively. As none of these failed in shear, the ultimate shearing resistance of concrete must be considerably higher than any of the values given.

About thirteen years ago, Professor A. Vierendeel[M]developed the theory of open-web girder construction. By an open-web girder, the speaker means a girder which has a lower and upper chord connected by verticals. Several girders of this type, far exceeding solid girders in length, have been built. The theory of the open-web girder, assuming the verticals to be hinged at their lower ends, applies to the concrete beam reinforced with stirrups. Assuming that the spaces between the verticals of the girder become continually narrower, they become the tension cracks of the concrete beam.[N]

John C. Ostrup, M. Am. Soc. C. E.—The author has rendered a great service to the Profession in presenting this paper. In his first point he mentions two designs of reinforced concrete beams and, inferentially, he condemns a third design to which the speaker will refer later. The designs mentioned are, first, that of a reinforced concrete beam arranged in the shape of a rod, with separate concrete blocks placed on top of it without being connected—such a beam has its strength only in the rod. It is purely a suspension, or "hog-chain" affair, and the blocks serve no purpose, but simply increase the load on the rod and its stresses.

The author's second design is an invention of his own, which the Profession at large is invited to adopt. This is really the same system as the first, except that the blocks are continuous and, presumably, fixed at the ends. When they are so fixed, the concrete will take compressive stresses and a certain portion of the shear, the remaining shear being transmitted to the rod from the concrete above it, but only through friction. Now, the frictional resistance between a steel rod and a concrete beam is not such as should be depended on in modern engineering designs.

The third method is that which is used by nearly all competent designers, and it seems to the speaker that, in condemning the general practice of current reinforced designs in sixteen points, the authorcould have saved himself some time and labor by condemning them all in one point.

What appears to be the underlying principle of reinforced concrete design is the adhesion, or bond, between the steel and the concrete, and it is that which tends to make the two materials act in unison. This is a point which has not been touched on sufficiently, and one which it was expected that Mr. Beyer would have brought out, when he illustrated certain internal static conditions. This principle, in the main, will cover the author's fifth point, wherein stirrups are mentioned, and again in the first point, wherein he asks: "Will some advocate of this type of design please state where this area can be found?"

To understand clearly how concrete acts in conjunction with steel, it is necessary to analyze the following question: When a steel rod is embedded in a solid block of concrete, and that rod is put in tension, what will be the stresses in the rod and the surrounding concrete?

The answer will be illustrated by reference toFig. 10. It must be understood that the unit stresses should be selected so that both the concrete and the steel may be stressed in the same relative ratio. Assuming the tensile stress in the steel to be 16,000 lb. per sq. in., and the bonding value 80 lb., a simple formula will show that the length of embedment, or that part of the rod which will act, must be equal to 50 diameters of the rod.

Fig. 10.Fig. 10.

When the rod is put in tension, as indicated inFig. 10, what will be the stresses in the surrounding concrete? The greatest stress will come on the rod at the point where it leaves the concrete, where it is a maximum, and it will decrease from that point inward until the total stress in the steel has been distributed to the surrounding concrete. At that point the rod will only be stressed back for a distance equal in length to 50 diameters, no matter how far beyond that length the rod may extend.

The distribution of the stress from the steel rod to the concrete can be represented by a cone, the base of which is at the outer face of the block, as the stresses will be zero at a point 50 diameters back, and will increase in a certain ratio out toward the face of the block, and will also, at all intermediate points, decrease radially outward from the rod.

The intensity of the maximum stress exerted on the concrete is represented by the shaded area inFig. 10, the ordinates, measured perpendicularly to the rod, indicating the maximum resistance offered by the concrete at any point.

If the concrete had a constant modulus of elasticity under varying stress, and if the two materials had the same modulus, the stress triangle would be bounded by straight lines (shown as dotted lines inFig. 10); but as this is not true, the variable moduli will modify the stress triangle in a manner which will tend to make the boundary lines resemble parabolic curves.

A triangle thus constructed will represent by scale the intensity of the stress in the concrete, and if the ordinates indicate stresses greater than that which the concrete will stand, a portion will be destroyed, broken off, and nothing more serious will happen than that this stress triangle will adjust itself, and grip the rod farther back. This process keeps on until the end of the rod has been reached, when the triangle will assume a much greater maximum depth as it shortens; or, in other words, the disintegration of the concrete will take place here very rapidly, and the rod will be pulled out.

In the author's fourth point he belittles the use of shear rods, and states: "No hint is given as to whether these bars are in shear or in tension." As a matter of fact, they are neither in shear nor wholly in tension, they are simply in bending between the centers of the compressive resultants, as indicated inFig. 12, and are, besides, stressed slightly in tension between these two points.

Fig. 11.Fig. 11.

InFig. 10the stress triangle indicates the distribution and the intensity of the resistance in the concrete to a force acting parallel to the rod. A similar triangle may be drawn,Fig. 11, showing the resistance of the rod and the resultant distribution in the concrete to a force perpendicular to the rod. Here the original force would cause plain shear in the rod, were the latter fixed in position. Since this cannot be the case, the force will be resolved into two components, one of which will cause a tensile stress in the rod and the other will pass through the centroid of the compressive stress area. This is indicated inFig. 11, which, otherwise, is self-explanatory.

Fig. 12.Fig. 12.

Rods are not very often placed in such a position, but where it is unavoidable, as in construction joints in the middle of slabs or beams, they serve a very good purpose; but, to obtain the best effect from them, they should be placed near the center ofthe slab, as inFig. 12, and not near the top, as advocated by some writers.

If the concrete be overstressed at the points where the rod tends to bend, that is, if the rods are spaced too far apart, disintegration will follow; and, for this reason, they should be long enough to have more than 50 diameters gripped by the concrete.

This leads up to the author's seventh point, as to the overstressing of the concrete at the junction of the diagonal tension rods, or stirrups, and the bottom reinforcement.

Fig. 13.Fig. 13.

Analogous with the foregoing, it is easy to lay off the stress triangles and to find the intensity of stress at the maximum points, in fact at any point, along the tension rods and the bottom chord. This is indicated inFig. 13. These stress triangles will start on the rod 50 diameters back from the point in question and, although the author has indicated inFig. 1that only two of the three rods are stressed, there must of necessity also be some stress in the bottom rod to the left of the junction, on account of the deformation which takes place in any beam due to bending. Therefore, all three rods at the point where they are joined, are under stress, and the triangles can be laid off accordingly.

It will be noticed that the concrete will resist the compressive components, not at any specific point, but all along the various rods, and with the intensities shown by the stress triangles; also, that some of these triangles will overlap, and, hence, a certain readjustment, or superimposition, of stresses takes place.

The portion which is laid off below the bottom rods will probably not act unless there is sufficient concrete below the reinforcing bars and on the sides, and, as that is not the case in ordinary construction, it is very probable, as Mr. Goodrich has pointed out, that the concrete below the rods plays an unimportant part, and that the triangle which is now shown below the rod should be partially omitted.

The triangles inFig. 13show the intensity of stress in the concrete at any point, or at any section where it is wanted. They show conclusively where the components are located in the concrete, their relation to the tensile stresses in the rods, and, furthermore, that they act only in a general way at right angles to one another. This is inaccordance with the theory of beams, that at any point in the web there are tensile and compressive stresses of equal intensity, and at right angles to one another, although in a non-homogeneous web the distribution is somewhat different.

After having found at the point of junction the intensity of stress, it is possible to tell whether or not a bond between the stirrups and the bottom rods is necessary, and it would not seem to be where the stirrups are vertical.

It would also seem possible to tell in what direction, if any, the bend in the inclined stirrups should be made. It is to be assumed, although not expressly stated, that the bends should curve from the center up toward the end of the beam, but an inspection of the stress triangles,Fig. 13, will show that the intensity of stress is just as great on the opposite side, and it is probable that, if any bends were required to reduce the maximum stress in the concrete, they should as likely be made on the side nearest the abutment.

From the stress triangles it may also be shown that, if the stirrups were vertical instead of inclined, the stress in the concrete on both sides would be practically equal, and that, in consequence, vertical stirrups are preferable.

The next issue raised by the author is covered in his seventh point, and relates to bending moments. He states: "* * * bending moments in so-called continuous beams are juggled to reduce them to what the designer would like to have them. This has come to be almost a matter of taste, * * *."

The author seems to imply that such juggling is wrong. As a matter of fact, it is perfectly allowable and legitimate in every instance of beam or truss design, that is, from the standpoint of stress distribution, although this "juggling" is limited in practice by economical considerations.

In a series of beams supported at the ends, bending moments range from (wl2)/8 at the center of each span to zero at the supports, and, in a series of cantilevers, from zero at the center of the span to (wl2)/8 at the supports. Between these two extremes, the designer can divide, adjust, or juggle them to his heart's content, provided that in his design he makes the proper provision for the corresponding shifting of the points of contra-flexure. If that were not the case, how could ordinary bridge trusses, which have their maximum bending at the center, compare with those which, like arches, are assumed to have no bending at that point?

In his tenth point, the author proposes a method of simple designing by doing away with the complicated formulas which take account of the actual co-operation of the two materials. He states that an idealdesign can be obtained in the same manner, that is, with the same formulas, as for ordinary rectangular beams; but, when he does so, he evidently fails to remember that the neutral axis is not near the center of a reinforced concrete beam under stress; in fact, with the percentage of reinforcement ordinarily used in designing—varying between three-fourths of 1% to 1-1/2%—the neutral axis, when the beam is loaded, is shifted from 26 to 10% of the beam depth above the center. Hence, a low percentage of steel reinforcement will produce a great shifting of the neutral axis, so that a design based on the formulas advocated by the author would contain either a waste of materials, an overstress of the concrete, or an understress of the steel; in fact, an error in the design of from 10 to 26 per cent. Such errors, indeed, are not to be recommended by good engineers.

The last point which the speaker will discuss is that of the elastic arch. The theory of the elastic arch is now so well understood, and it offers such a simple and, it might be said, elegant and self-checking solution of the arch design, that it has a great many advantages, and practically none of the disadvantages of other methods.

The author's statement that the segments of an arch could be made up of loose blocks and afterward cemented together, cannot be endorsed by the speaker, for, upon such cementing together, a shifting of the lines of resistance will take place when the load is applied. The speaker does not claim that arches are maintained by the cement or mortar joining the voussoirs together, but that the lines of pressure will be materially changed, and the same calculations are not applicable to both the unloaded and the loaded arch.

It is quite true, as the author states, that a few cubic yards of concrete placed in the ring will strengthen the arch more than a like amount added to the abutments, provided, however, that this material be placed properly. No good can result from an attempt to strengthen a structure by placing the reinforcing material promiscuously. This has been tried by amateurs in bridge construction, and, in such cases, the material either increased the distance from the neutral axis to the extreme fibers, thereby reducing the original section modulus, or caused a shifting of the neutral axis followed by a large bending moment; either method weakening the members it had tried to reinforce. In other words, the mere addition of material does not always strengthen a structure, unless it is placed in the proper position, and, if so placed, it should be placed all over commensurately with the stresses, that is, the unit stresses should be reduced.

The author has criticized reinforced concrete construction on the ground that the formulas and theories concerning it are not as yet fully developed. This is quite true, for the simple reason that there are so many uncertain elements which form their basis: First, the variable quantity of the modulus of elasticity, which,in the concrete, varies inversely as the stress; and, second, the fact that the neutral axis in a reinforced concrete beam under changing stress is migratory. There are also many other elements of evaluation, which, though of importance, are uncertain.

Because the formulas are established on certain assumptions is no reason for condemning them. There are, the speaker might add, few formulas in the subject of theoretical mechanics which are not based on some assumption, and as long as the variations are such that their range is known, perfectly reliable formulas can be deduced and perfectly safe structures can be built from them.

There are a great many theorists who have recently complained about the design of reinforced concrete. It seems to the speaker that such complaints can serve no useful purpose. Reinforced concrete structures are being built in steadily increasing numbers; they are filling a long needed place; they are at present rendering great service to mankind; and they are destined to cover a field of still greater usefulness. Reinforced concrete will undoubtedly show in the future that the confidence which most engineers and others now place in it is fully merited.

Harry F. Porter, Jun. Am. Soc. C. E.(by letter).—Mr. Godfrey has brought forward some interesting and pertinent points, which, in the main, are well taken; but, in his zealousness, he has fallen into the error of overpersuading himself of the gravity of some of the points he would make; on the other hand, he fails to go deeply enough into others, and some fallacies he leaves untouched. Incidentally, he seems somewhat unfair to the Profession in general, in which many earnest, able men are at work on this problem, men who are not mere theorists, but have been reared in the hard school of practical experience, where refinements of theory count for little, but common sense in design counts for much—not to mention those self-sacrificing devotees to the advancement of the art, the collegiate and laboratory investigators.

Engineers will all agree with Mr. Godfrey that there is much in the average current practice that is erroneous, much in textbooks that is misleading if not fallacious, and that there are still many designers who are unable to think in terms of the new material apart from the vestures of timber and structural steel, and whose designs, therefore, are cumbersome and impractical. The writer, however, cannot agree with the author that the practice is as radically wrong as he seems to think. Nor is he entirely in accord with Mr. Godfrey in his "constructive criticism" of those practices in which he concurs, that they are erroneous.

That Mr. Godfrey can see no use in vertical stirrups or U-bars is surprising in a practical engineer. One is prompted to ask: "Can the holder of this opinion ever have gone through the experience ofplacing steel in a job, or at least have watched the operation?" If so, he must have found some use for those little members which he professes to ignore utterly.

As a matter of fact, U-bars perform the following very useful and indispensable services:

(1).—If properly made and placed, they serve as a saddle in which to rest the horizontal steel, thereby insuring the correct placing of the latter during the operation of concreting, not a mean function in a type of construction so essentially practical. To serve this purpose, stirrups should be made as shown inPlate III. They should be restrained in some manner from moving when the concrete strikes them. A very good way of accomplishing this is to string them on a longitudinal rod, nested in the bend at the upper end. Mr. Godfrey, in his advocacy of bowstring bars anchored with washers and nuts at the ends, fails to indicate how they shall be placed. The writer, from experience in placing steel, thinks that it would be very difficult, if not impractical, to place them in this manner; but let a saddle of U-bars be provided, and the problem is easy.

(2).—Stirrups serve also as a tie, to knit the stem of the beam to its flange—the superimposed slab. The latter, at best, is not too well attached to the stem by the adhesion of the concrete alone, unassisted by the steel. T-beams are used very generally, because their construction has the sanction of common sense, it being impossible to cast stem and slab so that there will be the same strength in the plane at the junction of the two as elsewhere, on account of the certainty of unevenness in settlement, due to the disproportion in their depth. There is also the likelihood that, in spite of specifications to the contrary, there will be a time interval between the pouring of the two parts, and thus a plane of weakness, where, unfortunately, the forces tending to produce sliding of the upper part of the beam on the lower (horizontal shear) are a maximum. To offset this tendency, therefore, it is necessary to have a certain amount of vertical steel, disposed so as to pass around and under the main reinforcing members and reach well up into the flange (the slab), thus getting a grip therein of no mean security. The hooking of the U-bars, as shown inPlate III, affords a very effective grip in the concrete of the slab, and this is still further enhanced by the distributing or anchoring effect of the longitudinal stringing rods. Thus these longitudinals, besides serving to hold the U-bars in position, also increase their effectiveness. They serve a still further purpose as a most convenient support for the slab bars, compelling them to take the correct position over the supports, thus automatically ensuring full and proper provision for reversed stresses. More than that, they act in compression within the middle half, and assist in tension toward the ends of the span.

Thus, by using U-bars of the type indicated, in combination withlongitudinal bars as described, tying together thoroughly the component parts of the beam in a vertical plane, a marked increase in stiffness, if not strength, is secured. This being the case, who can gainsay the utility of the U-bar?

Of course, near the ends, in case continuity of action is realized, whereupon the stresses are reversed, the U-bars need to be inverted, although frequently inversion is not imperative with the type of U-bar described, the simple hooking of the upper ends over the upper horizontal steel being sufficient.

As to whether or not the U-bars act with the horizontal and diagonal steel to form truss systems is relatively unessential; in all probability there is some such action, which contributes somewhat to the total strength, but at most it is of minor importance. Mr. Godfrey's points as to fallacy of truss action seem to be well taken, but his conclusions in consequence—that U-bars serve no purpose—are impractical.

The number of U-bars needed is also largely a matter of practice, although subject to calculation. Practice indicates that they should be spaced no farther apart than the effective depth of the member, and spaced closer or made heavier toward the ends, in order to keep pace with cumulating shear. They need this close spacing in order to serve as an adequate saddle for the main bars, as well as to furnish, with the lighter "stringing" rods, an adequate support to the slab bars. They should have the requisite stiffness in the bends to carry their burden without appreciable sagging; it will be found that 5/16 in. is about the minimum practical size, and that 1/2 in. is as large as will be necessary, even for very deep beams with heavy reinforcement.

If the size and number of U-bars were to be assigned by theory, there should be enough of them to care for fully 75% of the horizontal shear, the adhesion of the concrete being assumed as adequate for the remainder.

Near the ends, of course, the inclined steel, resulting from bending up some of the horizontal bars, if it is carried well across the support to secure an adequate anchorage, or other equivalent anchorage is provided, assists in taking the horizontal shear.

The embedment, too, of large stone in the body of the beam, straddling, as it were, the neutral plane, and thus forming a lock between the flange and the stem, may be considered as assisting materially in taking horizontal shear, thus relieving the U-bars. This is a factor in the strength of actual work which theory does not take into account, and by the author, no doubt, it would be regarded as insignificant; nevertheless it is being done every day, with excellent results.

The action of these various agencies—the U-bars, diagonal steel, and embedded stone—in a concrete beam, is analogous to that of bolts or keys in the case of deepened timber beams. A concrete beam maybe assumed, for the purposes of illustration, to be composed of a series of superimposed layers; in this case the function of the rigid material crossing these several layers normally, and being well anchored above and below, as a unifier of the member, is obvious—it acts as so many bolts joining superimposed planks forming a beam. Of course, no such lamination actually exists, although there are always incipient forces tending to produce it; these may and do manifest themselves on occasion as an actual separation in a horizontal plane at the junction of slab and stem, ordinarily the plane of greatest weakness—owing to the method of casting—as well as of maximum horizontal shear. Beams tested to destruction almost invariably develop cracks in this region. The question then naturally arises: If U-bars serve no purpose, what will counteract these horizontal cleaving forces? On the contrary, T-beams, adequately reinforced with U-bars, seem to be safeguarded in this respect; consequently, the U-bars, while perhaps adding little to the strength, as estimated by the ultimate carrying capacity, actually must be of considerable assistance, within the limit of working loads, by enhancing the stiffness and ensuring against incipient cracking along the plane of weakness, such as impact or vibratory loads might induce. Therefore, U-bars, far from being superfluous or fallacious, are, practically, if not theoretically, indispensable.

At present there seems to be considerable diversity of opinion as to the exact nature of the stress action in a reinforced concrete beam. Unquestionably, the action in the monolithic members of a concrete structure is different from that in the simple-acting, unrestrained parts of timber or structural steel construction; because in monolithic members, by the law of continuity, reverse stresses must come into play. To offset these stresses reinforcement must be provided, or cracking will ensue where they occur, to the detriment of the structure in appearance, if not in utility. Monolithic concrete construction should be tied together so well across the supports as to make cracking under working loads impossible, and, when tested to destruction, failure should occur by the gradual sagging of the member, like the sagging of an old basket. Then, and then only, can the structure be said to be adequately reinforced.

In his advocacy of placing steel to simulate a catenary curve, with end anchorage, the author is more nearly correct than in other issues he makes. Undoubtedly, an attempt should be made in every concrete structure to approximate this alignment. In slabs it may be secured simply by elevating the bars over the supports, when, if pliable enough, they will assume a natural droop which is practically ideal; or, if too stiff, they may be bent to conform approximately to this position. In slabs, too, the reinforcement may be made practically continuous, by using lengths covering several spans, and, where ends occur, by generous lapping. In beams the problem is somewhat more complicated, as it is impossible, except rarely, to bow the steel and to extend it continuously over several supports; but all or part of the horizontal steel can be bent up at about the quarter point, carried across the supports into the adjacent spans, and anchored there by bending it down at about the same angle as it is bent up on the approach, and then hooking the ends.


Back to IndexNext