PART II
Although no mention of a submarine vessel having been actually constructed can be found earlier than the seventeenth century, and although the torpedo and the mine were not invented till still later, the art of submarine warfare and subaqueous exploration dates back to a very much earlier period.
The earliest form of under-water attack was carried out by divers long before explosive compounds were invented, and the old writers have strange stories to tell of fierce fights beneath the waves.
“The first divers learned their art,” says John Beckmann, in his “History of Inventions and Discoveries,” “by early and adventurous experience, in trying to continue under water as long as possible without breathing, and indeed it must be allowed that some of them carried it to very great perfection. This art, however, excites little surprise, for,like running, throwing, and other bodily dexterities, it requires only practice; but it is certain that those nations called by us uncultivated and savage excel in it the Europeans who through refinement and luxury have become more delicate and less fit for such laborious exercises.”
In early times divers were employed for peaceful as well as for hostile purposes. They were kept in ships to assist in raising anchors and to recover goods thrown overboard in times of danger, and by the laws of the Rhodians they were allowed a share of the wreck, proportional to the depth at which they had gone in search of it. “The pearls of the Greek and Roman ladies,” writes Beckmann, “were fished up by divers at the great hazard of their lives, and by the like means are procured at present those which are purchased as ornaments by our fair.”
In the operations of war divers were used for many purposes. Beckmann tells us that when Alexander was besieging Tyre, divers swam off from the city under water to a great distance and with long hooks tore to pieces the mole with which the besiegers were endeavouring to block up the harbour.
We learn from Herodotus (viii. 8) that when the fleet of Xerxes was advancing to the invasion of Greece, “there was in the force one Skyllias, a Skionaian, the best diver of his time, who in the shipwreck off Pilîon had saved many things for the Persians and had also obtained many thingshimself.” This diver deserted to the Greeks and gave them the benefit of his skill as well as of recent intelligence concerning their enemy. He was the means of destroying a number of the Persian ships by a curious kind of submarine attack. Accompanied by his daughter Kyane, whom he had instructed in his art, he dived during a storm and “cast off” the cables from the anchors which held the vessels, the result being that they were driven on shore and wrecked.
Thucydides (iv. 26) gives an instance of a case of divers being employed as subaqueous auxiliaries during the siege of Syracuse.
“The besieged had driven piles into the water before their old docks, that their vessels might be in safety behind them and the Athenians be unable to stand in amongst them and do any damage to the shipping.” The latter endeavoured to remove this species of nautical entrenchment, and for this purpose they constructed a raft on which were turrets and parapets to cover the men who embarked on it. It was towed up to a line of piles and used as a kind of covering battery for the crews of boats who removed the piles which had been “sawed off close to the bottom by divers.” A serious obstruction was offered by some piles driven in till their heads were below the surface of the water in the hope that the besieging ships might run upon it. But the divers, by persevering efforts, succeeded in sawing them through, thus enabling the besiegers to remove them.
The Chronicles of the early Middle Ages supply instances of the employment of divers in naval warfare. The Baltic, we read, was so infested with pirates that a Swedish force was sent against them. The Swedish admiral, observing that the pirate vessels lay at anchor in a certain bay, sent in at night men from his own fleet to dive beneath them and make holes in their bottoms. The following day he engaged them. In the action the leaks made by the subaqueous assailants during the night proved so serious that the piratical crews had to turn their attention chiefly to stopping them and to baling out their vessels. The number available to fight their enemy was in consequence so reduced that the Swedes gained a complete victory and the power of the pirates was annihilated.
Again at the siege of Malta by the Turks in the sixteenth century some furious under-water fighting occurred. The Maltese were excellent divers and the Knights took advantage of their skill to assist in the erection of a barricade across the mouth of one of the creeks which indent the shores of the Grand Harbour. This obstruction the Turkish besiegers endeavoured to remove, and accordingly they made upon it a series of determined attacks. The divers left their work to drive them off and a terrible and weird struggle ensued, frequently below the surface of the water, which finally ended in the repulse of the infidel assailants.
One must acceptcum grano salisthe stories told by writers regarding the time that divers wereable to continue under water. Beckmann said that the divers of Astrakhan employed in the fishery there could remain for seven minutes under water. The divers in Holland seem to have been very expert, for an observer, during the time they were under water, was obliged to breathe at least ten times. “Those who collect pearl-shells in the East Indies can remain under water a quarter of an hour, though some are of opinion that it is possible to continue longer; and Mersenne mentions a diver, named John Barrinus, who could dive under water for six hours.” Beckmann evidently found it a little difficult to swallow this, so he adds, “How far this may be true I shall leave others to judge.”
An account of a Sicilian diver, Nicolo Pesce, given by Kircher, is yet more marvellous than any of those just cited. So great was his skill that he carried letters for the king from Sicily to Calabria. The story goes that the king offered him a gold cup if he would explore the terrible Gulf of Charybdis. He remained for three-quarters of an hour amidst the foaming abyss and on his return described all the horrors of the place to the astonished monarch, who requested him to dive once more to further examine the gulf. For some time he hesitated, but upon the promise of a still larger cup and a purse of gold he was tempted to plunge again, with the melancholy result that he never came to the surface again.
A history of the art and practice of diving,although it would present many points of interest, is foreign to our subject, and attention must be confined to the question of submarine warfare.
Some writers on this subject, whilst making such statements as “The confinement of gunpowder in watertight cases and its submarine explosion for the destruction of floating and other bodies is almost as old as villainous saltpetre itself,” or “The ancients understood the manufacture of subaqueous explosives or at least combustibles,” do not trouble to give any particular instances. A French writer is reported to have collected accounts of the use of such devices against ships below the water-line, but a diligent search has failed to reveal the name of the author.
“The fact that some under-water explosive compound,” said Admiral Cyprian Bridge, in an article he contributed toFraser’s Magazinemany years ago, “had been known in ancient times was not lost sight of in the stirring intellectual revolution of the Renaissance, which, amongst other legacies, bequeathed to mankind the outlines of the modern art of war. It is not surprising, therefore, that we should meet with the use of such an agent in the wars of the sixteenth century. The most celebrated instance of its employment was by the Italian Giannibelli (sic) at Antioch during the siege of the city by the Prince of Parma.”
Perhaps the Admiral is referring to what Lieutenant Sleeman says is the earliest record of the employment of a torpedo (i.e., a case of explosionpossessing the power of aggression). In 1585 an Italian engineer named Zambelli invented a floating mine and succeeded in destroying a bridge built over the Scheldt by the Prince of Parma. Zambelli’s mine consisted of a flat boat filled with gunpowder arranged in it so as to secure the maximum effectiveness, and provided with a long sulphur metal rope and clockwork for its ignition.
A few years before this feat (in 1578) an Englishman, by name William Bourne, published a book entitled, “Inventions or Devices.” He suggested in his seventeenth article, “How for to sink a ship that hath laid you aboard without shooting of ordnance.” William Bourne is in some books said to have actually invented a plunging apparatus for use in warfare, but no circumstantial account of such a vessel is extant.
The Marquis of Worcester, in his “Century of Inventions” (1663), describes in section 9 “An engine, portable in one’s pocket, which may be carried and fastened on the inside of the greatest ship,Tanquam aliud agens, and at any appointed minute, though a week after, either by day or night it shall irrecoverably sink that ship.” The smallness of the engine suggests some explosive missile connected with clockwork as the only means to insure its being compact and operating on a precise day at a stated point of time. Section 10 is as follows: “A way from a mile off to dive and fasten a like engine to any ship so as it may punctually work the same effect either for time or execution.”
In 1596 John Napier of Merchiston wrote a statement of four “Secret Inventions,” concluding with the remark—“These inventions, besides devices ofsailing under the waterwith divers other devices and stratagems for burning of the enemies, by the grace of God, and work of expert craftsmen, I hope to perform.”
Pepys in his “Diary,” under date March 14, 1662, says: “This afternoon came the German Doctor Knuffler to discourse with us about his engine to blow up ships. We doubted not the matter of fact it being tried in Cromwell’s time, but the safety of carrying them in ships, but he do tell us that when he comes to tell the King his secret, for none but the Kings successively and their heirs must know it, it will appear to be of no danger at all.”
The foregoing extracts show that the possibility of a practical method of submarine attack was beginning to take shape in the minds of philosophers and inventive geniuses. “Fire and Powder Ships,” “Machines,” “Internals,” “Catamarans,” and similar devices for accomplishing the destruction of an enemy were known at this time, and it is not strange that the idea of making the explosion take placebeneaththe water should have suggested itself.
CHAPTER XEARLY EFFORTS IN SUBMARINE NAVIGATION
Who invented the first boat which was capable of being propelled beneath the water? Opinions differ as to the correct answer to this question. David Bushnell’s boat (circa1773) is the first of which we have any definite record, but William Bourne (1580), Magnus Pegelius (1605), and Cornelius Van Drebbel (1620) have all been credited with having constructed under-water vessels. In the previous chapter it has been shown that the earliest form of submarine attack was carried out by divers. The prototype of the submarine boat was undoubtedly the diving bell, the history of which contrivance, although presenting many points of interest, it will be impossible to relate here.
According to some writers to William Bourne, the English mathematician, belongs the credit (in 1580), of operating the first submarine boat as such, in contradistinction to a diving-bell, but there is nothing to show that Bourne did more than discuss the question, as did also Magnus Pegelius, although thelatter is reported to have built a small submarine vessel in the year 1605.
Drebbel’s Reputed Submarine.
The Dictionary of National Biography credits Cornelius Drebbel, who was born in 1572, in the town of Alkmaar, in Holland, and who died in London in 1634, with the invention of a submarine boat “which was navigable without the use of artificial light, from Westminster to Greenwich.” We have spent some time in endeavouring to verify this assertion, but the references to the boat are vague and unsatisfactory. However, as Drebbel is by some accounted the “Father of Submarine Navigation,” it seems scarcely fitting to dismiss him without further thought.
In that curious old volume entitled “New Experiments Physico-mechanical touching the Spring of the Air and its Effects,” by the “Honourable Robert Boyle, Esq.,” mention is made of Drebbel’s boat, and it may be interesting to transcribe the passage. It occurs, on p. 188 of the second edition, published at Oxford in 1662.
THE EARLIEST KNOWN PICTURE OF AN UNDER-WATER VESSEL.
THE EARLIEST KNOWN PICTURE OF AN UNDER-WATER VESSEL.
THE EARLIEST KNOWN PICTURE OF AN UNDER-WATER VESSEL.
“But yet on occasion of this opinion of Paracelsus, perhaps it will not be impertinent if before I proceed, I acquaint your lordship with a Conceit of that deservedly Famous Mechanician and Chymist,Cornelius Drebell, who among other strange things that he performed, is affirmed (by more than a few credible Persons) to have contrived for the late learned KingJames, a vessel to go under Water; of which tryal was made in theThameswith admirable success, the vessel carrying twelve Rowers besides Passengers; one of which is yet alive, and related to an excellent Mathematician that informed me of it. Now that for which I mention this story is, That having had the curiosity and opportunity to make particular Enquiries among the Relations ofDrebell, and especially of an ingenious Physitian that marryed his daughter, concerning the grounds upon which he conceived it feasible to make men unaccustomed to continue so long under Water without suffocation, or (as the lately mention’d Person that went in the Vessel affirms) without inconvenience, I was answered thatDrebellconceived, that ’tis not the whole body of the air but a certain Quintessence (as Chymists speake) or spirituous part of it that makes it fit for respiration, which being spent the remaining grosser body, or carcase (if I may so call it) of the Air, is unable to cherish the vital flame residing in the heart: so that (for ought I could gather) besides the Mechanicall contrivance of his vessel he had a Chymicall liquor, which he accounted the chief secret of his Submarine Navigation. For when from time to time he perceived that the finer and purer part of the Air was consumed or over-clogged by the respiration, and steams of those thatwent in his ship, he would, by unstopping a vessel full of the liquor speedily restore to the troubled air such a proportion of vital parts as would make it again for a good while fit for Respiration. Whether by dissipating or precipitating the grosser exhalations, or by some other intelligible way, I must not now stay to examine, contenting myself to add, that having had the opportunity to do some service to those of his Relations, that were most intimate with him, and having made it my business to learn what the strange liquor might be, they constantly affirmed thatDrebellwould never disclose the Liquor unto any, nor so much as tell the matter whereof he made it, to above one Person, who himself assured me what it was.”
It is much to be wished that fuller accounts were extant respecting Drebbel’s boat, and the methods he employed to enable his passengers to breathe under water. W. B. Rye in one of the notes to his work “England as seen by Foreigners” (1865, p. 232), gives a carefully compiled account of Drebbel’s inventions and quotes from a Dutch Chronicle of Alkmaar, by C. van der Wonde (1645), a passage relating to his submarine boat.
“He built a ship in which one could row and navigate under water from Westminster to Greenwich, the distance of two Dutch miles; even five or six miles, or as far as one pleased. In this boat a person could see under the surface of the water and without candle-light, as much as he needed to read in the Bible or any other book. Not long ago this remarkable ship was yet to be seen lying in the Thames or London river.”
As to what Drebbel’s “Chymicall Liquor” really was there is no chance of discovering. ProfessorW. P. Bradley has pointed out that the name “Quintessence of Air” is very suggestive of oxygen. The life-giving component of air (not discovered until a century and a half after Drebbel’s time) is volumetrically the “quintessence,” the fifth part of air. “Is it possible,” he asks, “that Drebbel had discovered some liquid which easily disengaged the then unknown oxygen gas and thus was able to restore to vitiated air that principle of which respiration deprives it? Undoubtedly not. It is much more likely that he possessed a solution capable of absorbing the carbonic acid gas which is produced by respiration, and that the name given it was entirely fanciful and without special significance. But even if Drebbel’s claim was a piece of pure quackery with no substantial basis at all, it is nevertheless not without interest, for it shows, as we might have anticipated, that the problem of ventilation, one of the most important with which the inventors of submarines have to deal, was at least appreciated by Drebbel the pioneer.”
A writer of the period, one Harsdoffer, tells how Drebbel was led to the construction of his boat:—
“One day when walking along the banks of the Thames Drebbel noticed some sailors dragging behind their barques baskets full of fish; he saw that the barques were weighed down in the water, but that they rose a little when the baskets allowed the ropes which held them to slacken a little. The idea occurred to him that a ship could be held under the water by a somewhat similar method and could be propelled by oars and poles. Some time afterwards he constructed two littleboats of this nature, but of different sizes, which were tightly closed with thick skin, and King James himself journeyed in one of them on the Thames. There were on this occasion twelve rowers besides the passengers, and the vessel during several hours was kept at a depth of twelve to fifteen feet below the surface.” This royal excursion under water terminated, we read, “fort hereusement.”
The Abbé de Hautefeuille, in a brochure which appeared in 1680 entitled “Manière de respirer sous l’Eau,” writes thus:—
“Drebbel’s secret was probably the machine which I had imagined consisting of a bellows with two valves and two tubes resting on the surface of the water, the one bringing down air and the other sending it back. By speaking of a volatile essence which restored the nitrous parts consumed by respiration Drebbel evidently wished to disguise his invention and prevent others from finding out its real nature.”
Ben Jonson, in his comedy, “The Staple of News,” first acted by His Majesty’s servants in 1625, has a hit at certain inventions of the time, and amongst these is the boat of Master Drebbel. Thomas, Act III., Scene I., says:—
“They write here one Cornelius’ sonHath made the Hollanders an invisible eelTo swim the tavel at Dunkirk and sink allThe shipping there.Pennyboy, junior.But how is’t done?Grabal.I’ll shew you, sir,It is an automa, runs under waterWith a snug nose, and has a nimble tailMade like an auger with which tail she wrigglesBetwixt the costs of a ship and sinks it straight.P., jun.Whence have you this news?Fitton.From a right hand I assure you.The eel-boats here, that lie before Queen-hytheCame out of Holland.P., jun.A most brave deviceTo murder their flat bottoms.”
“They write here one Cornelius’ sonHath made the Hollanders an invisible eelTo swim the tavel at Dunkirk and sink allThe shipping there.Pennyboy, junior.But how is’t done?Grabal.I’ll shew you, sir,It is an automa, runs under waterWith a snug nose, and has a nimble tailMade like an auger with which tail she wrigglesBetwixt the costs of a ship and sinks it straight.P., jun.Whence have you this news?Fitton.From a right hand I assure you.The eel-boats here, that lie before Queen-hytheCame out of Holland.P., jun.A most brave deviceTo murder their flat bottoms.”
“They write here one Cornelius’ sonHath made the Hollanders an invisible eelTo swim the tavel at Dunkirk and sink allThe shipping there.
“They write here one Cornelius’ son
Hath made the Hollanders an invisible eel
To swim the tavel at Dunkirk and sink all
The shipping there.
Pennyboy, junior.But how is’t done?
Pennyboy, junior.But how is’t done?
Grabal.I’ll shew you, sir,It is an automa, runs under waterWith a snug nose, and has a nimble tailMade like an auger with which tail she wrigglesBetwixt the costs of a ship and sinks it straight.
Grabal.I’ll shew you, sir,
It is an automa, runs under water
With a snug nose, and has a nimble tail
Made like an auger with which tail she wriggles
Betwixt the costs of a ship and sinks it straight.
P., jun.Whence have you this news?
P., jun.Whence have you this news?
Fitton.From a right hand I assure you.The eel-boats here, that lie before Queen-hytheCame out of Holland.
Fitton.From a right hand I assure you.
The eel-boats here, that lie before Queen-hythe
Came out of Holland.
P., jun.A most brave deviceTo murder their flat bottoms.”
P., jun.A most brave device
To murder their flat bottoms.”
That Ben Jonson should class the submarine boat of Drebbel with such a proposal as that of bringing an army over seas in corkshoes—
“All his horseAre shod with cork, all fourscore pieces of ordnanceMounted upon cork carriages, with bladdersInstead of wheels, to run the passage overAt a spring tide.”
“All his horseAre shod with cork, all fourscore pieces of ordnanceMounted upon cork carriages, with bladdersInstead of wheels, to run the passage overAt a spring tide.”
“All his horseAre shod with cork, all fourscore pieces of ordnanceMounted upon cork carriages, with bladdersInstead of wheels, to run the passage overAt a spring tide.”
“All his horse
Are shod with cork, all fourscore pieces of ordnance
Mounted upon cork carriages, with bladders
Instead of wheels, to run the passage over
At a spring tide.”
and with the discovery of perpetual motion—
“By an ale-wife in St. Katherine’sAt the sign of the Dancing Bear,”
“By an ale-wife in St. Katherine’sAt the sign of the Dancing Bear,”
“By an ale-wife in St. Katherine’sAt the sign of the Dancing Bear,”
“By an ale-wife in St. Katherine’s
At the sign of the Dancing Bear,”
gives one an idea of how the world in general viewed Drebbel’s invention, and yet the inventor found favour in the eyes of James I., who bestowed money upon him, gave him a lodging in Eltham Palace, took a great interest in his experiments, and when his life was in danger at Prague, owing to a revolution, succeeded in obtaining his release by personal intercession.
In return for his Majesty’s favour Cornelius invented an “ingenious machine” for producing perpetual motion, which became one of the wonderful sights of the day. According to a description intheBiographie Universelleit consisted of a globe of glass in which by means of the four elements Drebbel imitated perpetual motion. In the space of twenty-four hours one could behold the course of the sun, the planets, and the stars. By means of this marvellous globe he showed “the cause of cold, of the ebb and flow of the sea, of storms, of thunder, of rain, of the wind,enfin tout le mecanisme de la nature.”
In the diary of Lewis Frederick, Prince of Wurtemberg, under date Tuesday, May 1, 1610, occurs the passage, “His Excellency went to Elham Park to see the perpetual motion; the inventor’s name was Cornelius Trebel, a native of Alkmaar, a very fair and handsome man, and of very gentle manners, altogether different from such-like characters; we also saw there Virginals, which played of themselves.”
Undoubtedly Drebbel was ahead of his time, but one cannot credit him with all the wonders he is reported to have achieved. Some of his biographers state that he invented a telescope, a microscope, and a thermometer; an incubator for hatching fowls; an instrument for showing pictures of portraits of people not present at the time, and a method of producing at will the most extreme cold. Drebbel was evidently highly thought of at the Courts of James I., Rudolph II., and Ferdinand II., but this was perhaps due more to his being “a very fair and handsome man of very gentle manners,” than to his scientific attainments.
One of his biographers refers to him thus: “Cornelius van Drebbel, ein Charlatan,” and others have dubbed him alchemist, empiric, magician, and professor of the Black Art.
Mr. Rye’s estimate is perhaps the truer:—
“But however extravagant and improbable some of the following descriptions may appear, yet, allowing as we ought to do for the crude state of physical science and the credulity of the times in which he lived, as well as the then prevailing tendency to clothe scientific investigation and experiment with an air of mystery, Cornelius Drebbel is entitled, we think, to hold a respectable position among the ingenious inventors and mechanicians of the early part of the seventeenth century.”
Bishop Wilkins on Submarine Navigation.
Drebbel’s boat attracted the attention of the Right Reverend John Wilkins, whose mathematical and philosophical works were published in London in the year 1708.
John Wilkins was a remarkable man, considerably in advance of his day in scientific speculation. As few people nowadays read his books a brief extract from his “Mathematical Magick: or the Wonders that may be perform’d by Mechanical Geometry” may be read with interest and amusement.
The book is divided into two parts, the first entitled “Archimedes, or Mechanical Powers,” the second, “Doedalus, or Mechanical Motions.”
Chapter V. of Part 2 deals with “the possibilityof framing an Ark for Submarine Navigation: the Difficulties and Consequences of such a Contrivance.”
“It will not be altogether impertinent,” says the author, “with the Discourse of these gradientAutomatato mention what Mersennus doth so pleasantly and largely descant upon concerning the making of a ship wherein men may safely swim under the water. That such a Contrivance is feasible, and may be effected, is beyond all question, because it hath been already experimented here inEnglandbyCornelius Dreble; but how to improve it unto Publick Use and Advantage, so as to be serviceable for remote Voyages, the carrying of any considerable Number of Men, with Provisions and Commodities, would be of such excellent Use, as may deserve some further enquiry.”
The difficulties are divided into three heads:—
1. “The letting-out or receiving in anything as there shall be occasion without the admission of Water. If it hath not such a convenience these kind of Voyages must needs be very dangerous and uncomfortable both by Reason of many noisome and offensive Things which should be thrust out, and many other needful Things which should be received in. Now herein will consist the Difficulty, for to contrive the opening of the Vessel so that anything may be put in or out, and yet the Water not rush into it with much Violence as it doth usually in the leak of a Ship.”
The learned Doctor’s remedy is as follows: “Let there,” he says, “be certain leather bags made of several bignesses, long and open at both ends, and answerable to these let there be divers windows made in open places in the frame of the ship round the sides, to which one end of these bags might be fixed, the other end coming within the ship. The bag being thus fastened and tied close about towards the window, then any thing that is to be sentout might be safely put into that end within the ship: this being again close shut, and the other end loosened, the thing may be safely sent out without the admission of any water.”
In taking anything in, it was to be first received into that part of the bag towards the window, which being close tied down at the other end may then be safely opened.
A CONCERT IN A SUBMARINE.TheDiable Marinof W. Bauer.(1855.)
A CONCERT IN A SUBMARINE.TheDiable Marinof W. Bauer.(1855.)
A CONCERT IN A SUBMARINE.TheDiable Marinof W. Bauer.(1855.)
“It is easy to conceive, how by such means as these a Person may be sent out or received in, as there shall be occasion; how the water which will perhaps by Degrees leak into several parts may be emptied out again, with divers other like advantages. Tho’ if there should be a leak at the bottom of the vessel, yet very little Water would get in, because the Air would get out.”
The fate of the unhappy Person thrust out of the Vessel by means of the leather bags is too dreadful to contemplate, and the sailors called upon to man a modern war submarine may congratulate themselves that this convenient contrivance imagined by the ingenious prelate has not comeinto use. As to the taking in of things into the boat one does not quite gather how they would get into the bag, or how the bag would be first untied and then tied again by those inside the vessel.
The second difficulty in such an Ark is “the Motion or fixing of it according to occasion: the directing of it to several places as the Voyage shall be designed, without which it would be very useless, if it were to remain only in one Place, and were to remove only blindfold, without any certain Direction: And the Contrivance of this may seem very difficult because these submarine Navigators will want the usual advantages of Wind and Tide for Motion, and the sight of the Heavens for direction.”
The progressive motion of the boat would be effected by the help of several oars made to contract and dilate like the fins of a fish, the holes through which they pass into the ship being tied about with the afore-mentioned Leather Bags.
“It will not be convenient, perhaps, that the motion in these Voyages should be very swift because of those Observations and Discoveries to be made at the Bottom of the Sea, which in a little space may abundantly recompense the slowness of the Progress.”
Dr. Wilkins had grasped the fact that if the Ark were so ballasted as to be equal weight with the like magnitude of Water, it would then be easily movable in any Part of it.
As for the ascent and descent of the craft this was to be accomplished by “some great Weight at the Bottom of the Ship (being Part of its Ballast), which by some Cord within may be loosened from it. If this Weight is let loose so will the Ship ascend from it (if need be) to the very Surface of the Water; and again as it is pulled close to the Ship, so will it descend.”
The idea of taking in Water-ballast for sinking the Ark does not seem to have occurred to the Author.
For directing the course of the Vessel the Mariner’s Needle would be employed, but the patent difficulty of all is this,“How the Air may be supplied for Respiration, How constant Fires may be kept in for light and the Dressing of Food, how those Vicissitudes of Rarefaction and Condensation may be maintained.”
While our author will not go so far as to say that a man may by custom, “which in other things doth produce such strange incredible effects,” be enabled to live in the open Water as do the fishes, yet he thinks that long use and custom may strengthen men against many such inconveniences of this kind which to inexperienced persons may prove very hazardous: thus it will not perhaps be so necessary to have the air for breathing so “pure and desecated” as is required for others.
The difficulty of respiration under water may be met in several ways. “The submarine ark should be of such a large capacity that as the air is corrupted in one part so it may be purified and renewed in the other: if the mere refrigeration of the air would fit it for breathing, this might be somewhat helped with bellows, which would cool it by motion: it is not altogether improbable,” says the doctor, “that the lamps and fires in the middle of it like the reflected beams in the first region rarefy the air and the circumambient coldness towards the sides of the vessel like the second region, cooling and condensing of it would work such a Vicissitude and change of air as might fit it for all its proper uses.”
Finally, if none of these conjectures will help, the author mentions that there is in France one Barrières, a diver, who hath found out the art whereby a man might easily continue under water for six hours together, “whereas Ten Cubical Feet of Air will not serve another Diver to breathe in for Half an Hour, he by the help of a Cavity not above one or two Foot at most will have Breath enough for six hours and a Lanthorne scarce above the usual size to keep a candle burning as long as a Man please. Which (if it be true and were commonly known) might be sufficient help against the greatest difficulty.”
Dr. Wilkins makes no mention of the “Chymicall Liquor” which Drebbel is reported to have discovered for the purifyingof the air inside the boat when under water, and it is probable that he attached little value to the accounts of this remarkable substance.
Having so far dealt with the difficulties of submarine navigation and their remedies, the author proceeds to discuss the many advantages and conveniences of such a contrivance.
First of all, says he—“’Tis private; a Man may thus go to any Coast of the World invisibly without being discovered or prevented in his journey.”
Certainly this would be a convenience to the criminal fleeing from justice, to a deposed ruler wishing to escape from his conquerors, and to others desirous of effacing themselves for a time.
Secondly—“’Tis safe from the Uncertainty of Tides and the Violence of Tempests, which do never move the Sea above Five or Six paces deep, from Pirates and Robbers which do so infest other Voyages. From Ice and great Frosts, which do so much endanger the Passages towards the Poles.” Could Bishop Wilkins but have perused Mr. John Holland’s article in theNorth American Reviewfor December, 1900, in which proposals for a submarine passenger service across the Channel are put forward, he would have been gratified to find the inventor of a practical under-water vessel of the same opinion as himself regarding the “advantages and conveniences” of travelling beneath rather than on the waves.
M. Goubet also has imagined a submarine cross-Channel service.
Thirdly—“It may be of very great advantage against a Navy of Enemies, who by this means may be undermined in the Water and blown up.”
Sixty-seven years after these words were written David Bushnell launched his submarine boat, which carried a torpedo charged with 130 lbs. of gunpowder to be affixed to the side of the vessel to be blown up. In 1864 theDavid, owned by the Confederates, blew up theHousatonic, and though this is the only occasion on which a submarine has done any damage tothe foe in an actual real encounter, it is more than likely that in the next great naval war under-water vessels may “be of very great advantage against a Navy of Enemies.”
Fourthly—“It may be of special use for the Relief of any Place that is besieged by Water to convey unto them Invisible Supplies; and so likewise for the Surprizal of any Place that is accessible by Water.”
Fifthly—“It may be of unspeakable Benefit for Submarine Experiments and Discoveries, as—The several Proportions of Swiftness betwixt the ascent of a Bladder, Cork, or any other light Substance, in comparison to the descent of Stones or Lead. The deep Caverns and Subterranean Passages where the Sea Water in the course of its circulation, doth vest itself into other Places and the like. The Nature and Kinds of Fishes, the several Arts of Catching them, by alluring them with Lights, by placing divers nets about the sides of this Vessel, shooting the greater sort of them with Guns, which might be put out of the ship by the help of such Bags as were mentioned before, with divers the like Artifices and Treacheries, which may be more successfully practised by such who live so familiarly together. These fish may serve not only for food but for Fewel likewise, in respect of that oil which may be extracted from them; the Way of Dressing Meat by Lamps being in many Respects the most convenient for such a Voyage. The many fresh springs that may probably be met with at the Bottom of the Sea, will serve for the Supply of Drink and other Occasions.”
Dr. Wilkins is, however, convinced that, above all, his Ark will be most valuable in the discovery of submarine treasures, “not only in regard of what hath been drowned by Wrecks, but the several precious Things that grow there; as Pearl, Coral Mines; with innumerable other Things of great Value which may be much more easily found out and fetch’d up by the help of this than by any of the usual ways of the Urinators.” For the better fulfilment of this purpose, the author suggests that there should be some lesser cabins tied about the GreatArk at various distances, where several persons as Scouts might be lodged for the taking of observations according as the Admiral should direct them. Dr. Wilkins’ prediction has been realised, and in Mr. Simon Lake’sArgonautthere exists a machine which is bound to play an important part in “the discovery of Submarine Treasure.”
In the penultimate paragraph of the chapter on the Submarine Ark Dr. Wilkins waxes enthusiastic over the immense possibilities latent in such a contrivance. “All kinds of Arts and Manufactures may be exercised in this Vessel. The Observations made by it might be written and (if need be) Printed here likewise. Several Colonies may there inhabit, having their Children born, and bred up, without the knowledge of land, who could not chuse but be amazed with Strange Conceits upon the Discovery of this Upper World.”
In conclusion the author writes:—
“I am not able to judge what other Advantages there may be suggested, or whether Experiment would fully answer these Notional Conjectures. But, however, because the Invention did unto me seem ingenious and new, being not impertinent to the present Enquiry therefore I thought it might be worth the mentioning.”
Mersenne.
“Mersennus,” to whom the learned Bishop refers, was a monk of the order of the “Minims,” who lived from 1588–1648, and was the chief friend and literary agent of Des Cartes. He gave in his writings some attention to submarine navigation. He proposed that the shell of a boat which he projected, but never built, should be of copper or some other metal, and that in shape it should resemble a fish, and in order to avoid its turning round both ends should be pointed.
In time of war the boat would destroy the keels of the enemy’s ships. At the port-holes were placed big cannon. An arrangement of packing with a plug valve prevented the introduction of water. At the moment of firing the guns were brought close to the openings and the plug-valve was raised; after the shot had been discharged the plug fell automatically back to its place. In order to replenish the air pneumatic machines and ventilators would be used; for steering, the compass would act as well beneath the waves as on the surface; for lighting, phosphorescent bodies would be used. The boat was to have wheels and was to be moved by means of oars. Mersenne was the first to affirm that even the most violent tempests could not be a source of danger to the submarine vessel as the disturbance was felt but a little distance below the surface.
RACING THE “CAMPANIA.”Apostoloff’s Proposed Submarine.
RACING THE “CAMPANIA.”Apostoloff’s Proposed Submarine.
RACING THE “CAMPANIA.”Apostoloff’s Proposed Submarine.
Another monk of the same order, Father Fournier, about the year 1640 gave to the world his ideas on the problem of navigating beneath the water.
In the year 1653 a Frenchman, whose name we have been unable to discover, is said to have built and operated a submarine boat at Rotterdam. It was 72 feet long, 12 feet high, and 8 feet broad. It was traversed down its entire length by a system of very solid girders whose extremities projecting beneath the bottom were covered with iron. Ordinarily the boat was not meant to be submerged lower than the “awash” condition, but the part above the water was made to slope with the idea of turning aside the projectiles aimed at it. In the centre of the boat was a kind of paddle wheel, but the inventor was careful to keep many details secret regarding its propulsion and its method of attack. For some little time he showed his invention for a small pecuniary remuneration, but it failed to attract the notice of those in authority.
In theAnnual Registerof the year, 1774, at page 245, there appears an authentic account of a late unfortunate transaction with respect to a diving machine at Plymouth. This relates to the death of a Mr. Day who lost his life in a boat of his own construction in Plymouth Sound.
Day.
It appears that Mr. Day, “the sole projector of the scheme, and as matters have turned out, the unhappy sacrifice to his own ingenuity,” planned a method of sinking a vessel under water with a man in it, who shouldlive there for a certain time, and then by his own means only bring himself up to the surface. He tried his project in the Broads near Yarmouth, fitting a Norfolk market-boat for his purpose, and succeeded in sinking himself thirty feet under water, where he continued during the space of twenty-four hours. Elated with this success, he then wanted to avail himself of his invention. He conversed with his friends, perfectly convinced that he had brought his undertaking to a certainty; but how to reap the advantage of it was the difficulty that remained.
THE “INTELLIGENT WHALE” OF HALSTEAD.(1892.)
THE “INTELLIGENT WHALE” OF HALSTEAD.(1892.)
THE “INTELLIGENT WHALE” OF HALSTEAD.(1892.)
That this vessel might serve some useful purpose, whether peaceful or warlike, does not seem to have occurred to Mr. Day, who was content seemingly to construct a diving boat capable of sinking and rising again to the surface, without furnishing it with any method of propulsion. A friend of the inventor suggested that if he acquainted the sporting gentlemen with the discovery and the certainty of the performance considerable “betts” would take place as soon as the project should be mentioned in Company. Struck by this happy idea, Mr. Day looked into the “Sporting Kalendar” and finding therein the name of Blake decidedthat it was to this gentleman that he ought to address himself. Accordingly, in November, 1773, Mr. Blake received the following letter:—
“Sir,—I have found out an affair by which many thousands may be won. It is of a paradoxical nature, but can be performed with ease; therefore, sir, if you chuse to be informed of it, and give me £100 for every £1,000 you shall win by it, I will very readily wait upon you, and inform you of it. I am, myself, but a poor mechanic and not able to make anything of it without your assistance.
“Yours, &c.,“J. Day.”
“Yours, &c.,“J. Day.”
“Yours, &c.,“J. Day.”
“Yours, &c.,
“J. Day.”
Mr. Blake naturally had no conception of Mr. Day’s design, nor was he sure that the letter was serious. He wrote, however, to the inventor, and appointed an interview, when the latter announced his project. He declared “that he could sink a ship one hundred yards deep in the sea with himself in it, and remain therein for the space of twenty-four hours, without communication with anything above; and at the expiration of the time rise up again in the vessel.”
Mr. Blake was not a little staggered at this dare-devil proposal, but agreed to advance money for the construction of a model. This having proved satisfactory Mr. Blake advanced a further sum for the building of a practicable vessel. This, it would appear, had a false bottom, “standing on feet like a butcher’s block, which contained the ballast; and by the person in the vessel unscrewing some pins, he was to rise to the surface leaving the false bottom behind.”
The boat was at length built and in the presence of Mr. Blake a trial descent was made. The day fixed for the test which was to decide the bet arrived, but Mr. Blake reduced the depth of water from one hundred yards to one hundred feet, and the time from twenty-four to twelve hours.
“The vessel was towed to the place agreed upon; Mr.Day provided himself with whatever he thought necessary, went into the vessel, let the water into her, and with great composure retired to the room constructed for him and shut up the valve. The ship went gradually down to twenty-two fathom water at 2 o’clock on Tuesday, June 28 (1774), in the afternoon, being to return at 2 o’clock the next morning. He had three buoys as messengers which he could send to the surface at option to announce his situation below; but none appearing Mr. Blake, who was near at hand in a barge, began to entertain some suspicions. He kept a strict look-out, and at the time appointed, neither the buoys nor the vessel coming up, he applied to theOrpheusfrigate, which lay just off the barge, for assistance. The captain with the most ready benevolence supplied them with everything in his power to seek for the ship. Mr. Blake in this alarming situation was not content with the help of theOrpheusonly; he made immediate application to Lord Sandwich (who happened to be at Plymouth) for further relief. His Lordship with great humanity ordered a number of hands from the dock-yard, who went with the utmost alacrity and tried every effort to regain the ship, but unhappily without effect.”
According to Admiral Hichborn (U.S.N.) J. Day has the unique distinction of being the only known victim of the dangers of submarine navigation. This distinction, says the Admiral, depends upon the supposition that reports of submarine accidents were much more reliable two hundred and forty years ago than they have been for the last forty years, during which period there have beenauthenticnewspaper reports of the loss of eighty-two lives in attempting submarine navigation in the United States. “Fifty of these lives were not lost at all, and the other thirty-two, though lost in a boat designed to operate as a submarine, were all lost when, and apparently because, she was not so operating.” This refers to theDavid, which in the American Civil War destroyed four crews of eight men each.
Mr. Charles Babbage in his article on the Diving Bell in the “Encyclopædia Metropolitana,” describes Day’s under-water boat. He writes:—
“Having purchased a sloop of 50 tons it was prepared by building an air-tight chamber in the middle 12 feet long, 9 feet broad, and 8 feet deep, and capable of containing 75 hogsheads of air. Considerable pains were taken to make this as strong and as secure as possible. In the middle of the top of this chamber was a square hole, a scuttle just sufficiently large to admit a man; it was bevelled outwards, in order that the valve which was to close the chamber might be driven in more tightly. Screws were applied to this valve, in order to screw it home, and it, as well as the scuttle, was lined with flannel. On the decks of the vessel three buoys of different colours, white, red and black, were fixed by plugs in such a manner that they were to be disengaged by driving another plug from the inside of the chamber. These were designed as signals to indicate the state of health of the adventurer during his stay under water. The white was to denote his being very well, the red indifferent, and the black his being very ill. The ballast of 20 tons, by which the vessel was to be sunk and by disengaging of which it was to be raised again, was fixed to four iron rods passing through tubes into the chamber. The vessel was ballasted internally with 10 tons, which with the twenty suspended from her would, it was imagined, cause her to sink when full of water. Thus perished a man whose intrepidity resulted from his ignorance of the dangers he encountered, and who fell a victim to his obstinate confidence in the success of a plan concerning which his knowledge was totally insufficient to enable him to judge. The depth of water in which the vessel sank was 22 fathoms; the pressure of more than four atmospheres thus produced, in all probability crushed in the sides of the chamber soon after it reached the bottom.”