BONES: DISEASES AND ACCIDENTS.

The great excess of fat and nitrogenous or flesh-forming principles in the sugar meal is very evident.

Here we see in every instance a marked relative increase of the butter, and to a less extent of the other milk solids whenever the sugar meal—rich in fat and albuminoids—was furnished. The opposite theory having been largely taught, it becomes needful thus to sustain the old and well-founded belief of the dairymen.

Not only does the richness of the milk vary with the nature of the food, but it varies also according to the time of the day when it is drawn, the morning milk giving 7½ per cent of cream and the evening milk 9½ per cent (Hassall). Boedecker found that the morning milk had 10 per cent of solids, while the evening milk had 13 per cent. Again, the milk first drawn at any milking is always poorer than the last drawn. The first may have only one-half, or in extreme cases one-fourth, the cream of the last. Once more, when the cow is in heat the milk becomes richer in solids (casein and butter), and contains granular and white blood cells like the colostrum, and often disagrees with the young animal living on it. Now, while these various modifications in the amount of solid matters may prove harmless to a strong and vigorous calf, they can easily be the occasion of intestinal disorder in a weaker one, or in one with health already somewhat impaired by sickness, exposure, or unwholesome buildings. The casein of the cow's milk coagulates in one solid mass, and is much less easily penetrated by the digesting fluids than the fine, flaky coagula of woman's or mare's milk. An excess of casein, therefore, thrown on an already overtaxed stomach can all the more readily induce disorder. So it is with butter fat. While a most important element in nutrition, it may be present in the stomach in such quantity as to interfere with the action of the gastric juice on the casein, and withthe interruption of the natural stomach digestion the fats themselves undergo decomposition with the production of offensive and irritating fatty acids.

The milk of the very young cow is usually more watery than that of the mature animal, and that of the old cow has a greater liability to become acid. It varies much with the breed, the Channel Island cattle being notorious for the relatively large quantity of cream, while the Holsteins, Ayrshires, and Shorthorns are remarkable rather for the quantity of casein. The milk of cows fed on potatoes and grass is very poor and watery; that from cows fed on cabbage or Swedish turnips has a disagreeable taste and odor (from the former an offensive liquid has been distilled).

Cows fed on overkept, fermented, and soured rations have acid milk, which readily turns and coagulates. Thus old, long-kept brewer's grains, swill, the refuse of glucose factories, and ensilage which has been put up too green all act in this way. The same may come from disease in the cow's udder, or any general disease of the cow with attendant fever, and in all such cases the tendency is to rapid change and unwholesomeness. If the milk is drawn and fed from a pail, there is the added danger of all sorts of poisonous ferments getting into it and multiplying; it may be from the imperfect cleansing and scalding of the pail; from rinsing the pails with water that is impure; from the entrance of bacterial ferments floating in the filthy atmosphere of the stable, or from the entrance of the volatile chemical products of fermentation.

In addition to the dangers coming through the milk, the calf suffers in its digestive powers from any temporary illness, and among others from the excitement attendant on the cutting of teeth, and impaired digestion means fermentations in the undigested masses and the excessive production of poisonous ptomaines and toxins.

Whatever may be the starting or predisposing cause of this malady, when once established it is liable to perpetuate itself by contagion and to prove a veritable plague in a herd or a district.

Symptoms.—The symptoms of a diarrhea may appear so promptly after birth as to lead to the idea that the cause already existed in the body of the calf, and it usually shows itself before the end of the second week. It may be preceded by constipation, as in retained meconium, or by fetid eructations and colicky pains, as in acute indigestion. The tail is stained by the liquid dejections, which are at first simply soft and mixed with mucus with a sour odor, accompanied with a peculiar and characteristic fetor (suggesting rotten cheese), which continually grows worse. The quantity of water and mucus steadily increases, the normal predominance of fatty matters becoming modified by the presence of considerable undigested casein, which is not present in the normal feces, and in acute cases deathmay result in one or two days from the combined drain on the system and the poisoning by the absorbed products of the decomposition in the stomach and bowels. When the case is prolonged the passages, at first 5 or 6 a day, increase to 15 or 20, and pass with more and more straining, so that they are projected from the animal in a liquid stream. The color of the feces, at first yellow, becomes a lighter grayish yellow or a dirty white (hence the name white scour), and the fetor becomes intolerable.

At first the calf retains its appetite, but as the severity of the disease increases the animal shows less and less disposition to suck, and has lost all vivacity, lying dull and listless, and, when raised, walking weakly and unsteadily. Flesh is lost rapidly, the hair stands erect, the skin gets dry and scurfy, the nose is dry and hot, or this condition alternates with a moist and cool one. By this time the mouth and skin, as well as the breath and dung, exhale the peculiar, penetrating, sour, offensive odor, and the poor calf has become an object of disgust to all that approach it. At first, and unless inflammation of the stomach and bowels supervenes (and unless the affection has started in indigestion and colic), the belly is not bloated or painful on pressure, symptoms of acute colicky pains are absent, and the bowels do not rumble; neither are bubbles of gas mingled with the feces. The irritant products of the intestinal fermentations may, however, irritate and excoriate the skin around the anus, which becomes red, raw, and broken out in sores for some distance. Similarly the rectum, exposed by reason of the relaxed condition of the anus, or temporarily in straining to pass the liquid dejection, is of a more or less deep red, and it may be ulcerated. Fever, with rapid pulse and increased breathing and temperature, usually comes on with the very fetid character of the feces and is more pronounced as the bowels become inflamed, the abdomen sore to the touch and tucked up, and the feces more watery and even mixed with blood.

Prevention.—The prevention of these cases is the prevention of constipation and indigestion, with all their varied causes as above enumerated, the selection of a strong, vigorous stock, and, above all, the combating of contagion, especially in the separation of the sick from the healthy, and in the thorough purification and disinfection of the buildings. The cleansing and sweetening of all drains, the removal of dung heaps, and the washing and scraping of floors and walls, followed by a liberal application of chlorid of lime (bleaching powder), 4 ounces to the gallon, are indicated. Great care must be exercised in the feeding of the cow to have sound and wholesome feed and water, so apportioned as to make the milk neither too rich nor too poor, and to her health, so that the calf may be saved from the evil consequences of poisonous principles that may be producedin the body of the cow. The calves should be carefully kept apart from all calving cows and their discharges. Similarly each calf must have special attention to see that its nurse gives milk which agrees with it, and that this is furnished at suitable times. If allowed to suck, it should either be left with the cow or be fed three times a day. If it becomes hungry twice a day, it is more liable to overload and derange the stomach, and if left too long hungry it is tempted to take in unsuitable and unwholesome feed, for which its stomach is as yet unprepared. So, if fed from the pail, it is safer to do so three times daily than twice. There should be the utmost cleanliness of feeding dishes, and the feeder must be ever on the alert to prevent the strong and hungry from drinking the milk of the weaker in addition to their own. In case the cow nurse has been subjected to any great excitement by reason of travel, hunting, or carrying, the first milk she yields thereafter should be used for some other purpose and only the second allowed to the calf. Indeed, one and all of the conditions indicated above as causes should be judiciously guarded against.

Treatment.—Treatment varies according to the nature and stage of the disease. When the disease is not widespread, but isolated cases only occur, it may be assumed to be a simple diarrhea and is easily dealt with. The first object is to remove the irritant matter from stomach and bowels, and for this 1 or 2 ounces of castor oil may be given, according to the size of the calf. Reduce the milk by one-half or two-thirds. If the stools smell particularly sour, the milk may be replaced by 1 ounce calcined magnesia, and in any case a tablespoonful or two of limewater must be given with each meal. Great harm is often done by giving opium and astringents at the outset. These serve merely to bind up the bowels and retain the irritant source of the trouble; literally, "to shut up the wolf in the sheep-fold." When the offending agents have been expelled in this way, carminatives and demulcent agents may be given—1 dram of anise water, 1 dram nitrate of bismuth, and 1 dram of gum arabic, three times a day. Under such course the consistency of the stools should increase until in a day or two they become natural.

If, however, the outbreak is more general and evidently the result of contagion, the first consideration is to remove all sources of such contamination. Test the milk of the cow with blue litmus paper; if it reddens, reject the milk until by sound, dry feeding, with perhaps a course of hyposulphite of soda and gentian root, the milk is made alkaline. The castor oil or magnesia will be demanded to clear away the (now infecting) irritants, but they should be combined with antiseptics, and, while the limewater and the carminative mixture may still be used, a most valuable addition will be found in thefollowing: Calomel, 10 grains; prepared chalk, 1 ounce; creosote, 1 teaspoonful; mix, divide into 10 parts, and give one four times a day. Or the following may be given four times a day: One dram Dover's powder, 6 grains powdered ipecacuanha; mix, divide into 10 equal parts. Injections of solutions of gum arabic are often useful, and if the anus is red and excoriated, one-half dram of copperas may be added to each pint of the gummy solution. All the milk given must be boiled, and if that does not agree, eggs made into an emulsion with barley water may be substituted. As the feces lose their watery character and become more consistent, tincture of gentian in doses of 2 teaspoonfuls may be given three or four times a day. Counter-irritants, such as mustard, ammonia, or oil of turpentine, may be rubbed on the abdomen when it becomes tender to the touch.

The most violent and deadly form of diarrhea in the newborn calf deserves a special mention. This may appear immediately after birth, and shows itself almost invariably within the first or second day. The most intense symptoms of white scour are complicated by great dullness, weakness, and prostration, sunken eyes, retracted belly, short, hurried breathing, and very low temperature, the calf lying on its side, with the head resting on the ground, lethargic and unconscious or regardless of all around it. The bowel discharges are profuse, yellowish white, and very offensive. As a rule death ensues within 24 to 36 hours.

A marked characteristic of this form of illness is that it attacks almost every calf born in the herd, or in the building, rather, and if the calf escapes an attack in the first two or three days of its life it usually survives. Those that recover from an attack, however, are liable one or two weeks later to suffer from an infective inflammation of the lungs. The infection clings to a stable for years, in many cases rendering it impossible to preserve and raise the calves. It has frequently coincided with abortions and failures to conceive in the same herd, so that it has been thought that the same infective germ produces one type of abortion. On the other hand, the removal of the calving cow from the herd to calve in a separate building, hitherto unused and therefore uninfected, usually effects the escape and survival of the offspring.

The disease has been traced by Nocard and Lignières to a small bacillus having the general characters of those that produce hemorrhagic septicemia, which is usually combined with a variety of others, but is in some cases alone and in pure culture, especially inthe joints. The theory of Lignières is that this bacillus is the primary offender, and that once introduced it so depresses the vital powers of the system and tissue cells that the healthy resistance to other bacteria is impaired or suspended, and hence the general and deadly invasion of the latter.

Inoculations with this bacillus killed guinea pigs or rabbits in 6 to 18 hours, and calves in 30 hours, with symptoms and lesions of hemorrhagic septicemia, including profuse fetid diarrhea.

The predominance of the early and deadly lesions in the alimentary tract would seem to imply infection through the feed, and the promptitude of the attack after birth, together with the frequent coincidence of contagious abortion in the herd, suggest the presence of the germ in the cow; yet the escape of the calf when the cow calves in a fresh building is equally suggestive of the infection through germs laid up in the building. This conclusion is further sustained by the observation that the bacillus evidently enters by the raw, unhealed navel, that it is diffused in the blood, and that a very careful preservation of the navel against infection gives immunity from attack.

Prevention.—The disease is so certainly and speedily fatal that it is hopeless to expect recovery, and therefore prevention is the rational resort.

When a herd is small, the removal of the dam to a clean, unused stable a few days before calving and her retention there for a week usually succeeds. It is in the large herd that the disease is mainly to be dreaded, however, and in this it is impossible to furnish new and pure stables for each successive group of two or three calving cows. The thorough disinfection of the general stable ought to succeed, yet I have seen the cleanest and purest stable repeatedly disinfected with corrosive sublimate without stopping the malady. It would appear as if the germ lodged on the surface or in the bowels of the cow and tided the infection over the period of stable disinfection. Though insufficient of themselves, the supply of separate calving boxes and the frequent thorough cleaning and disinfection of both these and the stables should not be neglected. The most important measure, however, is the disinfection of the navel.

The cow should be furnished with abundance of dry, clean bedding, sprinkled with a solution of carbolic acid. As soon as calving sets in the tail and hips and anus and vulva should be sponged with a carbolic-acid solution (one-half ounce to the quart), and the vagina injected with a weaker solution (2 drams to the quart). Fresh carbolized bedding should be constantly supplied, so that the calf may be dropped on that and not on soaked litter nor manure. The navel string should be at once tied with a cord that has been taken from astrong solution of carbolic acid. The stump of the cord and the adjacent skin should then be washed with the following solution: Iodin, one-half dram; iodid of potassium, one-half dram; water, 1 quart. When dry it may be covered with a coating of collodion or tar, each containing 1 per cent of iodin.

Whenever a calf shows any sign of scouring it should be instantly removed to another pen and building, and the vacated one should be thoroughly cleaned and disinfected. Different attendants should take care of the sound calves and the infected ones, and all utensils, litter, etc., kept scrupulously apart.

After one week the healthy calves may usually be safely herded together, or they may be safely placed in the cow stable.

Among these may be named several congenital imperfections, such as imperforate anus, vulva, or prepuce, which are to be recognized by the inability to pass dung or urine, in spite of straining, and the formation of swellings in the anus, vulva, or sheath. Each must be carefully incised with the knife, taking care not to injure the muscles which circumscribe the respective openings; also tongue-tie, in which the thin, flaccid, mucous membrane passing from the median line of the lower surface of the tongue binds the latter too closely to the floor of the mouth and renders the tongue unfit for gathering in the food in after life. This must be cut with knife or scissors, so as to give the tongue a reasonable degree of liberty.

Aphtha, orthrush, is another trouble of the sucking calf, showing itself as a white, curdy elevation on the tongue, lips, cheeks, or gums, and when detached leaving a raw, red, angry surface. It is due to the growth of a vegetable parasite long recognized as theOïdium albicans(Saccharomyces albicans). It is easily removed by rubbing with powdered borax, but inasmuch as other colonies are liable to start either in the mouth or in the pharynx, gullet, or stomach, it is well to give a dose of one-half dram of hyposulphite of soda in water day by day for several days.

Ricketsis not a common disease in calves, and comes on, if at all, later than those we have been considering. It consists in softening and friability of the bones from a deficiency of lime salts, and appears to be mainly connected with an inherited weakness of constitution, unsuitable feeding, cold, close, damp buildings, microbian infection, and other conditions inimical to health. The prevention and treatment of rickets consists essentially in the improvement of the digestion and general health; hence sunshine, open air, exercise, nourishing food, and tonics are indicated. (Seep. 267.)

Some knowledge of the skeleton is advisable to facilitate the study of diseases of bones and the accidental injuries to which they are exposed. The skeleton of the adult ox is made up of the following number of bones:

Without attempting to burden the reader with the technical names and a scientific classification of each, it appears desirable to describe some of the characteristics of forms in general and of a few classes into which they may be divided, leaving the special study of individual bones to the illustrations of the skeleton (Pl. XXV), which will serve better than a great deal of writing to fix in the mind of the reader the location, relation, and function of each one. In early fetal life the place of bone is supplied by temporary cartilage, which gradually changes to bone. For convenience of study, bones may be said to be composed of a form of dense connective tissue impregnated with lime salts and to contain two elementary constituents—the organic or animal and the inorganic or earthy. In young animals the former predominates; with increasing years the relative proportions of the two change, so that when advanced age is reached the proportion of inorganic far exceeds the organic. The gradual change with advancing years from organic to inorganic has the effect of rendering the bone harder and more brittle, and though it is stronger, the reparative process is slower when injury does occur.

The bones are nourished in two ways: First, from the outside through their covering, called the periosteum—the thin, strong membrane that covers every part of the bone except the articular surface of the joints; and, second, from within through the minute branches of blood vessels which pass into the bones through holes (foramina) on their surface and are distributed in the soft structure (medulla) of the inside. The structure of the bone is divided into two parts—the compact or hard material of the outside, which gives strength and is more abundant in the shafts of long bones, and the cancellated, softer tissue of the inside, which affords accommodation to the blood vessels necessary for the nourishment of that part of the structure.

In shape, bones are divided into three classes—long, flat, and short. The long bones are the ribs and those mostly found in the limbs; the flat bones are found in the head, the shoulder, and the pelvis; the short bones in the spinal column and in the lower portions of the limbs.

With this little introduction, which seems almost indispensable, we will proceed at once to the consideration of diseases of bones, for they undergo disease processes like any other living tissue.

Inflammation of the compact structure of bones (osteitis) may be either acute or chronic, and may involve the whole extent of the bone affected or may be confined to only a portion of it. This inflammation results from injury, such as concussion, laceration, or a crushing bruise; also from specific influences, as in actinomycosis (lumpy jaw) or cases of foul foot. The latter affection frequently involves the bones, and for this reason the pastern is the most frequent seat of osteitis. There is dull pain on pressure and a painful swelling of bone when pus is present. Suppuration may involve the overlying soft tissues, causing an abscess, which may finally break through the skin. The inflammatory condition sometimes assumes an ulcerated form (caries) or from interrupted nutrition of the part deprived of the blood necessary to its nourishment may cause death of a large section of bone (necrosis); this dead fragment (sequestrum), becoming separated from the main portion of bone, acts as a foreign body.

Treatment—This consists in resting the affected part and in giving vent at the earliest possible moment to whatever pus may be present. Free drainage should then be maintained. Apply dressings of lactic acid or inject with 5 per cent zinc-chlorid solution and pack with tampons of cotton soaked in antiseptic solutions. A laxative to keep the bowels moving freely is the only internal treatment necessary.

This disease is an inflammation of the external covering of bone (periosteum) and is usually produced by wounds, pressure, or crushing the part. The periosteum is well supplied with sensitive nerve endings and when inflamed is very sensitive to pressure and may cause lameness. This condition is often difficult to determine, and even an acute observer may fail to locate the point of its existence. There are three forms of periostitis—aseptic, purulent, and fibrous.

Aseptic periostitiswhen it becomes chronic causes such a bony enlargement (exostosis) as is seen in the callous formation following the fracture of a bone. The formation of such a tumor or enlargement on the surface of a bone is liable to occur in any part of the bone covered with periosteum, and when found near a joint involving two or more bones it is liable to result in their union (anchylosis).

Treatment.—Applications of cold water to check the inflammatory processes is indicated for the first few days in aseptic periostitis, followed by hot fomentations to hurry resorption of fluids. Massage should then be given with camphor ointment, mercurial ointment, soap liniment, or Lugol's solution. In the chronic form point firing or a biniodid-of-mercury blister will be found beneficial.

Purulent periostitisfollows wounds which reach the periosteum and become infected, as observed in compound fractures, or it may result from advancing purulent conditions in neighboring structures, as in foul foot. It may also occur in the course of an infectious disease, when small abscesses are formed under the periosteum (subperiosteal abscess). It may lead to necrosis of the bone or a fistulous tract from the bone to the surface. There is usually much pain and fever, and the odor from the wound is offensive.

Treatment.—In this form of periostitis the periosteum should be freely incised, followed either by continuous irrigation or frequent injection of the wound with antiseptic solutions.

Fibrous periostitis.—This form of the disease consists in the thickening of the outer layer of the periosteum from the inflammation reaching it from neighboring structures. This newly formed fibrous tissue may become ossified or may transmit the inflammation to the deeper bony structures. It is frequently seen in cases in which there has been an intense inflammation of the skin close to an underlying bone.

Treatment.—The treatment should be the same as that recommended for aseptic periostitis.

This term refers to an inflammation of the bone marrow, which is most commonly seen following the bacterial infection of a compound fracture and usually results in pus formation. The bone is melted away and pus escapes from the bone under the periosteum, involving the soft tissues. It is principally confined to the long bones and seldom affects more than one.

Treatment.—The bone should be opened for the purpose of curetting out the diseased portion of the marrow cavity and removing all the necrotic pieces of bone. This should be undertaken only by a competent veterinarian. The after-treatment consists in tamponing the wound with pledgets of iodoform gauze or a mixture of iodoform 1 part and glycerin 4 parts. The wound in the soft tissue should be kept open until the cavity in the bone has filled with granulation tissue.

This disease, also called "rachitis," is an inflammatory affection of young, growing bones, and mostly involves the ribs and long bones of the legs. It consists in a failure of the organism to deposit lime salts in bone, and for this reason the bones do not ossify so rapidly as they should. The cartilaginous ends of the bones grow rapidly, but ossification does not keep pace with it. The bones become long and their ends bend at the joints, the legs become crooked, and the joints are large and irregular. All the bones affected with this disease are thicker than normal, and the gait of the animal is stiff and painful. A row of bony enlargements may be found where the ribs articulate with the cartilages connecting them with the breastbone and is called the "beaded line." A catarrhal condition of the digestive tract is usually observed. The disease may result from an inherited weakness of constitution, poor hygienic surroundings, or improper diet. Calves and foals are less frequently affected with rickets than dogs and pigs.

Treatment.—The affected animal should have nourishing feed containing a proper quantity of lime salts. Outdoor exercise and plenty of fresh air are indispensable. Limewater should be given once daily for drinking purposes and ground bone meal mixed with the food. Phosphorus, one-fortieth of a grain, and calcium phosphate, 1 dram, given twice daily to a 2-month-old calf, and proportionally increased for older animals, has proved efficacious in this disease. In some cases the long bones of the limbs are too weak at birth to support the weight of the animal, and temporary splints, carefully padded and wrapped on with some soft bandages, become necessary.

This is a condition of bone brittleness or softening of bone found usually in adult life. It consists in the decalcification of mature bone, with the advancing diminution of the compact portion of bone by absorption. The periosteum strips very easily from the bone. This disease is seen in milch cows during the period of heavy lactation or in the later stages of pregnancy, and the greater the yield of milk the more rapid the progress of the disease. Heifers with their first calves are frequently affected, as these animals require a considerable quantity of mineral salts for their own growth and for the nourishment of their offspring.

Symptoms.—In marked cases there is a gradual emaciation and symptoms of gastrointestinal catarrh, with depraved appetite, the animal eating manure, decayed wood, dirt, leather, etc. Muscular weakness is prominent, together with muscle tremors, which simulate chills, but are not accompanied with any rise of temperature. The animal has a stiff, laborious gait; there is pain and swelling of the joints, and constant shifting of the weight from one leg to another. The restricted movements of the joints are frequently accompanied with a crackling sound, which has caused the name of "creeps" to be applied to the disease. The coat is dull and rough and the skin dry and hidebound. The animal is subject to frequent sprains or fracture of bones without apparent cause, as in lying down or turning around, and when such fractures occur they are difficult to unite. The bones principally involved are the upper bones of the legs, the haunch bone, and the middle bones of the spinal column. The disease in this country is confined to localized areas in the Southwest, known as the "alkali districts," and in the old dairy sections of New York State. The cause of this affection is the insufficiency of lime salts in the food, also to feeding hay of low, damp pastures, kitchen slops, and potatoes, or to overstocking lands. It occurs on old, worn-out soil poor in lime salts, and has also been observed to follow a dry season.

Treatment.—This should consist in a change of feed and the artificial feeding of lime salts, such as magnesium and sodium phosphate. Feed rich in mineral salts may be given, such as beans, cowpeas, oats, cottonseed meal, or wheat bran. Cottonseed meal is one of the best feeds for this purpose, but it should be fed carefully, as too large quantities of it are injurious to cows. Phosphorus may also be given in one-fourth grain doses twice daily, together with a tablespoonful of powdered bone meal or crude calcium phosphate at each meal. Ordinary lime dissolved in drinking water (limewater) will also be found efficacious in combating this disease, and can be provided at slight expense. A change of pasture to a locality where the disease is unknown and a free supply of common salt and bone meal will be the most convenient method of treating range cattle.

The most common accident occurring to bones and joints is a sprain of the ligaments uniting the bones, or the tendons uniting the muscles and bones. A sprain is the result of a sudden forcing of ajoint in an unnatural direction, or, if in a natural direction, beyond the power of the ligament or tendon to restrain it properly, so that part of the fibers of either are ruptured. When such an accident occurs pain is immediately inflicted, varying in degree with the extent of the injury, which is soon followed by swelling, with more or less heat and tenderness. If the seat of the injury be in any of the limbs, lameness is likely to result. Of the causes of sprain, slipping on ice or a wet floor, playing, and fighting with another animal are the most common.

Sprain of the shoulder joint.—This is liable to occur from any of the causes mentioned above or from the animal slipping suddenly into a rut or hole. When such an accident occurs, sudden lameness will attract attention. The animal will be noticed to drag the leg when walking and to carry it in a circular direction, outward and forward, at each step. The leg should be carefully examined, pressure over the joint causing the animal to evince pain. If the person making the examination is in doubt, it is well to make a comparison between the shoulders by pressing first on one and then the other. After such an accident the animal should be tied up so as to limit so far as possible the use of the injured joint.

Soft feed should be given with a view of keeping the bowels acting freely.

Treatment.—During the first three days the treatment should consist of cold-water irrigation to check the inflammation and relieve the pain. Hot fomentations may then be applied to hasten the absorption of the inflammatory fluids. When the pain has somewhat abated, equal parts of mercurial ointment and green soap may be rubbed into the swollen tissue. Should lameness continue after the tenth day, good results will be obtained from the application of a blister. This may be done by carefully clipping off the hair over the joint, including a surface of 4 or 5 inches in circumference, and rubbing in the following preparation:

The animal's head should be carefully tied until the third day, to prevent its licking the blister. The blistered surface should then be smeared with lard or vaseline every other day until the scabs fall off. Gentle exercise should be allowed after the fourth or fifth day from the application of the blister. If the lameness still remains the blister may be repeated in three weeks or a month.

Sprain of the fetlock.—This may occur from misstep when the animal is moving rapidly, and the twisting or wrenching of the foot is sufficient to rupture partially the ligaments which bind the bonestogether at that part. Such an accident also frequently occurs by the foot getting fastened in a hole in the floor; the wrenching is the result of the animal's attempt to liberate it. Lameness, followed by swelling of the joint and pain when it is handled, or when the animal moves the joint, and heat, are the more noticeable symptoms. If the sprain is very severe, the animal occasionally does not bear its weight on the limb.

Treatment.—The most important consideration in the treatment of this affection is rest, which is best enforced by keeping the animal in the stall and placing strong, muslin bandages about the inflamed joint. As in the sprain of the shoulder, cold water in the form of douches, continuous irrigation with hose or soaking tub, or finely chopped ice poultices are indicated for the first three days. Following this apply a Priessnitz bandage[2]moderately tight about the joint, which not only conduces to rest, but also favors absorption. Massage with stimulating liniments, such as soap or camphor, may later be applied to the affected parts.

If the lameness has not disappeared by the tenth day, the blister advised for the sprain of the shoulder should be applied and the same precautions observed as to tying the animal's head and subsequent smearing with vaseline. When a blister is applied in this locality, the back part of the heel should be first filled with lard or vaseline, and care taken to prevent any of the blistering preparation from coming in contact with the skin of that part. If this precaution is not observed, scratches may ensue and prove troublesome.

Sprain of the hip.—This is liable to result from the animal's slipping in such way as to spread the hind feet wide apart. The patient goes stiff in the hind legs, or lame in one hind leg, walking with a straddling gait and swinging the leg outward as it is carried forward. Tenderness may occasionally be detected on pressure, but owing to the heavy covering of muscles outside the joint this test is not always reliable.

In the acute cases give rest and cold local applications. After the fourth or fifth day the blister mentioned for sprain of the shoulder may be applied with advantage, and if this proves insufficient, as a last resort we may fire in points over the joint.

Sprain of the back.—Sprain of the back, particularly in the region of the loins, is not an uncommon accident among cattle. It is liable to occur from the animals slipping with both hind feet sidewise so as to twist the back, or from slipping violently backward so that great stress is thrown on the loins. The patient moves with difficulty, using the hind parts in a guarded manner, as if afraid of causing severe pain. Occasionally, if the sprain is severe, the animal will rise with difficulty. Pressure on the back in the immediate region of the loins causes pain. Such cases may be mistaken for paralysis, and, in fact, in severe cases, during the early stages of the injury, although the nerve supply is not interfered with, the injury to the muscles and resulting pain is so great that the condition is almost equal to paralysis, although liable to be attended with more favorable results. Hot applications, such as blankets wrung out of hot water and changed often, will be likely to afford relief during the earlier stages. Afterwards the blister mentioned for sprain of the shoulder may be applied with advantage.

Bones may be accidentally broken in many ways and from different causes. Fractures in general are liable to be produced by external force suddenly and violently applied, either directly to the part or at a distance, the force being transmitted through the stronger bones until it expends itself by breaking a weaker one remote from the seat of the injury. Occasionally violent contraction of muscles is sufficient to break a bone. Certain bones, those of the limbs in particular, owing to their exposed position, are more liable to fracture than others. Owing to certain predisposing causes, such as age, habit, or hereditary constitutional weakness, the bones of some animals are more easily fractured than those of others. The bones of an animal advanced in years are more subject to fracture because of the preponderance of inorganic matter rendering them more brittle. They are also occasionally rendered liable to fracture by a previously existing diseased condition. Fractures are divided into four classes—partial, simple, compound, and comminuted.

Partial fractures.—Partial fractures are those which are liable to occur in a young animal in which the preponderance of animal matter or the semicartilaginous condition of the bone renders it tough, so that even when considerable force is applied the bone bends, breaking on the side opposite that to which the force was applied, after the manner in which a green stick bends and breaks.

Simple fractures. Simple fracture is one in which the bone is severed in two parts, transversely, longitudinally, or obliquely, without serious injury to the adjoining structures.

Compound fractures.—Compound fracture is one in which there is an open wound permitting the air to communicate with the ends of the broken bones.

Comminuted fractures.—Comminuted fracture is one in which the bone is shattered or divided into a number of fragments.

Complicated fractures.—Complicated fracture is one in which other structures surrounding the bones are injured.

General symptoms of fracture.—When a fracture of one or more of the large bones of a limb occurs, symptoms are sure to be well marked. After the accident the animal refuses to touch the foot to the ground and, if compelled to move, does so with great pain and reluctance. There is more or less shortening of the limb, with trembling of the muscles in the vicinity of the injury; deformity, and increased mobility, so that, instead of the natural joints of the limb and the natural, muscular control of their motion, a new joint, over which the animal has no control, is formed where the fracture occurred. As the leg, shortened by the ends of the bones being forced past one another from the muscular contraction which invariably takes place, hangs dependent from the body it swings in an awkward and unnatural manner, permitting the toe and foot to assume positions in their relations to other parts of the body which otherwise would be impossible. If the fractured bone is so situated that the parts may be moved one upon another, a grating sound, known as crepitus, will be heard.

General treatment of fractures.—When a fracture occurs, the advisability of attempting treatment must first be determined. If the animal is young, valuable, and of reasonably quiet temperament, and the fracture is not too great in extent, the chances of recovery are fair. On the other hand, if the animal should be of little value, irritable, advanced in years, and the fracture is a serious compound or comminuted one, the wiser course would generally be to put the creature out of its misery.

Having determined to attempt treatment, no time should be lost in restoring the parts as nearly as possible to their natural position and retaining them there. If the ends of the bones have been drawn one past the other, they should be drawn out by firm and continuous tension, until they again assume the position in which they were before the accident. All this can better be done before the swelling (which is sure to result) takes place. If the swelling has occurred before the injury is noticed, do not attempt to treat it, but proceed at once to treat the fracture as though the swelling were not present, for no step can be taken toward recovery until the ends of the bone have been restored to their proper position. When that is done and proper appliances have been used to prevent them from being again misplaced, the swelling, which is the result of irritation, will be relieved. In selecting the appliances to be used in the treatment of fracture the judgment and ingenuity of the operator are of much importance. Splints, made of wood shaped to fit the limb and paddedwith soft material where they come in contact with bony prominences, and held in position by means of bandages, are the oldest method, and with some are still most popular. The fracture pads used in human surgery, and for sale in surgical depots, are very convenient. After being dipped in water they may be molded to fit the limb and be retained by means of bandages. Heavy sole leather is also used after being soaked in warm water and molded to the shape of the limb and holes cut in it to fit over any sharp irregularities in the natural shape of the bones. Gutta-percha sheets are also used and answer well. They are prepared and used in the same way as the leather.

Another and perhaps the simplest of all methods is the application of a plaster-of-Paris bandage, which is made as follows: Strips of thin cheesecloth 3 inches wide and 8 or 9 feet long are laid flat on a board and on them is spread a layer of plaster of Paris about one-eighth of an inch thick; then, starting at one end, roll carefully so as to gather the plaster in between the layers of the bandage. It is of course important that the cloth be thin and the plaster of Paris fresh and active. After preparing four or five of such bandages the operator is ready to dress the fracture, which, after the parts have been brought into position, should be done by covering all that part of the limb to which the plaster-of-Paris bandage is to be applied with a single layer of the dry bandage, letting it extend both above and below the part to which the plaster bandage is to be applied and including under the folds of the dry bandage at each end a layer of absorbent cotton, which is intended to form a pad to prevent the ends of the plaster bandage from chafing the skin beneath. When this is done one of the plaster bandages should be placed in a vessel of water and allowed to remain till the air bubbles have ceased to rise from it, which will generally indicate that it is soaked through. Then, taking it in the hand, wind it carefully around and around the limb, unrolling the bandage as it is wound around the limb, occasionally smoothing down the plaster of Paris. Should it form roughly or in ridges the hand may be dipped in water to impart increased moisture to it. When about finished with one bandage, place another one in the water, so that the winding operation may be continued without delay. The bandages should be applied till the cast is from one-half to three-quarters of an inch thick, then gently restrain the animal for one-half or three-quarters of an hour till the plaster is hardened. Any of the appliances used should be so manipulated as to prevent absolutely any motion of the detached parts. If the fracture is near a joint, it is generally best to include the joint in the appliance. The part of the limb below the bandage should be carefully and firmly wrapped with an ordinary cotton bandage all the way from the plaster bandage down to the hoof. This last bandagewill tend to prevent swelling, which is liable to occur, the result of the dependent position in which the animal is forced by nature to keep the injured limb.

When plaster-of-Paris bandages are applied to a compound fracture the injured part may be previously dressed with a small, thick pad of cotton immediately over the wound. In applying the bandage the operator may with a little care so arrange it as to keep the folds of the bandages off the cotton, or have only a thin layer over it, which may be easily cut out and the cotton removed, leaving a convenient opening through which to dress the wound without removing the bandage. The ends of the bandage or other appliance should be carefully watched to see that the skin does not become chafed, particularly at the lower end. If the bandage should become weak or broken at any part, it may be strengthened without removal by applying other bandages immediately over it. If swelling has taken place before the bandage has been applied, there is liable to be some loosening as it disappears, and even without the swelling there may be a tendency of the bandage to slide downward. This may be overcome by fastening it to a suspender attached to a surcingle or passed over the body and attached to the opposite leg. If the looseness can not be overcome in this way, the space may be filled by pouring in a thin paste of plaster of Paris. A better method, however, is to remove the bandage and apply another. Owing to the hardness of the bandage it will be removed with some difficulty. A deep groove should be cut down completely through it on the opposite sides. This may be done with a chisel and a small hammer if the bandage is carefully held by an assistant so that the concussion of the blows is not transmitted to the injured bones. The patient should have a roomy stall, and should be tied by the head to prevent any attempts to move around. In some cases slings have been used. Ordinarily, however, they are not satisfactory in cattle practice, and if applied should be for only a few days at a time, and with a view to lessen the animal's disposition to lie down, rather than to prevent it. When they are used continuously the pressure on the abdomen may interfere with digestion and the general health of the animal.

Modes of union.—The animal should be kept as quiet as possible and given such feed as will have a tendency to keep the bowels slightly relaxed. The success of the operation depends chiefly on the skill of the operator, but not alone in the selection and use of the appliances, for as much attention must be given to subsequent management. The patients are restless, and a single awkward motion may undo the work of weeks so far as the union of the parts of the bone is concerned. Union takes place after the same process and, if the conditions are favorable, with greater rapidity than in the human being. The injury that caused the fracture is almost sure tohave extended to some of the adjacent tissues, and even though the fracture may be of the simplest type there is almost sure to be considerable hemorrhage around the ends of the broken bone. This, however, is unimportant if the skin remains intact, unless a very large vessel should be injured, or the fracture should open some of the important cavities of the body, in which case a fatal hemorrhage may result. If, on the other hand, the fracture is compound the external opening furnishes a fertile field for the lodgment of disease-producing germs.

Unless great care is taken in such cases, a suppurative process is liable to be established which will seriously interfere with, if not entirely arrest, the process of union between the bones; or it may become so serious as to endanger the general health of the animal and even be attended with fatal results. This last danger is greater if the injury has occurred to the bones of the arm or thigh. In such cases, owing to the dense covering of fascia which ensheathes the muscular covering pus is liable to be imprisoned, and, burrowing downward, saturate the whole structure, not only endangering the limb, but, by absorption, may set up blood poisoning and seriously interfere with the general health of the patient, even to causing death. In order so far as possible to prevent such an unfortunate complication, the wound should be carefully cleansed with a mild solution of carbolic acid, then dusted over with iodoform before the bandages are applied, and cleansed and dressed daily in the same way. After dressing, always cover with absorbent cotton. In the early process of union an exudation of lymph takes place, which is at first fluid, gradually becoming thicker and firmer till it forms a callus, known as the external or ensheathing callus, in the shape of a ring or ferrule surrounding the detached portions of the bone. It occasionally happens that this callus forms only at the ends of the bones, filling the spaces that exist between them, when it is known as the intermediate callus. The process of union may be divided into five stages. In the first stage, including the first eight days, the detached portions of the bone and the sharp projections that are not sufficiently nourished are absorbed; the blood which escaped into the surrounding tissues, the result of the injury, is gradually absorbed, and the effused lymph, which is ultimately to constitute the temporary cartilage, takes it place. In the second stage, from the tenth to the twentieth day, the tumor or callus is formed and fibrocartilage is developed inside and around the exposed end of the bone. In the third stage, extending from the twentieth to the fortieth or fiftieth day, according to the age and strength of the animal, the fibrocartilaginous structure undergoes a change and is gradually converted into bone, forming a ferrule on the outside and a plug on the inside,which serve to hold the part in position. In the fourth stage, extending to about the sixth month, the whole of the new structure is converted into bone. In the fifth stage, extending to the end of the first year, the callus is absorbed, being no longer necessary, and the connection between the cavities of the two bones is again established.

Common complications.—The process of union just described is healthy and normal. Diseased conditions may at any time supervene during the treatment and render the operation unsuccessful. In the case of compound fracture, the open wound communicating with the ends of the bones, a septic condition is liable to arise which may become so serious as to endanger the animal's life and bring about conditions which in human surgery would indicate amputation. Although that operation is not a general one in veterinary practice, there is no reason why it should not be attempted as a last resort, particularly if the animal is valuable or is one whose existence is necessary in order to perpetuate some valuable strain. Even in the simplest form of fracture, if the splints or bandages are improperly applied and the fractured bone left so loosely guarded that the broken ends move one upon another, the formation of the calluses previously described is liable to be interfered with, and in place of a strong, rigid, and healthy union a formation of elastic cartilage is the result. This false structure unites the broken ends of the bones in such way that they move one upon another, depriving the bone of its stability and usefulness. When once the healthy process of union is interrupted in the manner just described, it is again established with great difficulty. It no longer does any good to continue the restraining power; in fact, the change of the temporary cartilage into bone is more liable to be reestablished if the parts move violently upon each other for a short time so as to set up and renew the process of inflammation. Then if the restraint is again applied there is some chance of union. In order so far as possible to avoid this danger, care should be taken to see that the bandage fits closely and that it is kept on till there is no longer any danger but that a perfect union has taken place. It is impossible to say at just what time the splints or bandages can safely be removed. In a young and healthy animal of quiet temperament, if the parts have been firmly held in position throughout the whole time, from 30 to 40 days may be regarded as reasonably safe. Under more unfavorable conditions as to age, vitality, and restraint, the period would better be extended to 60 days, if the general condition of the animal is such as to permit of so long a continuance. After the appliance has been removed the animal should be allowed to stand quiet for a few days, then be given very gentle exercise, gradually increased for a week or 10 days, by which time the patient will be so far recovered as to be placed in pasture.It should, however, be alone for a time, so as not to take any chance of injury from fighting or other accidents that association with other animals might involve.

Fracture of the horns.—Of the special fractures liable to occur, that of the horn is perhaps the most common. It is always the result of violent mechanical means, such as blows, injury occurring while fighting, or from the animal getting its head locked in some manner while feeding from a rack. When it occurs there are two ways in which the injury may affect the animal. First and most common, the horny crust is liable to be stripped from the bony projection which it covers. Second, the crust and bone may both be broken or bent down, the fracture occurring in that case at the root of the horn and involving part of the bones of the head in the immediate vicinity. In the first case, if the horny covering is knocked off, little attention is necessary. The animal may be relieved from suffering if the stump is smeared with pine tar and wrapped in cloth. If the core is much lacerated, perhaps it would be better to amputate. The necessity for such operation must be determined by the condition of the injury, influenced to some extent by the owner's ideas on the subject. When the operation is performed, it should be done with a sharp, fine-toothed saw, and by sawing the horn off close enough to include a little of the skin and hair around its base. The practice of dehorning has grown popular in many parts of the country. It is a simple operation, and, although attended with some immediate suffering, does not produce serious constitutional disturbance. The advisability of performing the operation on all cattle is a question of expediency and must be justified by the expectation of benefit on the part of the feeder. If the horn should be broken so that the core and crust are bent out of shape without the detachment of one from the other, it may be restored to its normal position and retained there by means of a splint made to fit across the back of the head, so as to be laced to both horns, the sound horn serving to hold the broken one in position. Such a splint may be fastened on by means of either a wire or cord and allowed to remain six weeks or two months.

If both the horn and core have been broken off, bleeding is usually severe and should be checked by astringents, such as alum, or by pressure. After the hemorrhage has ceased the exposed portion of the fracture should be covered with pine tar, with or without a bandage. An imperfect growth of horn will in due time cover the exposed bone.

Fractures of the bones of the face.—These occasionally occur, and when over the cavities of the nose produce depression, disfigurement, and impeded respiration, owing to the lessening of the caliber of the nasal passages.

When such accident occurs, the depressed bone should be gently forced back to place by introducing the finger in the nostril, or if the fracture is too far up for this, a probe may be passed and the parts retained by placing immediately over it a plaster of thin leather or strong canvas smeared with tar, extending out to the sound surroundings, taking care to embed the hair over the fractured portion in the tar of the plaster, so that it will be firmly held and prevented from again becoming depressed. If only one nostril is involved, the depressed portion may be held in position by packing that nostril with absorbent cotton. This practice, however, has the objection of giving the animal great discomfort and in some cases a disposition to aggravate the injury.

Fracture of the skull (cranium).—Fractures of the bones forming the cavity in which the brain is situated are, owing to their strength, comparatively rare among cattle. Such an accident can only be the result of external violence, and it is hardly possible that it could occur without some fragment of the broken bone pressing upon the brain so as to cause coma or other severe nervous derangement, or even death.

If the animal survives the first shock, the efforts should be directed toward relieving the pressure, which may be done by making an opening in the bone (trephining), and with a hook drawing the depressed part outward. Interference is not so liable to be attended with good results as to be warranted in all cases. The effects of a very severe shock which may not have produced a fracture, although the symptoms were alarming, will in many cases pass off, leaving the animal in a better condition than if an operation had been performed.

Fracture of the lower jaw.—This occasionally occurs, and is more liable to result from the kick of a horse than from any other cause. The front part of the jaw may be split or shattered in any direction in which the force may have been applied. Bloody discharges from the mouth and failure to eat or ruminate are symptoms most likely to attract attention.

The treatment is simple and consists in first removing detached pieces of bone, then drawing the parts together and retaining them by means of pieces of copper wire fastened around the teeth, and feeding the animal on sloppy feed until recovery takes place. The wound should be dressed once or twice a day with a 3 per cent solution of carbolic acid, forced gently in with a syringe, so as to remove any feed which may have become impacted and interfere with the healing process.

Fracture of the vertebra (spinal column).— This is not so common among cattle as other animals. If the fracture should be through the body of the bone, there may be pressure on or laceration of the spinal cord, causing paralysis of all parts posterior to the seat of injury. Fractures of the prominences on a vertebra occasionally occur without interfering with the canal in which the spinal cord is situated. Such accidents are liable to pass unnoticed, for, although the animal may suffer considerable pain, it may not be manifested in such way as to attract attention, and the deep covering of muscles serves effectually to conceal the injury. When the fracture occurs in the upper part of the neck, paralysis of the muscles used in respiration must result, and death from asphyxia very shortly ensues. The more common accident is to the loins, and when a fracture of the body of a vertebra occurs in this region so as to produce pressure on the spinal cord, paralysis of the hind legs and quarters is the result. Diagnosis of such an accident is more difficult than in the case of any other fracture. The parts can not be moved one upon another so that crepitus is noticeable. The heavy coating of muscles conceals irregularities of shape, which otherwise may attract attention. About the only reliable symptom is paralysis or loss of use and sensation of the parts posterior to the injury. Careful examination may reveal the seat of the injury. If it was the result of a blow, there may be some abrasion of the skin. The diagnosis is only important as an aid in determining the proper course to pursue.

If paralysis is present and a depression or irregularity of the spinal column is so apparent as to leave no doubt of the existence of a fracture, the only alternative is to destroy the animal, for of recovery there can be no hope. If, on the other hand, the paralysis is incomplete and there is no depression or irregularity of the spinal column or other evidence of fracture, the patient should be made as comfortable as possible by being placed in a well-bedded box stall and a few days permitted to elapse before the case is abandoned. The symptoms last described may possibly be the result of a severe strain of the muscles of the loins, in which case an improvement will soon be noticeable.

Fractures of the pelvis.—The pelvis, or bony framework which gives shape to the posterior part of the body, is liable to fracture in many ways. A common one is by a separation of the two bones which constitute the whole pelvis along the bottom and center line (symphysis pubis). In early life the two bones are separate and distinct. The union between them, which is at first cartilaginous, undergoes a change and is converted into bone, so that in adult life the whole pelvis is practically one bone. The point on which thetwo bones are united is weaker than the adjoining parts of the bone. When an animal slips violently, spreading the legs wide apart, the weaker materials give way and the bones are divided. If the accident is noticed when it occurs, it is likely to throw light on the nature of the injury. The animal will immediately go stiff behind, the legs being spread apart. Further examination may be made by introducing the hand, previously carefully oiled, into the rectum or vagina and pressing down along the central line, which will cause the patient to evince acute pain. In this case no appliance can be used to advantage. The animal should be tied in a stall until the parts become reunited and the lameness disappears.

Fracture of the posterior parts of the bone (ischium), which forms the point of the buttocks occasionally occurs. The buttock on the injured side will be less prominent than the other. Careful manipulation will generally move the parts so that crepitus may be recognized. If the fracture is through the posterior part of the bone, it is unimportant and deserving of no more attention than placing the animal in such position as to insure it against subsequent injury until the bones are united. Some distortion may result, but not sufficient to warrant interference.

Fracture through the body of the bone on a line with the hip joint (acetabulum) occasionally, though rarely, occurs, and is nearly always associated with dislocation of the hip joint and the forcing of the head of the upper bone of the leg (femur) upward, far out of its place. The violent contraction of the powerful muscles of the hip renders it impossible to reduce the dislocation, and even if it were possible the fractured pelvis could not be held in position, so that the case becomes at once hopeless. It may be recognized by the animal's standing on three legs, the leg on the injured side seeming shorter than its fellow and hanging pendulous, the muscles of the hip violently contracted and hard to the touch. The animal evinces great pain when the limb is moved. There is liable to be some apparent distortion in the relations between the point of the hip and the point of the buttock. This will be more readily noticed by comparing the injured side with the other. The parts may be moved so as to produce crepitus. The examination may be completed by introducing the oiled hand into the vagina or rectum, when the two sides of the pelvis will reveal well-marked differences.

Fracture of the point of the hip.—The anterior and external part of the pelvis (ilium), commonly known as the point of the hip, is liable to fracture, which stock owners describe as "hipping," or being "hipped," or having the hip "knocked down." This accident may be the result of crowding while passing through a narrow door, of falling violently on the point of the hip, or from a violent blow directed downward and forward against it. The lesion generallyextends across the flat surface of the bone from its outer and posterior edge forward and inward. Distortion is liable to be the only noticeable symptom. The detached portion varies in size in different cases and with it the resulting deformity. The animal is noticed to be slightly lame, but this symptom soon disappears. The detached portion of the bone is drawn downward and away from the main part by the action of the muscles below, which are so powerful as to render return impossible. The bones therefore remain permanently separated, union taking place by fibrous callus. The animal suffers very little inconvenience, and for practical use may be as serviceable as before the accident, though the distorted appearance depreciates its value.

Fracture of the ribs.—Such an occurrence can take place only as the result of a direct injury, as from blows or crowding. The posterior ribs, being more exposed, are more liable to fracture. Pain in moving, slight swelling over the seat of injury, and difficult breathing are obvious symptoms. If the fracture is complete, crepitation may be occasionally noticed by placing the hand flat over the injured part, carefully observing the motion as the chest contracts and expands during respiration. This symptom is more noticeable when the animal coughs. Unless the point of the broken bone penetrates the cavity of the chest the fracture is usually unimportant and calls for no treatment other than quiet. If the breathing is very labored and attended with much pain, motion may be limited by applying a wide bandage firmly around the chest. The animal should be restricted in the amount of feed and water for a few days, the stomach being kept as nearly empty as possible. Sloppy feed should be given to encourage, as much as possible, free action of the diaphragm in breathing.

Fracture of bones of the limbs.—On this subject much has been said in the preceding remarks on general fractures. As a rule, fracture through one of the large bones of the shoulder (scapula) or thigh (femur) is very difficult to manage. The powerful contraction of the muscles and the changing shape of the limb resulting from their action renders it impossible to retain the detached parts of the bone in proper position. Therefore, though the union should take place, there is almost sure to be considerable deformity and more or less lameness. Fracture of the arm (humerus) or leg (tibia) is likely to be attended with better results. The muscular covering is not so thick, the sheath in which they are held is more tense, and the change in the shape of the limb from muscular action not so noticeable, the muscular force not so great, all of which facilitate replacing the dislodged ends and retaining them.


Back to IndexNext