35.TheNational Intelligencer, a prominent Washington newspaper, said with reference to Page's motor "He has shown that before long electro-magnetic action will have dethroned steam and will be the adopted motor," etc. This was an enthusiasm not based upon any fact then known about a machine not even in the line of the present facts of electro-dynamics.
Electric railroads.--There was an instance of almost simultaneous invention in the case of the first practical electric railroads. S. D. Field, Dr. Siemens, and Thomas A. Edison all applied for patents in 1880. Of these, Field was first in filing, and was awarded patents. The combined dynamo and motor were, of course, the parents of the practical idea. Field's patents covered a motor in or under the car, operated by a current from a stationary source of electricity--of course a dynamo. These first electric roads had the current carried on the rail. They were partially successful, but there was something wrong in the plan, and that something was induction by the earth. Later came, as a remedy for this, the "Trolley" system; the trolley being a small, grooved wheel running upon a current-carrying wire overhead. The question of how best to convey a current to the car-motor is a serious one, doubtless at this moment occupying the attention of highly-trained intelligence everywhere. The motor current is one of high power, and as such intractable; and it is in the character of this current, rather than in methods of insulation, that the remedy for the much-objected-to overhead wire is to be found. It will be remembered that all the phenomena of induction areunhindered by insulation.
Aside from the current-carrying problem, the electric road is explainable in all its features upon the theory and practice of the dynamo and motor. It is merely an application of the two machines. The last is, in usual practice, under the car, and geared to the truck-axle. A more modern mechanical improvement is to make the axle the shaft of the motor armature. When the motor has used the current it passes by most systems into the rail and the ground. By others there is a "metallic circuit"--two wires. Many men whose interest and occupation leads them to a study of such matters know that the use of electricity, instead of steam locomotion, is merely a question of time on all railroads. I have said elsewhere that the actual age of electricity had not yet fully come. It seems to us now that we have attained the end; that there is little more to know or to do. But so have all the generations thought in their day. In the field of electricity there are yet to come practical results of which one may have some foreshadowings in the experiments of men like Tesla, which will make our present times and knowledge seem tame and slow.
Electrolysis.--In all history, fire has been the universal practical solvent. It has been supplanted by the electrical current in some of the most beautiful and useful phenomena of our time. Electrolysis is the name of the process by which fluid chemicals are decomposed by the current.
A familiar early experiment in electrolysis is the decomposition of water--a chemical composed of oxygen and hydrogen, though always thought of and used as a simple, pure fluid. If the poles of a galvanic battery are immersed in water slightly mixed with sulphuric acid to favor electrical action, these poles will become covered with bubbles of gas which presently rise to the surface and pass off. These bubbles are composed of the two constituents of water, the oxygen rising from the positive and the hydrogen from the negative pole. Particles of the substance decomposed are transferred, some to one pole and some to the other; and, therefore, electrolysis is always practiced in a fluid in order that this transference may more readily occur.
The quantity ofelectrolyte--the substance decomposed--that is transferred in a given time is in proportion to the strength of the current. When this electrolyte is composed of many substances a current will act a little on all of them, and the quantity in which the elementary bodies appear at the poles of the current depends upon the quantities of the compounds in the liquid, and on the relative ease with which they yield to the electrical action.
The electrolytic processes are not the mere experiments a brief description of them would indicate, but are among the important processes for the mechanical products of modern times. The extensive nickel-plating that became a permanent fad in this country on the discovery of a special process some years ago, is all done by electrolysis. The silver plating of modern tableware and table cutlery, as beautiful and much less expensive than silver, and the fine finish of the beautiful bronze hardware now used in house-furnishing, are the results of the same process. Some use for it enters into almost every piece of fine machinery, and into the beautifying or preserving of innumerable small articles that are made and used in unlimited quantity.
The process and its principle is general, but there are many details observed in the actual work of electroplating which interest only those engaged. One of the most usual of these is that of making an electrotype. This may mean the making of an exact impression of a medal, coin, or other figure, or a depositing of a coating of the same on any metallic surface. Formerly the faces of the types used in printing were very commonly faced with copper to give them finish and a wearing quality. Even fresh, natural fruits that have been evenly coated with plumbago may be covered with a thin shell of metal. A silver head may be placed on the wood of a walking stick, precisely conforming on the outside to the form of the wood within.
The deposit of metal in the electrotyping process always takes place at the negative pole--the pole by which the current passes out of the fluid into its conductor. This is the "cathode." The other is the "anode." The "bath," as the fluid in which the process is accomplished is called, for silver, gold or platinum contains one hundred parts of water, ten of potassium cyanide, and one of the cyanide of whichever of those metals is to be deposited. The articles to be plated are suspended in this bath and the battery-power, varying in intensity according to circumstances, is applied. After removal they are buffed and finished. A varying detail is practiced for different metals, and the current now commonly used is from a dynamo. [36]
36.Among modern modifications of the dynamic current, is its use, modified by proper appliances, for the telegraph and the telephone circuits of cities and the larger towns. Every electric current may now be safely attributed to that source, and from the same circuit and generator all modifications may be produced at once.
The origin of electrolysis is said to be with Daniell, who noticed the deposit of copper while experimenting with the battery that bears his name. Jacobi, at St. Petersburg, first published a description of the process in 1839. The Elkingtons were the first to actually put the process into commercial practice.
It would be interesting now, were it apropos, to describe the seemingly very ancient processes by which our ancestors gilded, plated, were deceived and deceived others, previous to about 1845. For those things were done, and the genuineness of life has by no means been destroyed by the modern ease with which a precious metal may be deposited upon one utterly base. A contemplation of the moral side of the subject might lead at once to the conclusion that we could now spare one of the least in actual importance of the processes of the all-pervading and wonderful essence that alike makes the lightning-stroke and gilds the plebeian pin that fastens a baby's napkin. But from any other view we could not now dispense with anything electricity does.
General facts.--The names of many of the original investigators of electrical phenomena are perpetuated in the familiar names of electrical measurements. For, notwithstanding its seeming subtlety, there is no force in use, or that has ever been used by men, capable of being so definitely calculated, measured, determined beforehand, as electricity is. As time passes new measurements are adopted and named, some of them being proposed as lately as 1893. An instance of the value of some of these old determinations of a time when all we now know of electrical science was unknown, may be given in what is known as Ohm's Law. Ohm was a native of Erlangen, in Bavaria, and was Professor of Physics at Munich, where he died in 1874. He formulated this Law in 1827, and it was translated into English in 1847. He was recognized at the time, and was given the Copley medal of the Royal Society of London. The Law--for by that distinctive name is it still called, though the name "Ohm," also expresses a unit of measurement--is thatthe quantity of current that will pass through a conductor is proportional to the pressure and inversely proportional to the distance. That is:
Current = Pressure / Resistance.
Transposing the terms of the equation we may get an expression for either of those elements, current, pressure, or resistance, in the terms of the other two. This relation holds true and is accurate in every possible case and condition of practical work. This remarkable precision and definiteness of action has made possible the creation of an extensive school of electrical testing, by which we are not only enabled to make accurate measurement of electrical apparatus and appliances, but also to make determinations inotherfields by the agency of electricity. When an ocean cable is injured or broken the precise location of the trouble is madeby measuring the electrical resistance of the parts on each side of the injury.
The magnitudes of measurements of electricity are expressed in the following convenient electrical units:
The VOLT (named from Volta) equals a unit ofpressurethat is equal to one cell of a gravity battery.
The OHM, as a unit of measurement, equals a unit ofresistancethat is equivalent to the resistance of a hundred feet of copper wire the size of a pin.
The AMPÈRE (named from Ampère, 1775-1836, author of a "Collection of Observations on Electro-Dynamics" and other works, and a profound practical investigator) equals a unit ofcurrentequivalent to the current which one Volt of pressure will produce through one Ohm of wire (or resistance).
The Coulomb (1736--inventor of the means of measuring electricity called the "Torsion balance," and general early investigator) equals a unit ofquantityof one Ampere flowing for one second.
The Farad (from Faraday, the discoverer of the laws of Induction, seeante), equals that unit ofcapacitywhich is the capacity for holding one Coulomb. Death current.--What is now spoken of as the "Death Current" is one that will instantly overcome the "resistance" of the human, or animal, body. It is a current of from one to two thousand Volts--about the same as that used in maintaining the large arc lights. This question of the killing capacity of the current became officially prominent some years ago, upon the passage by the legislature of the State of New York of a statute requiring the death penalty to be inflicted by means of electricity. The object was to deter evildoers by surrounding the penalty with scientific horror, [37] and the idea had its origin in the accidents which formerly occurred much more frequently than now. The "death current" is now almost everywhere, though the care of the men who continually work about "live" wires has grown to be much like that of men who continually handle firearms or explosives, and accidents seldom happen. At first it was apparently difficult for the general public to appreciate the fact that the silent and harmless-looking wires must be avoided. There was suddenly a new and terrific power in common use, and it was as slender, silent and unobtrusive as it was fatal.
37.Hence also the new lingual atrocity, the word "electrocute," derived from "execute" by decapitation and the addition of "electro"
Insulation of the hands by the use of rubber gloves, and extreme care, are the means by which those who are called "linemen"--a new industry--protect themselves in their occupation. But there is a new commandment added to the list of those to be memorized by the body-politic. "Do not tread upon, drive over, or touchanywire." It may be, and probably is, harmless. But you cannot positively know. [38]
38.It is a common trait of general human nature to refuse to learn save by the hardest of experiences, and so far as the crediting of statements is concerned, to at first believe everything that is not true, and reject most that is. The supernatural, the phenomena of alleged witchcraft and diabolism, and of "luck," "hoodoo," "fate," etc., find ready disciples among those who reject disdainfully the results of the working of natural law. When the railroads were first built across the plains the Indians repeatedly attempted to stop moving trains by holding the ends of a rope stretched across the track in front of the engine, and with results which greatly surprised them When the lines were first constructed in northern Mexico the Mexican peasant could not be induced to refrain from trying personal experiments with the new power, and scores of him were killed before he learned that standing on the track was dangerous. In the United States the era of accidents through indifference to common-looking wires has almost passed, but for some years the fatality was large because people are always governed by appearances connected withpreviousnotions, untilnewexperiences teach them better.
INSTRUMENTS OF MEASUREMENT.--Some of the most costly and beautiful of modern scientific instruments are those used in the measurements and determinations of electrical science. There are many forms and varieties for every specific purpose. Electrical measurement has become a department of physical science by itself, and a technical, extensive and varied one. Already the electrical specialist, no more an original experimenter or investigator than the average physician is, has become professional. He makes plans, submits facts, estimates cost, and states results with almost certainty.
ELECTRICITY AS AN INDUSTRY.--Immense factories are now devoted to the manufacture of electrical goods exclusively. Large establishments in cities are filled with them. The installation of the electric plant in a dwelling house is done in the same way, and as regularly, as the plumbing is. Soon there must be still another enlargement, since the heating of houses through a wire, and the kitchen being equipped with cooking utensils whose heat is for each vessel evolved in its own bottom, is inevitable.
The following are some of the facts, in figures, of the business side of electricity in the United States at the present writing. In 1866, about twenty years after the establishment of the telegraph, but with a population of only a little more than half the present, there were 75,686 miles of telegraph wire in use, and 2,520 offices. In 1893 there were 740,000 miles of wire, and more than 20,000 offices. The receipts for the year first named are unknown, but for 1893 they were about $24,000,000. The expenses of the system for the same year were $16,500,000.
The telephone, an industry now about sixteen years old, had in 1893, for the Bell alone, over 200,000 miles of wire on poles, and over 90,000 miles of wire under ground. The instruments were in 15,000 buildings. There were 10,000 employés, and 233,000 subscribers. All companies combined had 441,000 miles of wire. Ninety-two millions of dollars were invested in telephonefixtures.
In 1893, the average cost of a telegram was thirty-one and one six-tenths cents, and the average alleged cost of sending the same to the companies was twenty-two and three-tenths cents, leaving a profit of nine and three-tenths cents on every message. It must be remembered that with mail facilities and cheapness that are unrivalled, the telegraph message is always an extraordinary mode of communication; an emergency. These few figures may serve to give the reader a dim idea of the importance to which the most ordinary and general of the branches of electrical industry have grown in the United States.
MEDICAL ELECTRICITY.--For more than fifty years the medical fraternity in regular practice persisted in disregarding all the claims made for the electric current as a therapeutic agent. In earlier times it was supposed to have a value that supplanted all other medical agencies. Franklin seems to have been one of the earliest experimenters in this line, and to have been successful in many instances where his brief spark from the only sources of the current then known were applicable to the case. The medical department of the science then fell into the hands of charlatans, and there is a natural disposition to deal in the wonderful, the miraculous or semi-miraculous, in the cure of disease. Divested of the wonder-idea through a wider study and greater knowledge of actual facts, electricity has again come forward as a curative agent in the last ten years. Instruction in its management in disease is included in the curriculum of almost every medical school, and most physicians now own an outfit, more or less extensive, for use in ordinary practice. To decry and utterly condemn is no longer the custom of the steady-going physician, the ethics of whose cloth had been for centuries to condemn all that interfered with the use of drugs, and everything whose action could not be understood by the examples of common experience, and without special study outside the lines of medical knowledge as prescribed.
Perhaps the developments based upon the discoveries of Faraday have had much to do with the adoption of electricity as a curative agent. The current usually used is the Faradic; the induced alternate current from an induction coil. This is, indeed, the current most useful in the majority of the nervous derangements in the treatment of which the current is of acknowledged utility.
In surgery the advance is still greater. "Galvano-cautery" is the incandescent light precisely; the white-hot wire being used to cut off, or burn off, and cauterize at the same time, excrescences and growths that could not be easily reached by other means than a tube and a small loop of platinum wire. A little incandescent lamp with a bulb no bigger than a pea is used to light up and explore cavities, and this advance alone, purely mechanical and outside of medical science, is of immense importance in the saving of life and the avoidance of human suffering.
It may be added that there is nothing magical, or by the touch, or mysterious, in the treatment of disease by the electrical current. The results depend upon intelligent applications, based upon reason and experience, a varied treatment for varying cases. Nor is it a remedy to be applied by the patient himself more than any other is. On the contrary, he may do himself great injury. The pills, potions, powders and patent medicines made to be taken indiscriminately, and which he more or less understands, may be still harmful yet much safer. Even the application of one or the other of the two poles with reference to the course of a nerve, may result in injury instead of good.
INCOMPLETE POSSIBILITIES.--There are at least two things greatly desired by mankind in the field of electrical science and not yet attained. One of these, that may now be dismissed with a word, is the resolving of the latent energy of, say a ton of coal, into electrical energy without the use of the steam engine; without the intervention of any machine. For electricity is not manufactured; not created by men in any case. It exists, and is merely gathered, in a measure and to a certain extent confined and controlled, and sent out as aconcentrated form of energyon its various errands. Should a means for the concentration of this universally diffused energy be found whereby it could be made to gather, by the new arrangement of some natural law such as places it in enormous quantities in the thundercloud, a revolution that would permeate and visibly change all the affairs of men would take place, since the industrial world is not a thing apart, but affects all men, and all institutions, and all thought.
The other desideratum, more reasonable apparently, yet far from present accomplishment, is a means of storing and carrying a supply of electricity when it has been gathered by the means now used, or by any means.
THE STORAGE BATTERY is an attempt in this last direction. The name is misleading, since even in this attempt electricity is in no sense "stored," but a chemical action producing a current takes place in the machine. The arrangement is in its infancy. Instances occur in which, under given circumstances, it is more or less efficient, and has been improved into greater efficiency. But many difficulties intervene, one of which is the great weight of the appliances used, and another, considerable cost. The term "storage battery" is now infrequently used, and the name "secondary" battery is usually substituted. The principle of its action is the decomposing of combined chemicals by the action of a current applied from a stationary generator or dynamo, and that these chemicals again unite as soon as they are allowed to do so by the completing of a circuit,and in re-combining give off nearly as much electricity as was first used in separating them.The action of the secondary, "storage," battery, once charged, is like that of a primary battery. The current is produced by chemical action. Two metals outside of the solution contained in a primary battery cell, but under differing physical conditions from each other, will yield a current. A piece of polished iron and a piece of rusty iron, connected by a wire, will yield a small current. Rusty lead, so to speak, so connected with bright lead, has a high electromotive force. Oxygen makes lead rusty, and hydrogen makes it bright. Oxygen and hydrogen are the two gases cast off when water is subjected to a current. (SeeanteunderElectrolysis) So Augustin Planté, the inventor of as much as we yet have of what is called a storage or secondary battery, suspended two plates of lead in water, and when a current of electricity was passed through it hydrogen was thrown off at one plate, making it bright, and oxygen at the other plate, peroxydizing its surface. When the current was removed the altered plates, connected by a wire, would send off a current which was in the opposite direction from the first, and this would continue until the plates were again in their original condition. This is the principle and mode of action of the storage battery. So far it has assumed many forms. Scores of modifications have been invented and patented. The leaden plates have taken a variety of forms, yet have remained leaden plates, one cleaned and the other fouled by the electrolytic action of a current, and giving off an almost equivalent current again by the return process. The arrangement endures for several repetitions of the process, but is finally expensive and always inconvenient. The secondary battery, in its infancy, as stated, presents now much the same obstacles to commercial use the galvanic, or primary, battery did before the induced current had become the servant of man.
ELECTRICAL INVENTION IN THE UNITED STATES.
A list of the electrical inventors of this country would be very long. Many of the names are, in the mass and number of inventions, almost lost. It happens that many of the practical applications described in this volume, indeed most of them, are the work of citizens of this country.
In previous chapters I have referred briefly to Franklin, Morse, Field, and others. These men have left names that, without question, may be regarded as permanent. Their chiefest distinguishing trait was originality of idea, and each one of them is a lesson to the American boy. In a sense the greatest of all these, and in the same sense, the greatest American, was Benjamin Franklin. A sketch of his career has been given, but to that may be added the following: He had arrived at conclusions that were vast in scope and startling in result by applying the reasoning faculty upon observations of phenomena that had been recurring since the world was made, and had been misunderstood from the beginning. He used the simplest means. His experiment was in a different way daily performed for him by nature. He was philosophically daring, indifferently a tinker with nature's terrific machinery; a knocker at the door of an august temple that men were never known to have entered; a mortal who smiled in the face of inscrutable and awful mystery, and who defied the lightning in a sense not merely moral. [39]
39.Professor Richmann, of St. Petersburg, was instantly killed by lightning while repeating Franklin's experiment.
His genius lay in a power of swift inductive reasoning. His common sense and his sense of humor never forsook him. He uttered keen apothegms that have lived like those of Solon. He was a philosopher like Diogenes, lacking the bitterness. He wrote the "Busy-Body," and annually made the plebeian and celebrated "Almanac," and the "Ephemera" that were not ephemeral, and is the author of the story of "The Whistle," that everybody knows, and everybody reads with shamefacedness because it is a brief chapter out of his own history.
He was apparently an adept in the art of caring for himself, one of the most successful worldings of his time, yet he wrote, thought, toiled incessantly, for his fellow men. He had little education obtained as it is supposed an education must be obtained. He was commonplace. No one has ever told of his "silver tongue," or remembered a brilliant after-dinner speech that he has made. Yet he finally stood before mankind the companion of princes, the darling of splendid women, covered with the laurels of a brilliant scientific renown. But he was a printer, a tinkerer with stoves, the inventor of the lightning rod, the man who had spent one-half his life in teaching apprentices, such as he himself had been when his jealous and common-minded brother had whipped him, that "time is money," that "credit is money"--which is the most prominent fact in the commercial world of 1895--and that honor and self-respect are better than wealth, pleasure, or any other good.
Yet clear, keen, cold and inductive as was Franklin's mind, no vision reached him, in the moment of that triumph when he felt the lightning tingling in his fingers from a hempen string, of those wonders which were to come. He knew absolutely nothing of that necromancy through which others of his countrymen were to girdle the world with a common intelligence, and yet others were to use in sprinkling night with clusters as innumerable and mysterious as the higher stars.
The story of the Morse telegraph has been repeatedly told, and I have briefly sketched it in connection with the subject of the telegraph. But, unlike the original, scientifically lonely and independent Franklin, Morse had the best assistance of his times in the persons of men more skilled than himself and almost as persistent. The chief of these was Alfred Vail, a name until lately almost unknown to scientific fame, who eliminated the clumsy crudities of Morse's conception, remade his instruments, and was the inventor of that renowned alphabet which spells without letters or writing or types, that may be seen or heard or felt or tasted, that is adapted to any language and to all conditions, and that performs to this day, and shall to all time, the miracle of causing the inane rattle of pieces of metal against each other to speak to even a careless listener the exact thoughts of one a thousand miles away.
Another of the men who might be appropriately included in any comprehensive list of aiders and abettors of the present telegraph system were Leonard D. Gale, then Professor of Chemistry in the University of New York, and Professor Joseph Henry, who had made, and was apparently indifferent to the importance of it because there was no alphabet to use it with, the first electric telegraph ever constructed to be read, or used,by sound. Last, though hardly least if all facts are understood, might be included a skillful youth named William Baxter, afterwards known as the inventor of the "Baxter Engine," who, shut in a room with Vail in a machine shop in New Jersey, made in conjunction with the author of the alphabet the first telegraphic instrument that, with Henry's magnet and battery cells, sent across space the first message ever read by a person who did not know what the words of the message would say or mean until they had been received.
After the telegraph the state of electrical knowledge was for a long time such that electrical invention was in a sense impossible. The renowned exploit of Field was not an invention, but a heroic and successful extension of the scope and usefulness of an invention. But thought was not idle, and filled the interval with preparations for final achievements unequaled in the history of science. Two of these results are the electric light and the telephone. For the various "candles," such as that of Jablochkoff, exhibited at Paris in 1870, only served to stimulate investigation of the alluring possibilities of the subject. The details of these great inventions are better known than those of any others. The telegraph and the newspaper reporter had come upon the field as established institutions. Every process and progress was a piece of news of intense interest. When the light glowed in its bulb and sparkled and flashed at the junction points of its chocolate-colored sticks it had been confidently expected. There was little surprise. The practical light of the world was considered probable, profitable, and absolutely sure. The real story will never be told. The thoughts, which phrase may also include the inevitable disappointments of the inventor, are never written down by him. That variety of brain which, with a few great exceptions, was not known until modern, very recent times, which does not speculate, contrive, imagine only, but also reduces all ideas tocommercialform, has yet to have its analysis and its historian, for it is to all intents a new phase of the evolution of mind.
THOMAS A. EDISON
A typical example of this class of intellect is Mr. Thomas A. Edison. It may be doubted if such a man could, in the qualities that make him remarkable, be the product of any other country than ours. In common with nearly all those who have left a deep impression upon our country, Edison was the child of that hackneyed "respectable poverty" which here is a different condition from that existing all over Europe, where the phrase was coined. There, the phrase, and the condition it describes, mean a dull content, an incapacity to rise, a happy indifference to all other conditions, a dullness that does not desire to learn, to change, to think. To respectable poverty in other civilizations there are strong local associations like those of a cat, not arising to the dignity of love of country. In the United States, without a word, without argument or question, a young man becomes a pioneer--not necessarily one of locality or physical newness, but a pioneer in mind--in creed, politics, business--in the boundless domain of hope and endeavor. In America no man is as his father was except in physical traits. No man there is a volunteer soldier fighting his country's battles except from a conviction that he ought to be. A man is an inventor, a politician, a writer, first because he knows that valuable changes are possible, and, second, because he can make such changes profitable to himself. It is the great realm of immutable steadfastness combined with constant change; unique among the nations.
Edison never had more than two months regular schooling in his entire boyhood. There is, therefore, nothing trained, "regular," technical, about him. If there had been it is probable that we might never have heard of him. He is one of the innumerable standing arguments against the old system advocated by everybody's father, and especially by the older fathers of the church, and which meant that every man and woman was practically cut by the same pattern, or cast in the same general mould, and was to be fitted for a certain notch by training alone. No more than thirty years ago the note of preparation for the grooves of life was constantly sounded. Natural aptitude, "bent," inclination, were disregarded. The maxim concocted by some envious dull man that "genius is only another name for industry," was constantly quoted and believed.
But Edison's mother had been trained, practically, as an instructor of youth. He had hints from her in the technical portions of a boy's primary training. He is not an ignorant man, but, on the contrary, a very highly educated one. But it is an education he has constructed for himself out of his aptitudes, as all other actual educations have really been. When he was ten years old he had read standard works, and at twelve is stated to have struggled, ineffectually perhaps, with Newton'sPrincipia. At that age he became a train-boy on the Grand Trunk railroad for the purpose of earning his living; only another way of pioneering and getting what was to be got by personal endeavor. While in that business he edited and printed a little newspaper; not to please an amateurish love of the beautiful art of printing, but for profit. He was selling papers, and he wanted one of his own to sell because then he would get more out of it in a small way. He never afterwards showed any inclination toward journalism, and did not become a reporter or correspondent, or start a rural daily. While he was a train-boy, enjoying every opportunity for absorbing a knowledge of human nature, and of finally becoming a passenger conductor or a locomotive engineer, something called his attention to the telegraph as a promoter of business, as a great and useful institution, and he resolved to become an "operator." This was his electrical beginning. Yet before he took this step he was accused of a proclivity toward extraordinary things. In the old "caboose" where he edited, set up, and printed his newspaper he had established a small chemical laboratory, and out of these chemicals there is said to have been jolted one day an accident which caused him some unpopularity with the railroad people. He was all the time a business man. He employed four boy helpers in his news and publishing business. It took him a long time to learn the telegraph business under the circumstances, and when he was at last installed on a "plug" circuit he began at once to do unusual things with the current and its machines and appliances. This is what he tells of his first electrical invention.
There was an operator at one end of the circuit who was so swift that Edison and his companion could not "take" fast enough to keep up with him. He found two old Morse registers--the machines that printed with a steel point the dots and dashes on a paper slip wound off of a reel. These he arranged in such a way that the message written, or indented, on them by the first instrument were given to him by the second instrument at any desired rate of speed or slowness.
This gave to him and his friend time to catch up. This, in Morse's time, would have been thought an achievement. Edison seems to regard it as a joke. There was no time for prolonged experiment. It was an emergency, and the idea must necessarily have been supplemented by a quick mechanical skill.
It was this same automatic recorder, the idea embodied in it, that by thought and logical deduction afterwards produced that wonderful automaton, the phonograph. He rigged a hasty instrument that was based upon the idea that if the indentations made in a slip of paper could be made to repeat the ticking sound of the instrument, similar indentations made by a point on a diaphragm that was moved by thevoicemight be made to repeat the voice. His rude first instrument gave back a sound vaguely resembling the single word first shouted into it and supposed to be indented on a slip of paper, and this was enough to stimulate further effort. He finally made drawings and took them to a machinist whom he knew, afterwards one of his assistants, who laughed at the idea but made the model. Previously he bet a friend a barrel of apples that he could do it. When the model was finished he arranged a piece of tin foil and talked into it, and when it gave back a distinct sound the machinist was frightened, and Edison won his barrel of apples, "which," he says, "I was very glad to get."
The "Wizard" is a man evidently pertaining to the class of human eccentrics who excite the interest of their fellow-men "to see what they will do next," but without any idea of the final value of that which may come by what seems to them to be mere unbalanced oddity. Such people are invariably misunderstood until they succeed. When he invented the automatic repeating telegraph he was discharged, and walked from Decatur to Nashville, 150 miles, with only a dollar or two as his entire possessions. With a pass thence to Louisville, he and a friend arrived at that place in a snowstorm, and clad in linen "dusters." This does not seem scientific or professor-like, but it has not hindered; possibly it has immensely helped. It reminds one of the Franklinic episodes when remembered in connection with future scientific renown and the court of France.
One of the secrets of Edison's great success is the ease with which he concentrates his mind. He is said to possess the faculty of leaving one thing and taking up another whenever he wills. He even carries on in his mind various trains of thought at the same time. The operations of his brain are imitated in his daily conduct, which is direct and simple in all respects. He is never happier than when engaged in the most absorbing and exacting mental toil. He dresses in a machinist's clothes when thus employed in his laboratory, and was long accustomed to work continuously for as long as he was so inclined without regard to regularity, or meals, or day or night. He is willing to eat his food from a bench that is littered with filings, chips and tools. To relieve strain and take a moment's recreation he is known to have bought a "cottage" organ and taught himself to play it, and to go to it in the middle of the night and grind out tunes for relaxation. He has a working library containing several thousand books. He pores over these volumes to inform himself upon some pressing idea, and does so in the midst of his work. No man could have made some of his inventions unaided by technical science and a knowledge of the results of the investigations of many others, and it has often been wondered how a man not technically educated could have seemed so well to know. There was a mistake. Heiseducated; a scientific investigator of remarkable attainments.
In thinking of the inventions of Edison and their value, a dozen of the first class, that would each one have satisfied the ambition or taken the time of an ordinary man, can be named. The mimeograph and the electric pen are minor. Then there are the stock printer, the automatic repeating telegraph, quadruplex telegraphy, the phono-plex, the ore-milling process, the railway telegraph, the electric engine, the phonograph. Some of these inventions seem, in the glow of his incandescent light, or with one's ear to the tube of the telephone he improved in its most essential part, to be too small for Edison. But nothing was too small for Franklin, or for the boy who played idly with the lid of his mother's tea-kettle and almost invented the steam-engine of today, or for Hero of Alexandria, who dreamed a thousand years before its time of the power that was to come. So was Henry's first electric telegraph the merest toy, and his electro-magnet was supported upon a pile of books, his signal bell was that with which one calls a servant, and his idea was a mere experiment without result. There was a boy Edison needed there then, whose toys reap fortunes and light, and enlighten, the world. The electric pen was in its day immensely useful in the business world, because it was the application of the stencil to ordinary manuscript, and caused the making of hundreds of copies upon the stencil idea, and with a printer's roller instead of a brush. The mimeograph was the same idea in a totally different form. It was writing upon a tablet that is like a bastard-file, with a steel-pointed stylus. Each slight projection makes a hole in the paper, and then the stencil idea begins again.
Something has been previously said of the difficulties attending the making of the filament for the incandescent light. It is a little thing, smaller than a thread, frail, delicate, sealed in a bulb almost absolutely exhausted of air, smooth without a flaw, of absolutely even caliber from end to end. The world was searched for substances out of which to make it, and experiments were endlessly and tediously tried; all for this one little part of a great invention, which, like all other inventions, would be valueless in the want of a single little part.
There are hundreds, an unknown number, of inventions in electricity in this country whose authors are unknown, and will never be known to the general public. The patent office shows many thousands of such in the aggregate. Many useful improvements in the telephone alone have come under the eye of every casual reader of the newspapers. These are now locked up from the world, with many other patented changes in existing machines, because of the great expense attending their substitution for those arrangements now in use.
All the principles--the principles that, finally demonstrated, become laws--upon which electrical invention is based, are old. It seems impossible, during the entire era of modern thought, to have found a new trait, a development, a hitherto unsuspected quality. Tesla, in some of his most wonderful experiments, seems almost to have touched the boundaries of an unexplored realm, yet not quite, not yet, and most likely absolute discovery can no farther go. To play upon those known laws--to twist them to new utilities and give them new developments--has been the work of the creators of all the modern electrical miracles. There is scarcely a field in which men work in which the results are not more apparent, yet all we have, and undoubtedly most we shall ever have, of electricity we shall continue to owe to the infant period of the science.
It may be truthfully claimed that most of these extraordinary applications of electricity have been made by American inventors. Wherever there is steam, on sea or land, there, intimately associated with American management, will be found the dynamic current and all its uses. The science of explosive destruction has almost entirely changed, and with a most extraordinary result. But one of the factors of this change has been the electric current, a something primarily having nothing to do with guns, ships or sailing. The modern man-of-war, beginning with those of our own navy, is lighted by the electric light, signalled and controlled by the current, and her ponderous guns are loaded, fired, and evensightedby the same means. Her officers are a corps of electrical experts. A large part of her crew are trained to manipulate wires instead of ropes, and her total efficiency is perhaps three times what it would be with the same tonnage under the old régime. There is a new sea life and sea science, born full grown within ten years from a service encrusted with traditions like barnacles, and that could not have come by any other agency. A big gun is no longer merely that, but also an electrical machine, often with machinery as complicated as that of a chronometer and much more mysterious in operation.
I have said that the huge piece was even sighted by electricity. There is really nothing strange in the statement, though it may read like a fairy tale or a metaphor to whoever has never had his attention called to the subject. In a small way, with the name of its inventor almost unknown except to his messmates, it is one of the most wonderful, and one of the simplest, of the modern miracles. As a mere instance of the wide extent of modern ideas of utility, and of the possibilities of application of the laws that were discovered and formulated by those whose names the units of electrical measurements bear, it may be briefly stated how a group of gunners may work behind an iron breastwork, and never see the enemy's hull, and yet aim at him with a hundred times the accuracy possible in the day of theOld Ironsidesand theGuerriere.
And first it may be stated that therange-finderis largely a measure of mere economy. A two-million-dollar cruiser is not sailed, or lost, as a mere pastime. Whoever aims best will win the fight. Ten years ago the way of finding distance, or range, which is the same thing, was experimental. If a costly shot was fired over the enemy the next one was fired lower, and possibly between the two the range might be got, both vessels meantime changing positions and range. To change this, to either injure an antagonist quickly or get away, the "range-finder" was invented, as a matter not of business profit, by Lieutenant Bradley A. Fiske, of the U. S. Navy, in 1889. It has its reason in the familiar mathematical proposition that if two angles and one side of a triangle are known, the other sides of the triangle are easily found. That is, that it can be determined how far it is to a distant object without going to it. But Fiske's range-finder makes no mathematical calculations, nor requires them to be made, and is automatic. A base line permanently fixed on the ship is the one side of a triangle required. The distance of the object to be hit is determined by its being the apex of an imaginary triangle, and at each of the other angles, at the two ends of the base line, is fixed a spyglass. These are directed at the object.
So far electricity has had nothing to do with the arrangement, but now it enters as the factor without which the device could have no adaptation. As the telescopes are turned to bear upon the target they move upon slides or wires bent into an arc, and these carry an electric current. The difference in length of the slide passed over in turning the telescopes upon the object causes a greater or less resistance to the current, precisely as a short wire carries a current more easily; with less "resistance;" than a long one. A contrivance for measuring the current, amounting to the same thing that other instruments do of the same class that are used every day, allows of this resistance being measured and read, not now in units of electricity, butin distance to the apex of the triangle where the target is; in yards. The man at each telescope has only to keep it pointed at the target as it moves, or as the vessel moves which wishes to hit it. And now even the telephone enters into the arrangement. Elsewhere in the ship another man may stand with the transmitter at his ear. He will hear a buzzing sound until the telescopes stop moving, and at the same time there will be under his eye a pointer moving over a graduated scale. The instant the sound ceases he reads the range denoted by the index and scale. The information is then conveyed in any desired way to the men at the guns; these, of course, being aimed by a scale corresponding to that under the eye of the man at the telephone. The plan is not here detailed as technical information valuable to the casual reader, but as showing the wide range of electrical applications in fields where possible usefulness would not have been so much as suspected a few years ago. The same gentleman, Lieut. Fiske, is also the author of ingenious electrical appliances for the working of those immense gun-carriages that have grown too big for men to move, and for the hoisting into their cavernous breeches of shot and shell. The men who work these guns now do not need to see the enemy, even through the porthole or the embrasure. They can attend strictly to the business of loading and firing, assisted by machines nearly or quite automatic, and can cant and lay the piece by an index, and fire with an electric lanyard. The genius of science has taken the throne vacated by the goddess of glory. The sailor has gone, and the expert mechanician has taken his place. The tar and his training have given way to the register, the gauge and the electrometer. The big black guns are no longer run backward amid shouts and flying splinters, and rammed by men stripped to the waist and shrouded in the smoke of the last discharge, but swing their long and tapering muzzles to and fro out of steel casemates, and tilt their ponderous breeches like huge grotesque animals lying down. The grim machinery of naval battle is moved by invisible hands, and its enormous weight is swayed and tilted by a concealed and silent wire.
This strange slave, that toils unmoved in the din of battle, has been reduced to domestic servitude of the plainest character. The demonstrations made of cooking by electricity at the great fair of 1893 leave that service possible in the future without any question. Electrical ovens, models of neatness, convenience andcoolness, were shown at work. They were made of wood, lined with asbestos, and were lighted inside with an incandescent lamp. The degree of temperature was shown by a thermometer, and mica doors rendered the baking or roasting visible. There could be no question of too much heat on one side and too little on another, because switches placed at different points allowed of a cutting off, or a turning on, whenever needed. Laundry irons had an insulated pliable connection attached, so that heat was high and constant at the bottom of the iron and not elsewhere. There were all the appliances necessary for the broiling of steaks, the making of coffee and the baking of cakes, and the same mystery, which is no longer a mystery, pervaded it all. Woman is also to become an electrician, at least empirically, and in time soon to come will understand her voltage and her Ampères as she now does her drafts and dampers and the quality of her fuel.
It is a practical fact that chickens are hatched by the thousand by the electrical current, and that men have discovered more than nature knew about the period of incubation, and have reduced it by electricity from twenty-one to nineteen days. The proverb about the value of the time of the incubating hen has passed into antiquity with all things else in the presence of electrical science.
Whenever an American mechanician, a manufacturer or an inventor, is confronted by a difficulty otherwise insolvable he turns to electricity. Its laws and qualities are few. They seem now to be nearly all known, but the great curiosity of modern times is the almost infinite number of applications which these laws and qualities may be made to serve. One may turn at a single glance from the loading and firing of naval guns to the hatching of chickens and the cooking of chocolate by precisely the same means, silently used in the same way. Most of these applications, and all the most extraordinary ones, are of American origin. Their inventors are largely unknown. There is no attempt made here to more than suggest the possibilities of the near future by a glimpse of the present. The generation that is rising, the boy who is ten years old, should easily know more of electrical science than Franklin did. There are certain primal laws by which all explanations of all that now is, and most probably of almost all that is to come so far as principles go, may be readily understood, and these I have endeavored, in this and preceding chapters, to explain.
There are in the United States new applications of electricity literally every day. Before the written page is printed some startling application is likely to be made that gives to that page at once an incompleteness it is impossible to guard against or avoid. There is a strong inclination to prophesy; to tell of that which is to come; to picture the warmed and illuminated future, smokeless and odorless, and the homes in which the children of the near future shall be reared. Some of those few apprehended things, suggested as being possible or desirable in these chapters, have been since done and the author has seen them. This American facility of electrical invention has one great cause, one specific reason for its fruitfulness. It is because so many acute minds have mastered the simple laws of electrical action. This knowledge not only fosters intelligent and fruitful experiment but it prevents the doing of foolish things. No man who has acquired a knowledge of mechanical forces, who understands at least that great law that for all force exerted there is exacted an equivalent, ever dreams upon the folly of the perpetual motion. In like manner does a knowledge, purely theoretical, of the laws of electricity prevent that waste of time in gropings and dreams of which the story of science and the long human struggle in all ages and in all departments is full.
Finally, I would, if possible dispell all ideas of strangeness and mystery and semi-miracle as connected with electrical phenomena. There is no mystery; above all, there is no caprice. There are, in electricity and in all other departments of science, still many things undiscovered. It is certain that causes lead far back into that realm which is beyond present human investigation.Forcehas innumerable manifestations that are visible, that are understood, that are controlled. Itsoriginis behind the veil. A thousand branching threads of argument may be taken up and woven into the single strand that leads into the unknown. Out of the thought that is born of things has already arisen a new conception of the universe, and of the Eternal Mind who is its master. Among these things, these daily manifestations of a seeming mystery, the most splendid are the phenomena of electricity. They court the human understanding and offer a continual challenge to that faculty which alone distinguishes humanity from the beasts. The assistance given in the preceding pages toward a clear understanding of the reason why, so far as known, is perhaps inadequate, but is an attempt offered for what of interest or value may be found.