SYNTHETIC TAR ACIDS OTHER THAN PHENOL

1Based on American selling price or United States value.2Drawback paid on 44 percent.3Drawback paid on 80 percent.4Drawback paid on 105,285 pounds.5Preliminary.Source: Foreign Commerce and Navigation of the United States.

1Based on American selling price or United States value.

2Drawback paid on 44 percent.

3Drawback paid on 80 percent.

4Drawback paid on 105,285 pounds.

5Preliminary.

Source: Foreign Commerce and Navigation of the United States.

Table 81.—Crude cresylic acid: United States imports for consumption, from principal sources, in specified years, 1929-37

1Preliminary.2Canada.3Canada and France.4Less than one-tenth of 1 percent.Source: Compiled from official statistics of the United States Department of Commerce.

1Preliminary.

2Canada.

3Canada and France.

4Less than one-tenth of 1 percent.

Source: Compiled from official statistics of the United States Department of Commerce.

Table 82.—Refined cresylic acid: United States imports for consumption, from principal sources, in specified years, 1929-37

1Preliminary.Source: Foreign Commerce and Navigation of the United States.

1Preliminary.

Source: Foreign Commerce and Navigation of the United States.

In 1931 practically all imports of refined cresylic acid were from the United Kingdom and consigned to one importer in New York. In 1932 about 73 percent of the total dutiable imports were consigned to the same firm. From these data and from a conference with representatives of the importer it would appear that the imports were not cresylic acid in its original meaning (a mixture of cresols in their natural proportions), nor in the broadened commercial meaning (including with the cresols, xylenols and higher boiling tar acids), but were chiefly a product consisting largely of a single cresol separated from its two isomers. Treasury Decision 46146, effective March 11, 1933, closed the classification of refined cresylic acid to products of this type and imports thereafter under this head have been much smaller. After 1927 substantial amounts of the imports were reexported with benefit of drawback.

The imports of crude cresylic acid are also not of the type which the domestic producer would sell by that name. Far from being a straight run mixture of the cresol and higher boiling tar acids, they are usually a mixture of fractions which have been separated, and then chosen and combined so that they will meet both the tariff requirement (i. e., less than 75 percent of the total product will distill over at 215° C.) and the specifications of the purchasers. Customer’s specifications are so drawn that the product will fill his special needs or can easily be broken down by fractional distillation in this country into elements, one or more of which will be so usable. Thus although imported crude cresylic acid must keep within the limitations set by the tariff it approaches as nearly as possible the type of cresylic acid which, if produced in this country, would be termed refined, since it was produced to meet the specifications of the consumer.

Exports of the cresols and of cresylic acid are not shown in official statistics and exports of these products as such are probably negligible, but there are appreciable exports of antiseptics, insecticides, and disinfectants in which they are incorporated, as well as of products or parts of products molded of resins made from cresylic acid.

British coal tar is principally of gas-house origin and contains a higher percentage of tar acids (cresylic acid and phenol) than coke-oven tar, the principal kind recovered in the United States. The recovery of these tar acids from either kind of tar is usually not practicable, unless the distiller can dispose of the major products, creosote oil and pitch. British distillers have in the past ordinarily had a market for all their products; exporting large quantities of creosote oil to the United States, pitch to continental Europe, and tar acids and naphthalene to the United States, Germany, and other countries. Domestic distillers have sold cresylic acid, creosote oil, naphthalene, etc., in local markets in competition with duty-free imports from the United Kingdom, the Netherlands, Belgium, and Germany, but have found it difficult to dispose of pitch. The domestic production of coal tar ordinarily exceeded 600 million gallons, approximately one-half of which has been burned as fuel. Since the profit in distilling depends upon the markets for all of the jointproducts of the distillation, the large amount remaining undistilled can be understood.

The domestic production of cresylic acid may be expected to increase substantially, for several reasons: (1) The principal foreign producing countries have decreased exports because of increased demand for some of the coal-tar distillation products at home; (2) increased world prices; and (3) the development of topping, which allows the production of tar acids and naphthalene from coal tar without complete distillation.

Imports of refined cresylic acid are unimportant because the duty on the refined is high relative to the duty-free condition of the crude. Most of the imports of refined are either reexported or used in the manufacture of one proprietary antiseptic. The principal domestic market for cresylic acid is as a raw material for synthetic resins, and most of the domestic refined and most of the duty-free imported crude is now consumed by this industry. It may therefore be said that practically all imports of cresylic acid are duty-free and that, while they are sometimes refined by the consumer, they compete directly with domestic production of refined grades.

Phenol, already discussed, is closely related to cresylic acid—in chemical composition, in production by distillation from coal tar, and in use as a raw material for synthetic resins. To a considerable extent the proportions of phenol and cresylic acid used in the manufacture of tar-acid resins can be altered to take advantage of the changing price differential between the two.

All of the separated or mixed cresols are produced in commercial quantities in this country. Consumption in the United States, especially of types and grades used in synthetic resins, has increased appreciably in recent years, and is supplied chiefly by domestic production. A comparison of the quantity and value of domestic production and of imports in 1934 is shown in table83.

Table 83.—The cresols: Comparison of production and imports, 1934

1None, production reported for first time in 1935.2Not publishable.

1None, production reported for first time in 1935.

2Not publishable.

Sources: Production, Dyes and Other Synthetic Organic Chemicals in the United States; imports, invoice analyses, U. S. Tariff Commission.

Certain synthetic tar acids other than synthetic phenol are used commercially in the manufacture of synthetic resins in the United States. Among these are para tertiary amyl phenol, para tertiary butyl phenol, ortho phenyl phenol, para phenyl phenol, and resorcinal.

Para tertiary amyl phenol is made by reacting amylene with phenol in the presence of sulphuric acid as a catalyst. At ordinary temperatures it is a solid, melting at about 88° C. and boiling between 250°-265° C. Its use is of increasing importance as a component in tar-acid resins, especially in oil-soluble varnish resins. Owing to its phenol coefficient of approximately 60, it is also used as a germicide, fumigant, and insecticide. Commercial production was reported for the first time in 1933. Since then the output has increased appreciably each year, accompanied by material reductions in sales prices.

According to United States Patent No. 1,800,295, dated April 14, 1931, a resin fast to light and soluble in oils is obtained by heating 82 parts of p-tertiary amyl phenol with 90 parts of formaldehyde, in the presence of sodium hydroxide. This substituted phenol resin passes slowly into the infusible state, thus permitting better control of the reaction.

Para tertiary butyl phenol is a white solid with an aromatic odor, melting at approximately 100° C. It is a new commercial product and is used in resins for paints and varnishes. It is the most important resin material in this group.

Both ortho and para phenyl phenol are commercially produced and are used to some extent in resins to replace phenol. The ortho isomer is a white solid boiling at 284° C. and melting at about 56° C. It is used chiefly as a germicide, though small quantities are used in resins.

Para phenyl phenol is a white solid melting at about 165° C. and boiling at 322° C. Commercial production was reported for the first time in 1933. The output has increased each year since and the selling price has gradually declined.

Resorcinol, usually obtained by fusing meta benzene disulphonic acid with caustic soda, is a colorless, crystalline substance with a peculiar odor. It melts at 119° C. and boils at 276° C. It is used in medicine, in the manufacture of intermediates and dyes, and to some extent in synthetic resins. Resorcinol condenses with formaldehyde at such a rapid rate that some means must be applied to slow up the reaction. It is used to increase the rate of condensation of tar-acid resins and to reduce the danger of sticking or undercure.

Domestic production of resorcinol has decreased in recent years. Its relatively high cost is probably an important factor in limiting its use in synthetic resins.

At ordinary temperature and pressure formaldehyde is a gas. It enters commerce as formalin, an aqueous solution containing 40 percent formaldehyde by volume (37 percent by weight) and from 6 to 14 percent methyl alcohol. It is generally made by the oxidation ofmethyl alcohol. Commercial formalin contains polymers which tend to precipitate in water solution; these are kept in solution by allowing from 6 to 14 percent methyl alcohol to remain in the solution.

The principal use of formaldehyde is in the manufacture of synthetic resins. Other uses are (in the order of their importance): In the manufacture of synthetic indigo; in the manufacture of hydrosulphite; as a disinfectant, deodorant, and preservative; as a fungicide; in embalming fluids; in tanning leather; and in the manufacture of coated paper and wallpaper.

The domestic output of formaldehyde has increased with the increased demand by resin makers. Production and sales in 1937 were more than double those in 1930. There are three domestic makers, two of which produce methyl alcohol, the raw material. Their plants are located in New Jersey and Oklahoma.

Statistics of production and sales are shown in table84.

Table 84.—Formaldehyde: United States production and sales, in specified years

1Not available.2Not publishable; figures would disclose operations of individual firms.Source: Compiled from annual reports of the Tariff Commission on dyes and other synthetic organic chemicals in the United States.

1Not available.

2Not publishable; figures would disclose operations of individual firms.

Source: Compiled from annual reports of the Tariff Commission on dyes and other synthetic organic chemicals in the United States.

Formaldehyde is produced in England, Germany, France, Czechoslovakia, Italy, Sweden, the Soviet Union, Japan, and Canada. Production data are not available but Germany and England are probably the leading foreign producers. Estimated productive capacity in the Soviet Union is given as 10 million pounds annually; in Japan 6.5 million pounds; in France 4 million pounds; and in Italy 3 million pounds.

Imports of formaldehyde have been negligible since 1920 when 428,444 pounds, valued at $210,191, were imported. There were no imports from 1928 until 1935, when 375 pounds valued at $72 were imported from Canada. In 1936 imports amounted to 20 pounds, valued at $14, from Switzerland.

The United States exports about 5 percent of its production of formaldehyde. Canada is the principal destination of exports, and prior to 1934 Japan was an important market. Table85shows exports of formaldehyde to principal markets, in recent years.

Table 85.—Formaldehyde: United States exports to principal markets, in specified years, 1929-37

1Preliminary.Source: Foreign Commerce and Navigation of the United States.

1Preliminary.

Source: Foreign Commerce and Navigation of the United States.

The competitive situation with respect to formaldehyde is determined largely by the output and price of the raw material, methanol. The United States produces large quantities of synthetic and natural methanol and is a net exporter of that product. Both methanol and formaldehyde are produced in many foreign countries, and foreign production is expanding. Although methanol is now the main, if not the sole, raw material utilized in making formaldehyde, plants for making the latter direct from natural gas, or from petroleum gas hydrocarbons are contemplated or actually under construction. Should such processes develop to an appreciable extent, the competitive situation of the United States may change, but in such case it is unlikely that this country would be so affected as to change its position as a moderate exporter.

Hexamethylenetetramine is a white crystalline powder made by the interaction of formaldehyde and ammonia. It is used in tar-acid resins to replace formaldehyde, though its higher cost has limited its use to small proportions as a finishing or hardening agent. Other uses are as an internal antiseptic in medicine (marketed under trade names such as Urotropin, Cystogen, Aminoform, Urisol, and Cystamin), as an accelerator in the vulcanization of rubber (a declining use), and in artificial cork. During the World War it was used in gas masks as an absorbent for phosgene.

The domestic production of hexamethylenetetramine declined during the depression, but has been increasing in the last few years. Production in 1937, however, was still below that of 1929. Statistics of production are shown in table86.

Table 86.—Hexamethylenetetramine: United States production and sales, 1923, and 1925-37

1Not publishable; figures would disclose operations of individual firms.2Not available.Source: Compiled from annual reports of the Tariff Commission on dyes and other synthetic organic chemicals in the United States.

1Not publishable; figures would disclose operations of individual firms.

2Not available.

Source: Compiled from annual reports of the Tariff Commission on dyes and other synthetic organic chemicals in the United States.

Hexamethylenetetramine is made by two firms in New Jersey and by one in West Virginia. The raw materials utilized are formaldehyde and liquid or anhydrous ammonia. One company makes its own requirements of both, and another makes its own formaldehyde. Most of the production of hexamethylenetetramine is sold, marketed in barrels, drums, kegs, and cans.

Hexamethylenetetramine is made in a number of foreign countries, with Germany probably the leading foreign producer. Exports from Germany declined from 445,000 pounds in 1931 to 182,000 pounds in 1934, the decline being due chiefly to the expansion of production in countries previously large importers, particularly the United Kingdom, Japan, Czechoslovakia, and France.

Imports of hexamethylenetetramine to the United States are shown in table87.

Table 87.—Hexamethylenetetramine: United States imports for consumption, 1923-37

1Preliminary.Source: Foreign Commerce and Navigation of the United States.

1Preliminary.

Source: Foreign Commerce and Navigation of the United States.

Imports of hexamethylenetetramine in 1928 came principally from the United Kingdom, the remainder from Germany. In 1929 they came wholly from Germany; in 1932 and 1933 from Belgium; and in 1934 principally from Canada, with the rest from the United Kingdom. In 1936 Belgium supplied 7,166 pounds valued at $1,368 and Germany 330 pounds valued at $142.

Exports of hexamethylenetetramine are not shown in official statistics. It is known, however, that some has been exported, and that in 1933, at least, exports exceeded imports.

Hexamethylenetetramine is made from formaldehyde and ammonia, of which there are ample supplies in the United States. The market for hexamethylenetetramine is limited, and imports are small. It is made in numerous foreign countries, Germany being probably the principal potential competitor.

Furfural is an aldehyde found in oat hulls, rice hulls, corn cobs, bran, and other farm waste products. Commercially it is obtained in the United States from oat hulls and in the Soviet Union from the husks of sunflower seeds. It is a colorless liquid, boiling at 158° to 162° C. and freezing at minus 38° C. Its principal use is in synthetic resins, of which tar acid-furfural is probably the most important. These resins are used in molding, for impregnating, and in coatings. Furfural is also used as a solvent for cellulose ethers and esters, natural gums and resins, and in the manufacture of derivatives useful as rubber chemicals.

Domestic production is entirely by one firm, located in Iowa. Production and sales statistics are not publishable, but the maker has stated that consumption is in “terms of millions of pounds per year.”


Back to IndexNext