XIIIGLOBULAR STAR-CLUSTERS

XIIIGLOBULAR STAR-CLUSTERS

If Kappa Crucis is the finest irregular star-cluster in the sky, Omega Centauri is undoubtedly the largest and most splendid of all the globular star-clusters, for its diameter is more than twice the diameter of the famous northern cluster in Hercules. It is easily found, being nearly in line with δ and γ Centauri (the two conspicuous stars just north of the Cross) and a little further from γ than γ is from δ. The cluster looks to the naked eye just like a tailless comet, and was mistaken for one by the author when first seen. In a binocular it is quite round, the soft milky light growing gradually brighter towards the centre, but without the slightest suggestion of irregularity, and no appearance of stars. It must have been seen by the early navigators who named the southern constellations, but it was first discovered as a star-cluster by Halley in the island of St.Helena. Most amazing is its appearance in a telescope, for the milky disc breaks up into thousands of tiny points of light, densely crowded, all alike, innumerable.

“This most glorious object,” as Herschel calls it, “the noble globular cluster ω Centauri, beyond all comparison the richest and largest object of the kind in the heavens,” is evidently quite distinct from κ Crucis and clusters like those described in the lastchapter. In form it is circular, and the condensation towards the centre suggests that it is spherical. There are some scattered members of the group lying outside the bright crowded sphere. The stars are also immensely more numerous and more closely packed than in the irregular clusters, their total number being estimated at 10,000, and 6000 have been actually counted on photographs, and all these in a space which looks little larger than that occupied by the sun in the sky. Another striking difference is that, instead of bright and faint stars mingled together, here they are all nearly alike and very minute. Curiously enough, it is found that they belong to two magnitudes, and two only, the thirteenth and fifteenth, and this seems to be a feature of all globular clusters,as well as the form and the dense crowding of the stars. Herschel at first thought the stars in ω Centauri “singularly equal, and distributed with the most exact equality, the condensation being that of a sphere equally filled.” But he immediately adds: “Looking attentively, I retract what is said about the equal scattering and equal sizes of the stars. There are two sizes ... without greater or less, and the larger stars form rings like lace-work on it.” In his later notes he is again doubtful, for he thinks that the effect may be optical, and the larger stars only knots of faint stars; but photography has settled the question in our day.

Yet another point of difference between globular and irregular clusters is that the latter often have wisps of nebulosity clinging about them, but globular clusters are entirely free from it.

THE STAR-CLUSTER 47 TOUCANIFrom Sir John Herschel’s drawing

THE STAR-CLUSTER 47 TOUCANI

From Sir John Herschel’s drawing

Smaller than ω Centauri, but even more beautiful in the telescope, is the cluster 47 Toucani,[10]which to the unaided eye appears like a fourth-magnitude star near the smaller Cloud of Magellan. The long curve of Grus followed southwards leads to it. Nearly as many stars as in ω Centauri, or about 9500, are here massed into a still smaller space, so the cluster is brighter, and is “compressed to a blaze of light” at the centre. The two sets of stars, which are mingled together throughout, are of thirteenth to fifteenth and of seventeenth magnitudes respectively. Herschel saw the inner denser part rose-coloured while the outer was white, but the present writer could not see this nor find anyone to confirm it to-day, possibly because the refracting telescopes now so often used do not show colour so well as large reflectors like Herschel’s. A double star of 11th magnitude, which is conspicuous in Herschel’s drawing, is doubtless far outside the cluster, and only appears projected against it by perspective.

Near β Aquarii there shines with the light of a sixth-magnitude star another “magnificent ball of stars” which has been compared to “a heap of fine sand.” It is named 2 M Aquarii.

Over seventy of these tightly packed balls of stars are known, even counting only the brightest, and their distribution is rather curious. A large number (about twenty) occur in the Clouds of Magellan, and more than half of the seventy are in the Milky Way, not scattered evenlyalong its course, but almost if not entirely confined to its southern part, and chiefly gathered in a great group in its brightest portion, where it passes through Sagittarius, Ophiuchus, and Aquila. Here they are mingled with—or perhaps projected against—numerous stars of the same magnitudes; but many balls are also found outside the Milky Way, widely scattered, and in these parts of the sky there are relatively few of the faint-magnitude stars which compose all the globular clusters. 47 Toucani, for instance, though it is near the small Magellanic Cloud, stands quite apart from it, isolated in a black sky.

We do not know the distances of any of these balls of stars. Those which have been examined spectroscopically shine like Canopus—that is, they are of a type intermediate between Sirius and our sun—but the chief light comes, of course, from the brighter stars, and it may be that the fainter stars mingled with them belong to a different type.

A remarkable fact lately discovered is that many globular clusters—but not all—contain a large number of variable stars. These vary in lightin a period of about a day and have a range of about one magnitude. They are not of the Algol type, nor quite of the usual “short-period” types, and it is not yet clear what is the cause of variation, though it seems probable that “cluster-variables” are double stars.


Back to IndexNext