XI.ELI WHITNEY.

When such was the state of public opinion as to railway locomotion, some idea may be formed of the clear-sightedness and moral courage of the Stockton and Darlington directors in ordering three of Stephenson's locomotiveengines, at a cost of several thousand pounds, against the opening of the railway.

These were constructed after Stephenson's most matured designs, and embodied all the improvements which he had contrived up to that time. No. 1 engine, the "Locomotion," which was first delivered, weighed about eight tons. It had one large flue, or tube, through the boiler, by which the heated air passed direct from the furnace at the one end, lined with fire-bricks, to the chimney at the other. The combustion in the furnace was quickened by the adoption of the steam-blast in the chimney. The heat raised was sometimes so great, and it was so imperfectly abstracted by the surrounding water, that the chimney became almost red-hot. Such engines, when put to their speed, were found capable of running at the rate of from twelve to sixteen miles an hour; but they were better adapted for the heavy work of hauling coal-trains at low speed—for which, indeed, they were specially constructed—than for running at the higher speed afterward adopted. Nor was it contemplated by the directors as possible, at the time when they were ordered, that locomotives could be made available for the purposes of passenger travelling. Besides, the Stockton and Darlington Railway did not run through a district in which passengers were supposed to be likely to constitute any considerable portion of the traffic.

We may easily imagine the anxiety felt by George Stephenson during the progress of the works toward completion, and his mingled hopes and doubts—though the doubts were but few—as to the issue of this great experiment. When the formation of the line near Stockton was well advanced, the engineer one day, accompanied by his son Robert and John Dixon, made a journey ofinspection of the works. The party reached Stockton, and proceeded to dine at one of the inns there. After dinner, Stephenson ventured on the very unusual measure of ordering in a bottle of wine, to drink success to the railway. John Dixon relates with pride the utterance of the master on the occasion "Now, lads," said he to the two young men, "I venture to tell you that I think you will live to see the day when railways will supersede almost all other methods of conveyance in this country,—when mail-coaches will go by railway, and railroads will become the great highways for the king and all his subjects. The time is coming when it will be cheaper for a working man to travel on a railway than to walk on foot. I know there are great and almost insurmountable difficulties to be encountered, but what I have said will come to pass as sure as you now hear me. I only wish I may live to see the day, though that I can scarcely hope for, as I know how slow all human progress is, and with what difficulty I have been able to get the locomotive introduced thus far, notwithstanding my more than ten years' successful experiment at Killingworth." The result, however, outstripped even George Stephenson's most sanguine expectations; and his son Robert, shortly after his return from America in 1827, saw his father's locomotive generally adopted as the tractive power on mining-railways.

Tuesday, the 27th of September, 1825, was a great day for Darlington. The railway, after having been under construction for more than three years, was at length about to be opened. The project had been the talk of the neighborhood for so long that there were few people within a range of twenty miles who did not feel more or less interested about it. Was it to be a failure or a success? Opinions were pretty equally divided as to the railway; but as regarded the locomotive, the general belief was that it would "never answer." However, there was the locomotive "No. 1" delivered upon the line, and ready to draw the first train of wagons on the opening day.

A great concourse of people assembled on the occasion. Some came from Newcastle and Durham, many from the Aucklands, while Darlington held a general holiday and turned out all its population. To giveéclatto the opening, the directors of the company issued a programme of the proceedings, intimating the times at which the procession of wagons would pass certain points along the line. The proprietors assembled as early as six in the morning at the Brusselton fixed engine, where the working of the inclined planes was successfully rehearsed. A train of wagons laden with coals and merchandise was drawn up the western incline by the fixed engine, a length of nineteen hundred and sixty yards in seven and a half minutes, and then lowered down the incline on the eastern side of the hill, eight hundred and eighty yards, in five minutes.

At the foot of the incline the procession of vehicles was formed, consisting of the locomotive engine No. 1, driven by George Stephenson himself; after it, six wagons loaded with coals and flour; then a covered coach containing directors and proprietors; next, twenty-one coal-wagons fitted up for passengers (with which they were crammed); and lastly, six more wagons loaded with coals.

Strange to say, a man on a horse, carrying a flag with the motto of the company inscribed on it,Periculum privatum utilitas publica,[18]headed the procession! A lithographic view of the great event, published shortly after, duly exhibits the horseman and his flag. It was notthought so dangerous a place, after all. The locomotive was only supposed to be able to go at the rate of from four to six miles an hour, and an ordinary horse could easily keep ahead of that.

Off started the procession, with the horseman at its head. A great concourse of people stood along the line. Many of them tried to accompany it by running, and some gentlemen on horseback galloped across the fields to keep up with the train. The railway descending with a gentle decline toward Darlington, the rate of speed was consequently variable. At a favorable part of the road Stephenson determined to try the speed of the engine, and he called upon the horseman with the flag to get out of his way! Most probably, deeming it unnecessary to carry hispericulum privatumfarther, the horseman turned aside, and Stephenson "put on the steam." The speed was at once raised to twelve miles an hour, and, at a favorable part of the road, to fifteen. The runners on foot, the gentlemen on horseback, and the horseman with the flag were consequently soon left far behind. When the train reached Darlington, it was found that four hundred and fifty passengers occupied the wagons, and that the load of men, coals, and merchandise amounted to about ninety tons.

At Darlington the procession was rearranged. The six loaded coal-wagons were left behind, and other wagons were taken on with a hundred and fifty more passengers, together with a band of music. The train then started for Stockton,—a distance of only twelve miles,—which was reached in about three hours. The day was kept throughout the district as a holiday; and horses, gigs, carts, and other vehicles, filled with people, stood along the railway, as well as crowds of persons on foot, waitingto see the train pass. The whole population of Stockton turned out to receive the procession, and, after a walk through the streets, the inevitable dinner in the Town Hall wound up the day's proceedings.

The principal circumstances connected with the construction of the "Rocket," as described by Robert Stephenson to Mr. Smiles, may be briefly stated. The tubular principle was adopted in a more complete manner than had yet been attempted. Twenty-five copper tubes, each three inches in diameter, extended from one end of the boiler to the other, the heated air passing through them on its way to the chimney; and the tubes being surrounded by the water of the boiler. It will be obvious that a large extension of the heating surface was thus effectually secured. The principal difficulty was in fitting the copper tubes in the boiler ends so as to prevent leakage. They were manufactured by a Newcastle copper-smith, and soldered to brass screws which were screwed into the boiler ends, standing out in great knobs. When the tubes were thus fitted, and the boiler was filled with water, hydraulic pressure was applied; but the water squirted out at every joint, and the factory floor was soon flooded. Robert went home in despair; and in the first moment of grief he wrote to his father that the whole thing was a failure. By return of post came a letter from his father, telling him that despair was not to be thought of,—that he must "try again;" and he suggested a mode of overcoming the difficulty, which his son had already anticipated and proceeded to adopt. It was to bore clean holes in the boiler ends, fit in the smooth copper tubes as tightly as possible, solder up, and then raise the steam. This plan succeeded perfectly; the expansionof the copper completely filling up all interstices, and producing a perfectly water-tight boiler, capable of standing extreme external pressure.

The mode of employing the steam-blast for the purpose of increasing the draught in the chimney, was also the subject of numerous experiments. When the engine was first tried, it was thought that the blast in the chimney was not sufficiently strong for the purpose of keeping up the intensity of the fire in the furnace, so as to produce high-pressure steam with the required velocity. The expedient was therefore adopted of hammering the copper tubes at the point at which they entered the chimney, whereby the blast was considerably sharpened; and on a farther trial it was found that the draught was increased to such an extent as to enable abundance of steam to be raised. The rationale of the blast may be simply explained by referring to the effect of contracting the pipe of a water-hose, by which the force of the jet of water is proportionately increased. Widen the nozzle of the pipe and the jet is, in like manner, diminished. So is it with the steam-blast in the chimney of the locomotive.

Doubts were, however, expressed whether the greater draught obtained by the contraction of the blast-pipe were not counterbalanced in some degree by the pressure upon the piston. Hence a series of experiments was made with pipes of different diameters, and their efficiency was tested by the amount of vacuum that was produced in the smoke-box. The degree of rarefaction was determined by a glass tube fixed to the bottom of the smoke-box, and descending into a bucket of water, the tube being open at both ends. As the rarefaction took place, the water would of course rise in the tube, and the height to which it rose above the surface of the water in the bucket wasmade the measure of the amount of rarefaction. These experiments proved that a considerable increase of draught was obtained by the contraction of the orifice; accordingly, the two blast-pipes opening from the cylinders into either side of the "Rocket" chimney, and turned up within it, were contracted slightly below the area of the steam-ports; and before the engine left the factory, the water rose in the glass tube three inches above the water in the bucket.

The other arrangements of the "Rocket" were briefly these: The boiler was cylindrical with flat ends, six feet in length, and three feet four inches in diameter. The upper half of the boiler was used as a reservoir for the steam, the lower half being filled with water. Through the lower part the copper tubes extended, being open to the fire-box at one end, and to the chimney at the other. The fire-box, or furnace, two feet wide and three feet high, was attached immediately behind the boiler, and was also surrounded with water. The cylinders of the engine were placed on each side of the boiler, in an oblique position, one end being nearly level with the top of the boiler at its after end, and the other pointing toward the centre of the foremost or driving pair of wheels, with which the connection was directly made from the piston-rod to a pin on the outside of the wheel. The engine, together with its load of water, weighed only four tons and a quarter; and it was supported on four wheels, not coupled. The tender was four-wheeled, and similar in shape to a wagon,—the foremost part holding the fuel, and the hind part a water-cask.

When the "Rocket" was finished, it was placed upon the Killingworth Railway for the purpose of experiment. The new boiler arrangement was found perfectly successful. The steam was raised rapidly and continuously, and in a quantity which then appeared marvellous. The same evening Robert despatched a letter to his father at Liverpool, informing him to his great joy, that the "Rocket" was "all right," and would be in complete working trim by the day of trial. The engine was shortly after sent by wagon to Carlisle, and thence shipped for Liverpool.

The time so much longed for by George Stephenson had now arrived, when the merits of the passenger locomotive were about to be put to the test. He had fought the battle for it until now, almost single-handed. Engrossed by his daily labors and anxieties, and harassed by difficulties and discouragements which would have crushed the spirit of a less resolute man, he had held firmly to his purpose through good and through evil report. The hostility which he had experienced from some of the directors opposed to the adoption of the locomotive, was the circumstance that caused him the greatest grief of all; for where he had looked for encouragement, he found only carping and opposition. But his pluck never failed him; and now the "Rocket" was upon the ground to prove, to use his own words, "whether he was a man of his word or not."

Great interest was felt at Liverpool, as well as throughout the country, in the approaching competition. Engineers, scientific men, and mechanics arrived from all quarters to witness the novel display of mechanical ingenuity on which such great results depended. The public generally were no indifferent spectators, either. The populations of Liverpool, Manchester, and the adjacent towns felt that the successful issue of the experiment would confer upon them individual benefits and local advantagesalmost incalculable, while populations at a distance waited for the result with almost equal interest.

On the day appointed for the great competition of locomotives at Rainhill, the following engines were entered for the prize:—

1. Messrs. Braithwaite and Ericsson's "Novelty."

2. Mr. Timothy Hackworth's "Sanspareil."

3. Messrs. R. Stephenson & Co.'s "Rocket."

4. Mr. Burstall's "Perseverance."

Another engine was entered by Mr. Brandreth, of Liverpool,—the "Cycloped," weighing three tons, worked by a horse in a frame,—but it could not be admitted to the competition. The above were the only four exhibited, out of a considerable number of engines constructed in different parts of the country in anticipation of this contest, many of which could not be satisfactorily completed by the day of trial.

The day fixed for the competition was the 1st of October; but to allow sufficient time to get the locomotives into good working order, the directors extended it to the 6th. On the morning of the 6th the ground at Rainhill presented a lively appearance, and there was as much excitement as if the St. Leger were about to be run. Many thousand spectators looked on, among whom were some of the first engineers and mechanicians of the day. A stand was provided for the ladies; the "beauty and fashion" of the neighborhood were present, and the side of the railroad was lined with carriages of all descriptions.

It was quite characteristic of the Stephensons that although their engine did not stand first on the list for trial, it was the first that was ready; and it was accordingly ordered out by the judges for an experimental trip. Yet the "Rocket" was by no means the "favorite" witheither the judges or the spectators. Nicholas Wood has since stated that the majority of the judges were strongly predisposed in favor of the "Novelty," and that nine tenths, if not ten tenths, of the persons present were against the "Rocket" because of its appearance.[19]Nearly every person favored some other engine, so that there was nothing for the "Rocket" but the practical test. The first trip made by it was quite successful. It ran about twelve miles, without interruption, in about fifty-three minutes.

The "Novelty" was next called out. It was a light engine, very compact in appearance, carrying the water and fuel upon the same wheels as the engine. The weight of the whole was only three tons and one hundred-weight. A peculiarity of this engine was that the air was driven or forced through the fire by means of bellows. The day being now far advanced, and some dispute having arisen as to the method of assigning the proper load for the "Novelty," no particular experiment was made farther than that the engine traversed the line by way of exhibition, occasionally moving at the rate of twenty-four miles an hour. The "Sanspareil," constructed by Mr. Timothy Hackworth, was next exhibited, but no particular experiment was made with it on this day. This engine differed but little in its construction from the locomotive last supplied by the Stephensons to the Stockton and Darlington Railway, of which Mr. Hackworth was the locomotive foreman.

The contest was postponed until the following day; but before the judges arrived on the ground, the bellows for creating the blast in the "Novelty" gave way, and it wasfound incapable of going through its performance. A defect was also detected in the boiler of the "Sanspareil," and some farther time was allowed to get it repaired. The large number of spectators who had assembled to witness the contest were greatly disappointed at this postponement; but to lessen it, Stephenson again brought out the "Rocket," and attaching to it a coach containing thirty-four persons, he ran them along the line at the rate of from twenty-four to thirty miles an hour, much to their gratification and amazement. Before separating, the judges ordered the engine to be in readiness by eight o'clock on the following morning, to go through its definitive trial according to the prescribed conditions.

On the morning of the 8th of October the "Rocket" was again ready for the contest. The engine was taken to the extremity of the stage, the fire-box was filled with coke, the fire lighted, and the steam raised until it lifted the safety-valve loaded to a pressure of fifty pounds to the square inch. This proceeding occupied fifty-seven minutes. The engine then started on its journey, dragging after it about thirteen tons weight in wagons, and made the first ten trips backward and forward along the two miles of road, running the thirty-five miles, including stoppages, in an hour and forty-eight minutes. The second ten trips were in like manner performed in two hours and three minutes. The maximum velocity attained during the trial trip was twenty-nine miles an hour, or about three times the speed that one of the judges of the competition had declared to be the limit of possibility. The average speed at which the whole of the journeys were performed was fifteen miles an hour, or five miles beyond the rate specified in the conditions published by the company. The entire performance excited the greatest astonishmentamong the assembled spectators; the directors felt confident that their enterprise was now on the eve of success; and George Stephenson rejoiced to think that, in spite of all false prophets and fickle counsellors, the locomotive system was now safe. When the "Rocket," having performed all the conditions of the contest, arrived at the "grand stand" at the close of its day's successful run, Mr. Cropper—one of the directors favorable to the fixed-engine system—lifted up his hands, and exclaimed, "Now has George Stephenson at last delivered himself."

Neither the "Novelty" nor the "Sanspareil" was ready for trial until the 10th, on the morning of which day an advertisement appeared, stating that the former engine was to be tried on that day, when it would perform more work than any engine on the ground. The weight of the carriages attached to it was only seven tons. The engine passed the first post in good style; but in returning, the pipe from the forcing-pump burst and put an end to the trial. The pipe was afterward repaired, and the engine made several trips by itself, in which it was said to have gone at the rate of from twenty-four to twenty-eight miles an hour.

The "Sanspareil" was not ready until the 13th; and when its boiler and tender were filled with water, it was found to weigh four hundred-weight beyond the weight specified in the published conditions as the limit of four-wheeled engines; nevertheless, the judges allowed it to run on the same footing as the other engines, to enable them to ascertain whether its merits entitled it to favorable consideration. It travelled at the average speed of about fourteen miles an hour with its load attached; but at the eighth trip the cold-water pump got wrong, and the engine could proceed no farther.

It was determined to award the premium to the successful engine on the following day, the 14th, on which occasion there was an unusual assemblage of spectators. The owners of the "Novelty" pleaded for another trial, and it was conceded. But again it broke down. Then Mr. Hackworth requested the opportunity for making another trial of his "Sanspareil." But the judges had now had enough of failures, and they declined, on the ground that not only was the engine above the stipulated weight, but that it was constructed on a plan which they could not recommend for adoption by the directors of the company. One of the principal practical objections to this locomotive was the enormous quantity of coke consumed or wasted by it,—about six hundred and ninety-two pounds per hour when travelling,—caused by the sharpness of the steam-blast in the chimney, which blew a large proportion of the burning coke into the air.

The "Perseverance" of Mr. Burstall was found unable to move at more than five or six miles an hour, and it was withdrawn from the contest at an early period. The "Rocket" was thus the only engine that had performed, and more than performed, all the stipulated conditions; and it was declared to be entitled to the prize of £500, which was awarded to the Messrs. Stephenson and Booth[20]accordingly. And farther to show that the engine had been working quite within its powers, George Stephenson ordered it to be brought upon the ground and detached from all incumbrances, when, in making two trips, it was found to travel at the astonishing rate of thirty-five miles an hour.

The "Rocket" had thus eclipsed the performances ofall locomotive engines that had yet been constructed, and outstripped even the sanguine expectations of its constructors. It satisfactorily answered the report of Messrs. Walker and Rastrick, and established the efficiency of the locomotive for working the Liverpool and Manchester Railway, and indeed all future railways. The "Rocket" showed that a new power had been born into the world, full of activity and strength, with boundless capability of work. It was the simple but admirable contrivance of the steam-blast, and its combination with the multitubular boiler, that at once gave locomotion a vigorous life, and secured the triumph of the railway system. As has been well observed, this wonderful ability to increase and multiply its powers of performance with the emergency that demands them, has made this giant engine the noblest creation of human wit, the very lion among machines.

The success of the Rainhill experiment, as judged by the public, may be inferred from the fact that the shares of the company immediately rose ten per cent, and nothing farther was heard of the proposed twenty-one fixed engines, engine-houses, ropes, etc. All this cumbersome apparatus was thenceforth effectually disposed of.

When the reading was over, Bedford said: "When I heard you were going to have George Stephenson this afternoon, I wrote to my cousin Prentiss Armstrong, who has been at the locomotive works at Altoona for several years, and asked him about locomotives nowadays, that I might be able to compare them with the locomotives of George Stephenson's time. This is his letter, which I'll read, if there be no objection:"—

Dear Bedford,—Speaking roughly, a freight-engine of the "Consolidation" type (eight driving-wheels and twotruck-wheels) weighs from forty-seven to forty-eight tons of two thousand pounds. On a road with no grades over twenty feet to the mile (1 in 250) it will haul over one thousand tons at fifteen miles an hour. If the train is of merchandise, it will be of say fifty cars, each weighing ten tons and carrying ten tons. If it is of coal or ore, the cars will each carry twenty or twenty-five tons.

["The 'Rocket,'" said Bedford, "which was the successful engine at the Rainhill competition, weighed a little over four tons and had four wheels. Dragging a weight of thirteen tons in wagons, it made thirty-five miles in about two hours."]

Our Engine No. 2 [continued the letter] made a mile on a level in forty-three seconds with no train, but there are very few such records. Two of our fast trains (four cars each, weighing twenty-five tons) make a schedule in one place (level) of nine miles in eight minutes. I have seen a record of a run on the Bound Brook route of four cars, ten miles in eight minutes. I think this must have been down hill.

I hope these facts will answer your views. If there's anything else that I can get up for you, I shall be glad to do it.

Yours truly,

Prentiss Armstrong.

The young people all came in laughing.

"And what is it?" said Uncle Fritz, good-naturedly.

"It is this," said Alice, "that I say that all this is very entertaining about Palissy the Potter and Benvenuto Cellini; and I have been boasting that I know as much of the steam-engine as Lucy did, who was 'sister to Harry.' But I do not see that this is going to profit Blanche when she shall make her celebrated visit to Mr. Bright, and when he asks her what is the last sweet thing in creels or in fly-frames."

"Is it certain that Blanche is to go?" said Uncle Fritz, doubtfully.

"Oh, dear, Uncle Fritz, do you know?" said Blanche, in mock heroics; "are you in the sacred circle which decides? Will the Vesuvius pass its dividend, or will it scatter its blessings right and left, so that we can go to Paris and all the world be happy?"

"I wish I knew," said Colonel Ingham; "for on that same dividend depends the question whether I build four new rooms at Little Crastis for the accommodation of my young friends when they visit me there."

"Could you tell us," said Fergus, "what is the cause of the depression in the cotton-manufacture?"

"Don't tell him, Uncle Fritz," said Fanchon, "for the two best of reasons,—first, that half of us will not understand if you do; and second, that none of us will remember."

Colonel Ingham laughed. "And third," he said, "that we are to talk about Inventions and Inventors, and we shall not get to Fergus's grand question till we come to the series on 'Political Economy and Political Economists.'

"You are all quite right in all your suggestions and criticisms. It is quite time that you girls should know something of the industry which is important not only to all the Southern States, but to all the manufacturing States. Cotton is the cheapest article for clothing in the world, and the use of it goes farther and farther every year. The manufacture is also improving steadily. Thirty men, women, and children will make as much cotton cloth to-day as a hundred could make the year you were born, Hester. I saw cottons for sale to-day at four cents a yard which would have cost nearly three times that money thirty years ago. So I have laid out for you these sketches of the life of Eli Whitney, on whose simple invention, as you remember, all this wealth of production may be said to depend. You college boys ought to be pleased to know, that within a year after this man graduated from Yale College, he had made an invention and set it a going, which entirely changed the face of things in his own country. At that moment there was so little cotton raised in America, that Whitney himself had never seen cotton wool or cotton seed, when he was first asked if he could make a machine which would separate one from the other. It was so little known, indeed, that when John Jay of New York negotiated a treaty of commerce with England in 1794, the year after Whitney's invention, he did not know that any cotton was produced in the United States. The treaty did not provide for our cotton, and had to bechanged after it was brought back to America. With this invention by Whitney, it was possible to clean cotton from the seed. The Southern States, which before had no staple of importance, had in that moment an immense addition to their resources. Alabama, Mississippi, Louisiana, and Tennessee, besides the States in the old thirteen, were settled almost wholly to call into being new lands for raising cotton. To these were afterwards added Arkansas, Florida, and Texas. With this new industry slave labor became vastly more profitable; and the institution of slavery, which would else have died out probably, received an immense stimulus. Fortunately for the country and the world, the Constitution had fixed the year 1808, as the end of the African slave trade. But, up to that date, slaves were pushed in with a constantly increasing rapidity, so that the new States were peopled very largely with absolute barbarians. There is hardly another instance in history where it is so easy to trace in a very few years, results so tremendous following from a single invention by a single man.

"Fortunately for us, Miss Lamb has just published a portrait of Eli Whitney in the 'Magazine of History.' Here it is, in the October number of the 'Magazine of History.'

"As to processes of manufacture, of course we can learn little or nothing about them here. But you had better read carefully this article in Ure's 'Dictionary of Arts,' though it is a little old-fashioned, and then you will be prepared to make up parties to go out to the Hecla, or up to Lowell or Lawrence, where you can see with your own eyes.

"And now I will read you a little sketch of the life of Eli Whitney."

Eli Whitney was born at Westborough, Worcester County, Massachusetts, Dec. 8, 1765. His parents belonged to the middle class in society, who, by the labors of husbandry, managed by uniform industry and strict frugality to provide well for a rising family.

The paternal ancestors of Mr. Whitney emigrated from England among the early settlers of Massachusetts, and their descendants were among the most respectable farmers of Worcester County. His maternal ancestors, of the name of Fay, were also English emigrants, and ranked among the substantial yeomanry of Massachusetts. A family tradition respecting the occasion of their coming to this country may serve to illustrate the history of the times. The story is, that about two hundred years ago, the father of the family, who resided in England, a man of large property and great respectability, called together his sons and addressed them thus: "America is to be a great country. I am too old to emigrate myself; but if any one of you will go, I will give him a double share of my property." The youngest son instantly declared his willingness to go, and his brothers gave their consent. He soon set off for the New World, and landed in Boston, in the neighborhood of which place he purchased a large tract of land, where he enjoyed the satisfaction of receiving two visits from his venerable father. His son John Fay, from whom the subject of this memoir is immediately descended, removed from Boston to Westborough, where he became the proprietor of a large tract of land, since known by the name of the Fay Farm.

From the sister of Mr. Whitney, we have derived some particulars respecting his childhood and youth, and weshall present the anecdotes to our readers in the artless style in which they are related by our correspondent, believing that they would be more acceptable in this simple dress than if, according to the modest suggestion of the writer, they should be invested with a more labored diction. The following incident, though trivial in itself, will serve to show at how early a period certain qualities of strong feeling tempered by prudence, for which Mr. Whitney afterward became distinguished, began to display themselves. When he was six or seven years old he had overheard the kitchen maid, in a fit of passion, calling his mother, who was in a delicate state of health, hard names, at which he expressed great displeasure to his sister. "She thought," said he, "that I was not big enough to hear her talk so about my mother. I think she ought to have a flogging; and if I knew how to bring it about, she should have one." His sister advised him to tell their father. "No," he replied, "it will hurt his feelings and mother's too; and besides, it is likely the girl will say she never said so, and that would make a quarrel. It is best to say nothing about it."

Indications of his mechanical genius were likewise developed at a very early age. Of his early passion for such employments, his sister gives the following account: "Our father had a workshop, and sometimes made wheels of different kinds, and chairs. He had a variety of tools, and a lathe for turning chair-posts. This gave my brother an opportunity of learning the use of tools when very young. He lost no time; but as soon as he could handle tools, he was always making something in the shop, and seemed not to like working on the farm. On a time, after the death of our mother, when our father had been absent from home two or three days, on his return he inquired ofthe housekeeper what the boys had been doing. She told him what B. and J. had been about. 'But what has Eli been doing?' said he. She replied he had been making a fiddle. 'Ah,' said he, despondingly, 'I fear Eli will have to take his portion in fiddles.' He was at this time about twelve years old. His sister adds that this fiddle was finished throughout, like a common violin, and made tolerably good music. It was examined by many persons, and all pronounced it to be a remarkable piece of work for such a boy to perform. From this time he was employed to repair violins, and had many nice jobs, which were always executed to the entire satisfaction, and often to the astonishment, of his customers. His father's watch being the greatest piece of mechanism that had yet presented itself to his observation, he was extremely desirous of examining its interior construction, but was not permitted to do so. One Sunday morning, observing that his father was going to meeting, and would leave at home the wonderful little machine, he immediately feigned illness as an apology for not going to church. As soon as the family were out of sight, he flew to the room where the watch hung, and taking it down he was so delighted with its motions that he took it all to pieces before he thought of the consequences of his rash deed; for his father was a stern parent, and punishment would have been the reward of his idle curiosity, had the mischief been detected. He, however, put all the work so neatly together that his father never discovered his audacity until he himself told him, many years afterwards.

"Whitney lost his mother at an early age, and when he was thirteen years old his father married a second time. His stepmother, among her articles of furniture, had a handsome set of table knives that she valued very highly.Whitney could not but see this, and said to her, 'I could make as good ones if I had tools, and I could make the necessary tools if I had a few common tools to make them with.' His stepmother thought he was deriding her, and was much displeased; but it so happened, not long afterwards, that one of the knives got broken, and he made one exactly like it in every respect except the stamp on the blade. This he would likewise have executed, had not the tools required been too expensive for his slender resources."

When Whitney was fifteen or sixteen years of age he suggested to his father an enterprise, which was an earnest of the similar undertakings in which he engaged on a far greater scale in later life. This being the time of the Revolutionary War, nails were in great demand and bore a high price. At that period nails were made chiefly by hand, with little aid from machinery. Young Whitney proposed to his father to procure him a few tools, and to permit him to set up the manufacture. His father consented; and he went steadily to work, and suffered nothing to divert him from his task until his day's work was completed. By extraordinary diligence he gained time to make tools for his own use, and to put in knife-blades, and to perform many other curious little jobs which exceeded the skill of the country artisans. At this laborious occupation the enterprising boy wrought alone, with great success, and with much profit to his father, for two winters, pursuing the ordinary labors of the farm during the summers. At this time he devised a plan for enlarging his business and increasing his profits. He whispered his scheme to his sister, with strong injunctions of secrecy; and requesting leave of his father to go to a neighboring town, without specifying his object, he set out on horseback in quest of a fellow-laborer. Not finding one as easily as he hadanticipated, he proceeded from town to town with a perseverance which was always a strong trait of his character, until, at a distance of forty miles from home, he found such a workman as he desired. He also made his journey subservient to his mechanical skill, for he called at every workshop on his way and gleaned all the information he could respecting the mechanical arts.

At the close of the war the business of making nails was no longer profitable; but a fashion prevailing among the ladies of fastening on their bonnets with long pins, he contrived to make those with such skill and dexterity that he nearly monopolized the business, although he devoted to it only such seasons of leisure as he could redeem from the occupations of the farm, to which he now principally betook himself. He added to this article, the manufacture of walking-canes, which he made with peculiar neatness.

In respect to his proficiency in learning while young, we are informed that he early manifested a fondness for figures and an uncommon aptitude for arithmetical calculations, though in the other rudiments of education he was not particularly distinguished. Yet at the age of fourteen he had acquired so much general information, as to be regarded on this account, as well as on account of his mechanical skill, a very remarkable boy.

From the age of nineteen, young Whitney conceived the idea of obtaining a liberal education; but, being warmly opposed by his stepmother, he was unable to procure the decided consent of his father, until he had reached the age of twenty-three years. But, partly by the avails of his manual labor and partly by teaching a village school, he had been so far able to surmount the obstacles thrown in his way, that he had prepared himself for the Freshman Class in Yale College, which he entered in May, 1789.

The propensity of Mr. Whitney to mechanical inventions and occupations, was frequently apparent during his residence at college. On a particular occasion, one of the tutors, happening to mention some interesting philosophical experiment, regretted that he could not exhibit it to his pupils, because the apparatus was out of order and must be sent abroad to be repaired. Mr. Whitney proposed to undertake this task, and performed it greatly to the satisfaction of the faculty of the college.

A carpenter being at work upon one of the buildings of the gentleman with whom Mr. Whitney boarded, the latter begged permission to use his tools, during the intervals of study; but the mechanic, being a man of careful habits, was unwilling to trust them with a student, and it was only after the gentleman of the house had become responsible for all damages, that he would grant the permission. But Mr. Whitney had no sooner commenced his operations than the carpenter was surprised at his dexterity, and exclaimed, "There was one good mechanic spoiled when you went to college."

Soon after Mr. Whitney took his degree, in the autumn of 1792, he entered into an engagement with a Mr. B. of Georgia, to reside in his family as a private teacher. On his way thither, he was so fortunate as to have the company of Mrs. Greene, the widow of General Greene, who, with her family, was returning to Savannah after spending the summer at the North. At that time it was deemed unsafe to travel through our country without having had the small-pox, and accordingly Mr. Whitney prepared himself for the excursion, by procuring inoculation while in New York. As soon as he was sufficiently recovered, the party set sail for Savannah. As his health was not fully re-established, Mrs. Greene kindly invited him to go with the family toher residence at Mulberry Grove, near Savannah, and remain until he was recruited. The invitation was accepted; but lest he should not yet have lost all power of communicating that dreadful disease, Mrs. Greene had white flags (the meaning of which was well understood) hoisted at the landing and at all the avenues leading to the house. As a requital for her hospitality, her guest procured the virus and inoculated all the servants of the household, more than fifty in number, and carried them safely through the disorder.

Mr. Whitney had scarcely set his foot in Georgia, before he was met by a disappointment which was an earnest of that long series of adverse events which, with scarcely an exception, attended all his future negotiations in the same State. On his arrival he was informed that Mr. B. had employed another teacher, leaving Whitney entirely without resources or friends, except those whom he had made in the family of General Greene. In these benevolent people, however, his case excited much interest; and Mrs. Greene kindly said to him, "My young friend, you propose studying the law; make my house your home, your room your castle, and there pursue what studies you please." He accordingly began the study of the law under that hospitable roof.

Mrs. Greene was engaged in a piece of embroidery in which she employed a peculiar kind of frame, called atambour. She complained that it was badly constructed, and that it tore the delicate threads of her work. Mr. Whitney, eager for an opportunity to oblige his hostess, set himself to work and speedily produced a tambour-frame, made on a plan entirely new, which he presented to her. Mrs. Greene and her family were greatly delighted with it, and thought it a wonderful proof of ingenuity.

Not long afterwards a large party of gentlemen, consisting principally of officers who had served under the General in the Revolutionary Army, came from Augusta and the upper country, to visit the family of General Greene. They fell into conversation upon the state of agriculture among them, and expressed great regret that there was no means of cleansing the green seed cotton, or separating it from its seed, since all the lands which were unsuitable for the cultivation of rice, would yield large crops of cotton. But until ingenuity could devise some machine which would greatly facilitate the process of cleaning, it was vain to think of raising cotton for market. Separating one pound of the clean staple from the seed was a day's work for a woman; but the time usually devoted to picking cotton was the evening, after the labor of the field was over. Then the slaves—men, women, and children—were collected in circles, with one whose duty it was to rouse the dozing and quicken the indolent. While the company were engaged in this conversation, "Gentlemen," said Mrs. Greene, "apply to my young friend Mr. Whitney; he can make anything." Upon which she conducted them into a neighboring room, and showed them her tambour-frame and a number of toys which Mr. Whitney had made or repaired for the children. She then introduced the gentlemen to Whitney himself, extolling his genius and commending him to their notice and friendship. He modestly disclaimed all pretensions to mechanical genius; and when they named their object, he replied that he had never seen either cotton or cotton seed in his life. Mrs. Greene said to one of the gentlemen, "I have accomplished my aim. Mr. Whitney is a very deserving young man, and to bring him into notice was my object. The interest which our friends now feel for him will, I hope,lead to his getting some employment to enable him to prosecute the study of the law."

But a new turn, that no one of the company dreamed of, had been given to Mr. Whitney's views. It being out of season for cotton in the seed, he went to Savannah and searched among the warehouses and boats until he found a small parcel of it. This he carried home, and communicated his intentions to Mr. Miller, who warmly encouraged him, and assigned him a room in the basement of the house, where he set himself to work with such rude materials and instruments as a Georgia plantation afforded. With these resources, however, he made tools better suited to his purpose, and drew his own wire (of which the teeth of the earliest gins were made),—an article which was not at that time to be found in the market of Savannah. Mrs. Greene and Mr. Miller were the only persons ever admitted to his workshop, and the only persons who knew in what way he was employing himself. The many hours he spent in his mysterious pursuits, afforded matter of great curiosity and often of raillery to the younger members of the family. Near the close of the winter, the machine was so nearly completed as to leave no doubt of its success.

Mrs. Greene was eager to communicate to her numerous friends the knowledge of this important invention, peculiarly important at that time, because then the market was glutted with all those articles which were suited to the climate and soil of Georgia, and nothing could be found to give occupation to the negroes and support to the white inhabitants. This opened suddenly to the planters boundless resources of wealth, and rendered the occupations of the slaves less unhealthy and laborious than they had been before.

Mrs. Greene, therefore, invited to her house gentlemenfrom different parts of the State; and on the first day after they had assembled, she conducted them to a temporary building which had been erected for the machine, and they saw with astonishment and delight, that more cotton could be separated from the seed in one day, by the labor of a single hand, than could be done in the usual manner in the space of many months.

Mr. Whitney might now have indulged in bright reveries of fortune and of fame; but we shall have various opportunities of seeing that he tempered his inventive genius with an unusual share of the calm, considerate qualities of the financier. Although urged by his friends to secure a patent and devote himself to the manufacture and introduction of his machines, he coolly replied that, on account of the great expenses and trouble which always attend the introduction of a new invention, and the difficulty of enforcing a law in favor of patentees, in opposition to the individual interests of so large a number of persons as would be concerned in the culture of this article, it was with great reluctance that he should consent to relinquish the hopes of a lucrative profession, for which he had been destined, with an expectation of indemnity either from the justice or the gratitude of his countrymen, even should the invention answer the most sanguine anticipations of his friends.

The individual who contributed most to incite him to persevere in the undertaking, was Phineas Miller. Mr. Miller was a native of Connecticut and a graduate of Yale College. Like Mr. Whitney, soon after he had completed his education at college, he came to Georgia as a private teacher in the family of General Greene, and after the decease of the General, he became the husband of Mrs. Greene. He had qualified himself for the profession ofthe law, and was a gentleman of cultivated mind and superior talents; but he was of an ardent temperament, and therefore well fitted to enter with zeal into the views which the genius of his friend had laid open to him. He also had considerable funds at command, and proposed to Mr. Whitney to become his joint adventurer, and to be at the whole expense of maturing the invention until it should be patented. If the machine should succeed in its intended operation, the parties agreed, under legal formalities, "that the profits and advantages arising therefrom, as well as all privileges and emoluments to be derived from patenting, making, vending, and working the same, should be mutually and equally shared between them." This instrument bears date May 27, 1793; and immediately afterward they commenced business under the firm of Miller and Whitney.

An invention so important to the agricultural interest (and, as it has proved, to every department of human industry) could not long remain a secret. The knowledge of it soon spread through the State, and so great was the excitement on the subject, that multitudes of persons came from all quarters of the State to see the machine; but it was not deemed safe to gratify their curiosity until the patent right had been secured. But so determined were some of the populace to possess this treasure, that neither law nor justice could restrain them; they broke open the building by night, and carried off the machine. In this way the public became possessed of the invention; and before Mr. Whitney could complete his model and secure his patent, a number of machines were in successful operation, constructed with some slight deviation from the original, with the hope of escaping the penalty for evading the patent right.

As soon as the copartnership of Miller and Whitney was formed, Mr. Whitney repaired to Connecticut, where, as far as possible, he was to perfect the machine, obtain a patent, and manufacture and ship to Georgia such a number of machines as would supply the demand.

Within three days after the conclusion of the copartnership, Mr. Whitney having set out for the North, Mr. Miller commenced his long correspondence relative to the cotton-gin. The first letter announces that encroachments upon their rights had already begun. "It will be necessary," says Mr. Miller, "to have a considerable number of gins made, to be in readiness to send out as soon as the patent is obtained, in order to satisfy the absolute demands, and make people's heads easy on the subject;for I am informed of two other claimants for the honor of the invention of cotton-gins, in addition to those we knew before."

On the 20th of June, 1793, Mr. Whitney presented his patent to Mr. Jefferson, then Secretary of State; but the prevalence of the yellow fever in Philadelphia (which was then the seat of government) prevented his concluding the business relative to the patent until several months afterwards. To prevent being anticipated, he took, however, the precaution to make oath to the invention before the notary public of the city of New Haven, which he did on the 28th of October of the same year.

Mr. Jefferson, who had much curiosity in regard to mechanical inventions, took a peculiar interest in this machine, and addressed to the inventor an obliging letter, desiring farther particulars respecting it, and expressing a wish to procure one for his own use.[21]Mr. Whitney accordingly sketched the history of the invention, and of theconstruction and performances of the machine. "It is about a year," says he, "since I first turned my attention to constructing this machine, at which time I was in the State of Georgia. Within about ten days after my first conception of the plan, I made a small though imperfect model. Experiments with this encouraged me to make one on a larger scale; but the extreme difficulty of procuring workmen and proper materials in Georgia prevented my completing the larger one until some time in April last. This, though much larger than my first attempt, is not above one third as large as the machines may be made with convenience. The cylinder is only two feet two inches in length, and six inches in diameter. It is turned by hand, and requires the strength of one man to keep it in constant motion. It is the stated task of one negro to clean fifty weight (I mean fifty pounds after it is separated from the seed) of the green cotton seed per day."

In the year 1812 Mr. Whitney made application to Congress for the renewal of his patent for the cotton-gin. In his memorial he presented a history of the struggles he had been forced to encounter in defence of his right, observing that he had been unable to obtain any decision on the merits of his claim until he had beeneleven yearsin the law, andthirteen yearsof his patent term had expired. He sets forth that his invention had been a source of opulence to thousands of the citizens of the United States; that, as a labor-saving machine, it would enable one man to perform the work of a thousand men; and that it furnishes to the whole family of mankind, at a very cheap rate, the most essential article of their clothing. Hence he humbly conceived himself entitled to a further remuneration from his country, and thought he ought to be admitted to a more liberal participation with his fellow-citizens in the benefits of his invention. Although so great advantages had been already experienced, and the prospect of future benefits was so promising, still, many of those whose interest had been most enhanced by this invention, had obstinately persisted in refusing to make any compensation to the inventor. The very men whose wealth had been acquired by the use of this machine, and who had grown rich beyond all former example, had combined their exertions to prevent the patentee from deriving any emolument from his invention. From that State in which he had first made and where he had first introduced his machine, and which had derived the most signal benefits from it, he had received nothing; and from no State had he received the amount of half a cent per pound on the cotton cleaned with his machines in one year. Estimating the value of the labor of one man at twenty cents per day, the whole amount which had been received by him for his invention was not equal to the value of the labor saved inone hourby his machines then in use in the United States. "This invention," he proceeds, "now gives to the southern section of the Union, over and above the profits which would be derived from the cultivation of any other crop, an annual emolument of at leastthree millionsof dollars."[22]The foregoing statement does not rest on conjecture, it is no visionary speculation,—all these advantages have been realized; the planters of the Southern States have counted the cash, felt the weight of it in their pockets, and heard the exhilarating sound of its collision. Nor do the advantages stop here. This immense source of wealth is but just beginning to be opened. Cotton is a more cleanly andhealthful article of cultivation than tobacco and indigo, which it has superseded, and does not so much impoverish the soil. This invention has already trebled the value of the land through a large extent of territory; and the degree to which the cultivation of cotton may be still augmented, is altogether incalculable. This species of cotton has been known in all countries where cotton has been raised, from time immemorial, but was never known as an article of commerce until since this method of cleaning it was discovered. In short (to quote the language of Judge Johnson), "if we should assert that the benefits of this invention exceedone hundred millions of dollars, we could prove the assertion by correct calculation." It is objected that if the patentee succeeds in procuring the renewal of his patent, he will be too rich. There is no probability that the patentee, if the term of his patent were extended for twenty years, would ever obtain for his invention one half as much as many an individual will gain by use of it. Up to the present time, the whole amount of what he has acquired from this source (after deducting his expenses) does not exceed one half the sum which a single individual has gained by the use of the machine in one year. It is true that considerable sums have been obtained from some of the States where the machine is used; but no small portion of these sums has been expended in prosecuting his claim in a State where nothing has been obtained, and where his machine has been used to the greatest advantage.

There was much more which was curious, laid out in different books; but the call came for supper, and the young people obeyed.

"My dear Uncle Fritz, I have found something very precious."

"I hope it is a pearl necklace, my dear," was his reply, "though I see no one who needs such ornaments less."

Hester waltzed round the room, and dropped a very low courtesy before Uncle Fritz in acknowledgment of his compliment; and all the others clapped their hands. They asked her, more clamorously than Uncle Fritz, what she had found.

"I have found a man—"

"That is more than Diogenes could."

"Horace, I shall send you out of the room, or back on first principles. Do you not know that it is not nice to interrupt?"

"I have found a man, Uncle Fritz, who is an inventor, a great inventor; and he is very nice, and he likes people and people like him, and he always succeeds,—his things turn out well, like Dr. Franklin's; and he says the world has always been grateful to him. He never sulks or complains; he knows all about the moon, and makes wonderful pictures of it; and he's enormously rich, I believe, too,—but that's not so much matter. The best of all is, that he began just as we begin. He had a nice father anda nice mother and a good happy home, and was brought up like good decent children. Now really, Uncle Fritz, you mustn't laugh; but do you not think that most of the people whose lives we read have to begin horridly? They have to be beaten when they are apprentices, or their fathers and mothers have to die, or they have to walk through Philadelphia with loaves of bread under their arms, or to be brought up in poor-houses or something. Now, nothing of that sort happened to my inventor. And I am very much encouraged. For my father never beat me, and my mother never scolded me half as much as I deserved, and I never was in a poor-house, and I never carried a loaf of bread under my arm, and so I really was afraid I should come to no good. But now I have found my new moon-man, I am very much encouraged."

The others laughed heartily at Hester's zeal, and Blanche asked what Hester's hero had invented, and what was his name. The others turned to Uncle Fritz half incredulously. But Uncle Fritz came to Hester's relief.

"Hester is quite right," he said; "and his name it is James Nasmyth. He has invented a great many things, quite necessary in the gigantic system of modern machine-building. He has chosen the steam-hammer for his device. Here is a picture of it on the outside of his Life. You see I was ready for you, Hester."

The children looked with interest on the device, and Fergus said that it was making heraldry do as it should, and speak in the language of the present time.

Then Uncle Fritz bade Hester find for them a passage in the biography where Mr. Nasmyth tells how he changed the old motto of the family. Oddly enough, the legend says that the first Nasmyth took his nameafter a romantic escape, when one of his pursuers, finding him disguised as a blacksmith, cried out, "Ye'renae smyth."

It is a little queer that this name should have been given to the family of a man, who, in his time, forged heavier pieces of iron than had ever been forged before, and, indeed, invented the machinery by which this should be done. The old Scotch family had for a motto the words

"Non arte, sed Marte."

With a very just pride, James Nasmyth has changed the motto, and made it

"Non Marte, sed arte."

That is, while they said, "Not by art, but by war," this man, who has done more work for the world, directly or indirectly, than any of Aladdin's genii, says, "Not by war, but by art."

Hester was well pleased that their old friend justified her enthusiasm so entirely. He and she began dipping into her copy and his copy of the biography, which is one of the most interesting books of our time.

My grandfather, Michael Naesmyth, like his father and grandfather, was a builder and architect. The buildings he designed and erected for the Scotch nobility and gentry were well arranged, carefully executed, and thoroughly substantial. I remember my father pointing out to me the extreme care and attention with which he finished his buildings. He inserted small fragments of basalt into the mortar of the external joints of the stones,at close and regular distances, in order to protect the mortar from the adverse action of the weather; and to this day they give proof of their efficiency.

The excellence of my grandfather's workmanship was a thing that my own father impressed upon me when a boy. It stimulated in me the desire to aim at excellence in everything that I undertook, and in all practical matters to arrive at the highest degree of good workmanship. I believe that these early lessons had a great influence upon my future career.

My father, Alexander Nasmyth, was the second son of Michael Nasmyth. He was born in his father's house in the Grassmarket, on the 9th of September, 1758.

I have not much to say about my father's education. For the most part he was his own schoolmaster. I have heard him say that his mother taught him his A B C, and that he afterward learned to read at Mammy Smith's. This old lady kept a school for boys and girls at the top of a house in the Grassmarket. There my father was taught to read his Bible and to learn his Carritch (the Shorter Catechism).

My father's profession was that of a portrait-painter, to begin with; but later he devoted himself to landscape-painting. But he did not confine himself to this pursuit. He was an all-round man, with something of the universal about him. He was a painter, an architect, and a mechanic. Above all, he was an incessantly industrious man.

I was born on the morning of the 19th of August, 1808, at my father's house in Edinburgh. I was named James Hall, after a dear friend of my father. My mother afterward told me that I must have been a "very noticin' bairn," as she observed me, when I was only a fewdays old, following with my little eyes any one who happened to be in the room, as if I had been thinking to my little self, "Who are you?"

When I was about four or five years old I was observed to give a decided preference to the use of my left hand. At first everything was done to prevent my using it in preference to the right, until my father, after viewing a little sketch I had drawn with my left hand, allowed me to go on in my own way. I used my right hand in all that was necessary, and my left in all sorts of practical manipulative affairs. My left hand has accordingly been my most willing and obedient servant, and in this way I became ambidexter.

In due time I was sent to school; and while attending the High School, from 1817 to 1820, there was the usual rage among boys for spinning-tops, "peeries," and "young cannon." By means of my father's excellent foot-lathe I turned out the spinning-tops in capital style, so much so that I became quite noted among my school companions. They all wanted to have specimens of my productions. They would give any price for them. The peeries were turned with perfect accuracy, and the steel-shod or spinning pivot was centred so as to correspond with the heaviest diameter at the top. They would spin twice as long as the bought peeries. When at full speed they would "sleep;" that is, turn round without a particle of wavering. This was considered high art as regarded top-spinning.

Flying-kites and tissue-paper balloons were articles that I was also somewhat famed for producing. There was a good deal of special skill required for the production of a flying-kite. It must be perfectly still and steady when at its highest flight in the air. Paper messengerswere sent up to it along the string which held it to the ground. The top of the Calton Hill was the most favorite place for enjoying this pleasant amusement.

Another article for which I became equally famous was the manufacture of small brass cannon. These I cast and bored, and mounted on their appropriate gun-carriages. They proved very effective, especially in the loudness of the report when fired. I also converted large cellar-keys into a sort of hand-cannon. A touch-hole was bored into the barrel of the key, with a sliding brass collar that allowed the key-guns to be loaded and primed, ready for firing.

The principal occasion on which the brass cannon and hand-guns were used was on the 4th of June,—King George the Third's birthday. This was always celebrated with exuberant and noisy loyalty. The guns of the Castle were fired at noon, and the number of shots corresponded with the number of years that the king had reigned. The grand old Castle was enveloped in smoke, and the discharges reverberated along the streets and among the surrounding hills. Everything was in holiday order. The coaches were hung with garlands, the shops were ornamented, the troops were reviewed on Bruntsfield Links, and the citizens drank the king's health at the Cross, throwing the glasses over their backs. The boys fired off gunpowder, or threw squibs or crackers, from morning till night. It was one of the greatest schoolboy events of the year.

My little brass cannon and hand-guns were very busy that day. They were fired until they became quite hot. These were the pre-lucifer days. The fire to light the powder at the touch-hole was obtained by the use of a flint, a steel, and a tinder-box. The flint was strucksharply on the steel, a spark of fire consequently fell into the tinder-box, and the match (of hemp string, soaked in saltpetre) was readily lit and fired off the little guns.

One of my attached cronies was Tom Smith. Our friendship began at the High School in 1818. A similarity of disposition bound us together. Smith was the son of an enterprising general merchant at Leith. His father had a special genius for practical chemistry. He had established an extensive color-manufactory at Portobello, near Edinburgh, where he produced white lead, red lead, and a great variety of colors,—in the preparation of which he required a thorough knowledge of chemistry. Tom Smith inherited his father's tastes, and admitted me to share in his experiments, which were carried on in a chemical laboratory situated behind his father's house at the bottom of Leith Walk.

We had a special means of communication. When anything particular was going on at the laboratory, Tom hoisted a white flag on the top of a high pole in his father's garden. Though I was more than a mile away, I kept a lookout in the direction of the laboratory with a spy-glass. My father's house was at the top of Leith Walk, and Smith's house was at the bottom of it. When the flag was hoisted I could clearly see the invitation to me to come down. I was only too glad to run down the Walk and join my chum, to take part in some interesting chemical process. Mr. Smith, the father, made me heartily welcome. He was pleased to see his son so much attached to me, and he perhaps believed that I was worthy of his friendship. We took zealous part in all the chemical proceedings, and in that way Tom was fitting himself for the business of his life.

Mr. Smith was a most genial-tempered man. He wasshrewd and quick-witted, like a native of York, as he was. I received the greatest kindness from him as well as from his family. His house was like a museum. It was full of cabinets, in which were placed choice and interesting objects in natural history, geology, mineralogy, and metallurgy. All were represented. Many of these specimens had been brought to him from abroad by his ship-captains, who transported his color manufactures and other commodities to foreign parts.

My friend Tom Smith and I made it a rule—and in this we were encouraged by his father—that, so far as was possible, we ourselves should actuallymakethe acids and other substances used in our experiments. We were not to buy them ready-made, as this would have taken the zest out of our enjoyment. We should have lost the pleasure and instruction of producing them by means of our own wits and energies. To encounter and overcome a difficulty is the most interesting of all things. Hence, though often baffled, we eventually produced perfect specimens of nitrous, nitric, and muriatic acids. We distilled alcohol from duly fermented sugar and water, and rectified the resultant spirit from fusel-oil by passing the alcoholic vapor through animal charcoal before it entered the worm of the still. We converted part of the alcohol into sulphuric ether. We produced phosphorus from old bones, and elaborated many of the mysteries of chemistry.

The amount of practical information which we obtained by this system of making our own chemical agents, was such as to reward us, in many respects, for the labor we underwent. To outsiders it might appear a very troublesome and roundabout way of getting at the finally desired result; but I feel certain that there is no better method of rooting chemical or any other instruction deeply in ourminds. Indeed, I regret that the same system is not pursued by the youth of the present day. They are seldom if ever called upon to exert their own wits and industry to obtain the requisites for their instruction. A great deal is now said about technical education; but how little there is of technical handiness or head work! Everything isbought ready-madeto their hands; and hence there is no call for individual ingenuity.


Back to IndexNext