CHAPTER X.

Fig. 20.—Agassiz Tank, for Alcoholics.

If Agassiz tanks are not obtainable, the next best and the cheapest course is to have some large round cans made of galvanized iron, with tops that can be soldered on when the time comes to ship specimens. Wooden kegs are not of much use in collecting, but both kegs and barrels are good enough to use in transporting collections. Many a time I have helped myself out of a difficulty afield by falling back upon the immortal American kerosene can, holding five square gallons, and which goes to the uttermost parts of the earth.

Glass Jars.—In the field I have never found any other sort of a glass jar half as useful and safe as a common Mason fruit jar, varying in size from pint to half-gallon. They are infinitely superior to glass-stoppered jars, and far less liable to be broken.

Preserving Fishes Entire in Spirits.—Having taken all the notes on a fresh specimen that you desire, the next thing is to wash it thoroughly. But "before washing the fish," says Dr. T. H. Bean, "look it over for external parasites; examine the gills and the inside of the mouth carefully, as these are favorite situations. These parasites often furnish a clue to the migration of the fish; remove them if they can be taken off entire; if not, let them remain, and call attention to their presence in your shipping notes. Preserve the parasites in vials or bottles, and provide them with labels, stating from what fish they came, and in what situation they were found."

Many fishes when taken from the water have the entire body and gills covered with a coat of persistent mucus that can be removed only by determined effort. If you have any alum at hand, you can in a moment make up a pint or quart of alum water, which will cut the mucus instantly, and clear it off. Use a stiff brush—a large tooth-brush is the best thing—in cleaning off this mucus, and do not forget to cleanse the gills thoroughly.

Open the abdominal region of every fish by making a generous cut from the vent straight forward toward the ventral fins. Usually the length of the opening should be equal to about one-fifth of the entire length of the fish. If the fish be a large one, it has always been my practice to open the fleshy interior still farther by working through this cut, and detaching the skin from the flesh as far up each side as possible. This gives the spirits immediate access to the entire mass of flesh, and the result is very speedy and perfect preservation without any change whatever in the form or weight of the specimen.

Dr. Bean always directs that the viscera be preserved, to assist in identification, even though it becomes necessary to remove them from large fishes and preserve them in separate jars. When there is no particular reason for their preservation, it is a great advantage to remove them and throw them away. They are—unless of scientific value—an abominable nuisance, and do more to spoil good alcohol than all the rest of the fish.

Fishes that have begun to decompose, and have become offensive, yet are too valuable to throw away, may be disinfected by washing them inside and out with a moderately weak solution of pure carbolic acid and water, or with a solution made by dissolving a tablespoonful of chloride of soda in a pint of water.

For years a very common formula for preservative alcohol has been ninety-five per cent alcohol diluted with one-third of its bulk of water, or, in other words, three parts of alcohol and one of water. If there is any fault to be found with this solution, itis that it is stronger than is really necessary. I have preserved barrels of alcoholic specimens in a solution composed of two parts of proof spirits and one part water, and have never lost a specimen except through leakage. This solution is strong enough to stand considerable deterioration without the loss of its contents.

I have never attempted to collect quantities of alcoholics without an alcoholometer in constant use. This little instrument costs but a trifle, and affords the only reliable means for testing the strength of alcohol. Its use enables the collector to exercise economy in the use of his spirits, and get the maximum benefit from it. Therefore I say, buy an alcoholometer at all hazards, and carry it and a suitable test-glass with your outfit. Test the spirits on your specimens frequently, and you will then run no risks of loss.

Keep a receptacle to use as a receiving and curing tank, into which all fresh specimens are placed, with abundant room for each to undergo the curing process. Every animal contains in its body a heavy percentage of water, which must be, in great measure, replaced by the spirits before the flesh can be preserved from decay. Into the first bath a great quantity of blood and abdominal fluids will be soaked out from the specimen, and it is bound to lose strength rapidly, and also become foul. As long as it remains clean enough to use, keep up its strength by the addition of pure spirits, and in it immerse all specimens until they are thoroughly cured. Give them plenty of room at first, and keep them from settling down to the bottom by putting there a bunch of excelsior, tow, or cloth. While the spirits in a can may be strong enough on top to preserve a specimen, at the bottom, where the animal impurities settle, it may be so weak that anything lying in it would soon spoil. Often the tail of a fish which hangs upright in a jar will spoil while the remainder will be preserved.

After specimens have remained in the receiving-tank for from two to four days, according to size, put them in another receptacle in clean, fresh spirits, still allowing them plenty of room. Finally, when ready to pack up and make a shipment home, wrap each fish separately in a piece of thin, white cotton cloth, just large enough to cover it well, dip it in clean spirits, and without any tying or pinning of the cloths, lay the fishes inyour barrel like sardines in a box, as closely as they will lie without being squeezed. Fill the receptacle full of fishes, head it up, and then pour into it all the clean spirits it will hold.

In order to proceed with the second and third methods of preserving fish specimens, it now becomes necessary to describe a process.

How to Skin a Fish.—Of course, no one aspiring to become a collector of fishes will remain in ignorance of the names of the different fins. And, more than that, before he can prepare even the rough skeleton of a fish he must know what its bony structure is like. On the whole, there is a good deal to be learned about methods in collecting fishes, and as a beginning we must learn how to skin a scale fish. The methods with cartilaginous fishes will be considered later.

The principles with all scale fishes are precisely the same, the only difference being in the greater amount of cold steel and energy required for such great, hulking brutes as the jewfish, and the magnificent tarpon. For convenience we will take a specimen about a foot in length; for example, a striped bass, a pike, or a red snapper.

As is the case with quadrupeds, the left side of a mounted fish is always expected to be "the show side." Lay the specimen upon its left side, start at the vent with a stout pair of sharp-pointed scissors, and divide the skin in a perfectly straight line along the median line of the belly toward the head, stopping the cut when you approach close to the narrow, tongue-like point which terminates between the lower angles of the gill openings. Now reverse the fish, begin again at the vent, and divide the skin with a clean cut through the scales, in a line parallel with the base of the anal fin, and about half an inch from where the scales meet the fin rays. This is really a cut along the side of the fish, as low down as possible, made necessary by reason of the anal fin. Continue this cut straight back to the tail, as shown in the dotted lineg-hin Plate IV.

PLATE IV.How to Cut Open and Mount a Fish.

You will find that the ventral fins are joined together in the flesh by a strong bony arch, called the pubis, and this must be divided through the middle so as to entirely separate the fins. The anal fin-rays must now be cut loose from the interior rays (called interhæmal spines), which are really their bony foundation. The ventral fins must also be cut loose from the pubic bones at the point where they are articulated. Now take the cut edge of the fish skin between the left thumb and forefinger, and with the cartilage-knife carefully cut the skin free from the flesh. Be careful not to disturb the white layer of color pigment which is spread like a silver lining of feeble tin-foil over the inside of the skin. This is what gives the fish its silvery color, and if skinned off or scraped away the skin will look like colorless parchment.Whatever you do, do not disturb that color lining.Proceed with the skinning until the skin has been detached from the entire upper side of the fish. This brings you to where the dorsal and caudal fins are inserted.[6]

Now turn the fish over, and proceed as before, as far as you can go. You presently reach the caudal fin, which must be cut loose from the end of the vertebral column as far back in the skin as possible. When this has been done, the skin and the fleshy body still hang together by the attachment of the rays of the dorsal fin to the interhæmal spines. Cut these apart with the scissors, from back to front, close up to the skin, which brings you to where the vertebral column joins the skull. You will make very short work of that, which frees the fleshy body from the skull. Now scrape away the surplus flesh from the inside of the skin, wash it thoroughly, remove the gills (if they are not to be studied), and lay the skin flat upon its side in your tank of alcohol.

By thus preserving the skins of fishes, instead of whole specimens, a great number of really large specimens can be preserved in a small quantity of alcohol, for at the last they can be packed together, heads and tails, precisely like sardines.

Skinning Cartilaginous Fishes.—Sharks, Rays, etc.—The skinning of a shark or saw-fish calls for no special instructions in addition to the foregoing, except that the long, narrow, pointed tail requires to be slit open along the right side of its upper lobe for a considerable distance. Remember the principle that wherever there is flesh, a way must be made so that it can be removed, or at least reached from the inside by the preservative. Of the skull, nothing is to be left attached to the skin

except the jaws. The skeleton is wholly of cartilage instead of bone, and is easily cut through.

The extremely flat, circular-bodied ray, also with a cartilaginous skeleton, must be opened on the underside by two cross cuts at right angles to each other, one extending from mouth to tail, and the other from side to side. The fin rays are very long stems of cartilage, set so closely together as to form a solid sheet of cartilage extending from the thoracic skeleton out to the extremities of the fins, which taper out to nothing. The thoracic skeleton gives shape to the body of the ray, particularly the back, and it must be left in place, with the skin of the back attached to it. Cut through the fin rays where they join the body, and this will enable you to skin down each side of the fish until you get so near the outer edge there is no longer any flesh. Stop at that point, cut the flesh away from the fin rays, and cut away as much of the fin rays themselves as you please.

Clear out all the flesh and preserve the skin in a very strong solution of salt and water (what is known to chemists as a "saturated solution"), or in alcohol if you have it to spare.

Preparing Rough Skeletons.—In about seven cases out of ten, it is a far easier and more simple matter to rough out, clean, and mount the complete skeleton of a fish than the uninitiated would naturally suppose. A few fishes, such as the shad, have more bones than the law allows, and the preparation of a complete skeleton thus becomes a practical impossibility. Fortunately, however, most fishes are more reasonable in the matter of bones, and to these we direct our efforts.

First and foremost, study the bony structure of a typical scale fish, learn what its principal parts are, and how they are articulated. Learn how the ribs lie, and how a row of slender, riblike bones called appendices, or epipleural spines, are attached to the true ribs, and at their outer extremitiestouch the inside of the skinalong the lateral line of the fish. If you will take a good-sized perch as your first subject, you will not be troubled with any osteological extras, and the process will be as follows:

Lay the perch upon its side, and with a sharp scalpel cut away the skin from the whole of the exposed side. Remove all the viscera. By careful examination, ascertain the exact location of the ribs, and particularly the row of epipleural spinesattached at the upper ends of the former. With a broad, flat bone-scraper, or your knife-blade if you have nothing better, begin at the lateral line of the fish, and work toward the top of the back, taking the flesh away in chunks as you go. In a very short time the vertebræ and the interhæmal spines are exposed, and with a narrower bone-scraper the flesh is easily removed from them.

Now turn the fish around, and with great care cut and scrape the flesh away from the ribs and the epipleural spines. Do not on any account detach the latter from the former, but at this stage leave them attached to each other by a thin strip of flesh for their better protection.

Do not separate the ventral fins by cutting through the pubic arch, but with your small, curve-ended bone-scraper remove the flesh from the angular recesses of these bones, and leave the anterior end of the pubic arch attached to the coracoid. Next, pick out the flesh from around the base of the pectoral fin, remove the eye from its socket, and whatever flesh the skull contains. Thus does the bony structure of one entire side stand revealed. The gills are of course to remain in place, as the skeleton would not be complete without them.

There is but one thing more to add. In treating the other side of the fish in a precisely similar manner, care must be taken to not disturb the attachment of the interneural and interhæmal spines which join the dorsal and anal fin rays to the processes of the vertebral column.

Having thus denuded the fish of its flesh, lay the skeleton in a pan of water, and with a moderately soft tooth-brush, or nailbrush, brush it carefully to wash away all blood and mucus. If the bones are full of blood (which is very rarely the case), the skeleton must be soaked in clear water for an hour or two, or longer if necessary, to soak out the blood, so that it will not dry in the bones and permanently disfigure them.

Rough skeletons of fishes may be preserved in alcohol, but for many reasons it is much the best to dry them. Poison them with dry arsenic;do not put upon them either salt, arsenical soap, or alum, hang each one up by the head, and see that it dries in good shape. The pectoral fins should lie well down upon the ribs for mutual protection.

Sponges.—A live sponge is simply a vast colony of protozoananimals, each member of which lives an independent existence, but all are at the same time mutually dependent upon each other. The sponge of commerce, and the "cleaned" sponge of the museum collection is, like a branch of coral, merely the skeleton of the living aggregation. A live sponge is a dark colored, heavy, tough gelatinous mass, cold and clammy to handle, quickly offensive if left in the open air, and utterly useless until "cleaned," or rid of its mass of animal matter. The skeleton of a sponge may behorny, like that of the useful sponges of commerce;silicious, like the marvellously beautiful framework of the famous glass sponge of the Philippine Islands (Euplectella); orcalcareous, like the curious littleGrantia, which looks like a miniature bouquet-holder, with a frill of spines around its open end.

Owing to the extreme scarcity of sponge collections, very few persons know how great a variety of forms, and what really remarkable forms, exist no farther from home than the waters that wash the coast of our own beloved Florida. I once had the pleasure of collecting no fewer than sixteen distinct species on the beach between Biscayne Bay and New River Inlet, some of them of remarkable form, and all of them nicely cleaned for me by old Ocean.

Of course, Isearchedfor sponges, and found many a fine specimen buried almost out of sight in the sand,—but what glorious fun it was, to be sure! There I obtained the large, coarse "basket sponge" (Hirvina campana), a hollow, inverted cone, often capable of holding a pailful of water; the remarkable finger sponge (Tuba vaginalis), which forms clusters of upright,hollow cylinders; a large cylindrical sponge of a rich brown color, and beautiful wiry texture, calledVerongia fistularis; and sponges that were like trees, like interlocked deer antlers, and what not.

Professor H.A. Ward's last catalogue of invertebrates enumerated forty-three species of sponges that were on hand when the list went to press. Of these, the largest specimen was a huge Neptune's cup (Paterion neptuni), four feet in height, and shaped like a gigantic goblet, which came from the neighborhood of Singapore.

Therefore, I say, when on the seashore, be on the lookout for sponges. If you can find them on the beach ready cleaned and dried for you, so much the better; but if you get them alive, the soft animal matter must be macerated and washed away, just as you would macerate the flesh from a large skeleton. Soak them in fresh water for a short time to macerate the soft matter, then wash it out in salt water, and keep this up until the sponge is at last clean.

Corals.—The bleached white coral cluster of the cabinet is, like the sponge, only the skeleton of its former self. When it was forcibly torn from its foothold at the bottom of the sea it was covered with living coral polyps, which gave it the color which is peculiarly its own. Some species, notablyMadrepores, when first taken from the water look like colored glass. The main branches are of a yellowish-brown tint, shading toward the tips to the most delicate and beautiful bluish purple. There is no way to preserve these colors, because they are due entirely to the presence of the living polyps. When those delicate organisms die, as die they must, the color vanishes, and if not cleaned and bleached, the coral assumes a dead, smoky brown appearance, suggestive of dust and dirt.

Therefore it is best to clean and bleach your corals at once. This requires a little time, but the process is "so simple a child can use it." Small specimens can be cleaned quickly by washing them in dilute muriatic acid, and afterward in clear water to keep the acid from going too far, and then placing them out in the sun to bleach. Large specimens cannot always be treated in this way, and the best plan for wholesale operations is to place the coral on the ground, in a sunny situation, and dashwater upon it daily until the soft animal matter has been washed away, and the wind and sun combined have bleached the specimens to snowy whiteness.

As a general thing, the natives who live within reach of coral groves are in the habit of gathering it in quantity, cleaning it very successfully, and offering it for sale at prices that defy competition on the part of any scientific collector whose time is worth more than fifty cents a day. The best thing the collector can do is to get acquainted with the native fishermen and boatmen, treat them well and pay fairly, and then, if there is anything in the sea that his collectorship wants, it will soon be forthcoming. Thus, instead of the growth of the collection depending upon one or two men, there will be from ten to twenty local experts directly interested in it. I once came to a complete deadlock with my interpreter and three boatmen on the translation of the word "coral." They were Singhalese and Tamils, and coral was worse than Sanskrit to them. Finally, as a last despairing effort, I took a pencil and began to make a sketch of a madrepore. The crowd watched its progress in breathless silence until very soon one appreciative auditor shouted triumphantly,"Koki kalli!"The crowd joyfully echoed it, the mystery was solved, and in five minutes more we were afloat and on our way to seek

"The treasures of the sea,In the mystic groves of coralWhere her spirit wanders free."

"The treasures of the sea,In the mystic groves of coralWhere her spirit wanders free."

The packing and shipping of branching corals is a serious matter. I have tried every way I could think of, and have seen others do the same, and am firmly convinced that no matter how the largebranchingclusters are packed, they arebound to get somewhat broken anyway! Of course, if you care to travel with them and see to their handling at every transfer, that is another thing, but who can do that? The trouble is that the individual branches are so very heavy for the diameter of the stems next the base, a sudden jar causes them to snap in two by their own weight. But then corals are very beautiful, very interesting, and no matter though they are troublesome, we must have them.

In packing brain coral, and other compact forms withoutbranches, the principal thing is to wrap them in sufficient soft materials that their surfaces cannot get rubbed, for that would ruin them. Do not pack a large chunk of brain coral without putting a partition across the box to hold it firmly in its own place, no matter how the box is turned. In Ceylon I once took the trouble to divide a large box into twelve separate compartments for the reception of that number of coral specimens.

In packing branching coral, a good quantity of soft, elastic, fibrous material like coir, cotton, tow, oakum, or something similar, is necessary. From first to last, take whatever precautions are necessary to keep your corals from getting filled with dirt and litter. Each cluster must lie on a thick pad of your fibrous material. In order to get downward pressure upon it, to hold it in place without breaking the branches, take some soft paper or cotton cloth, roll up a long, cylindrical pad of cotton or something else, and thrust it far down into the largest opening between the branches, with one end projecting above the top of the cluster to receive and transmit pressure from above. This principle, if properly carried out, will enable the collector to so firmly fix even the most fragile cluster that it is fitted to withstand pretty rough treatment in transit without serious damage.

Star-fishes.—When star-fishes are first taken from the water their arms are pliant, but after a bath in alcohol they become perfectly rigid. If left to themselves when first put into spirits, the smaller and more spider-like species will almost tie their arms into double bow-knots, and insist on keeping them so forever after. Since the way to cure a star-fish is to soak it in alcohol for from six to twenty-four hours, according to size, and then dry it flat and in good shape, it becomes necessary to pin the small ones firmly in shape upon thin boards before immersing them, and then they will "stay put." See to it that while in the spirits all your star-fishes, large and small, cure in proper shape, flat, and with each arm flat and extended in the right direction. After removal from the spirits, pin out all those not already fastened upon boards, and then let them dry. I have never found it necessary to poison the spirits, for the reason that dermestes and other insects seem to respect a dried star-fish for his own sake.

Echini.—In all tropic seas the collector is liable to find echinoderms, "sea-urchins," "sea-eggs," or " sea-porcupines." These creatures are usually spherical in shape, with the mouth underneath, and the internal structure of the animal is covered with a stout, calcareous shell of uniform thickness, which is set all over on the outside with a mass of protecting spines, usually fine and very sharp-pointed, but sometimes thick and blunt. In life the spines are movable, and by means of them the creature walks, or clings to its native rocks most tenaciously.

The best time to seek echini is at low tide, and the best places are those where the shore line is composed of rough rocks, scooped out here and there into shallow pools. Take with you a large basket, a large screw-driver, if you have one, or failing that, a knife with a long, stout blade. Wear old clothes, unless you can afford to spoil new ones. When the tide is low you can wade around in the now peaceful pools, and find the echini in the sheltered crevices, clinging to the bottom, or the perpendicular sides of the rocks, but always under water.

To dislodge them, the knife-point or the edge of the screw-driver must be neatly and skilfully worked under the victim far enough to enable you, with the exertion of some force and a steady pull, to pry him loose from the rock, whereupon he becomes your lawful prey. Next comes the cleaning process. With a small knife, detach the skin of the mouth parts from the edge of the round hole underneath, in the middle of which the mouth is situated, and remove all fluid and fleshy matter from the interior of the shell. That done, wash it out thoroughly. The bony jaws, or "Aristotle's lantern," may also be drawn out through the hole and thrown away—unlessyou happen to be collecting for some one who is studying the anatomy of echini, in which case he must speak for himself.

Having cleaned your sea-urchin, put it in clean alcohol (same strength as for fishes) and let it soak for about twenty-four hours. This will prevent the spines from gently dropping off, like leaves in autumn, when you proceed to dry the specimen. After soaking in spirits, put the specimens out in a shady place to dry. It is a curious fact that all the echini of Ceylon and Malayana lose their spines unless soaked in spirits before drying, whereas those of the Red Sea, the Mediterranean,and the West Indies can be dried without soaking, and the spines will not fall off.

Shells."Living" and "Dead" Specimens.—The first thing that the amateur needs to learn about a shell is that it may be living or dead. As a general thing, what is technically called a "dead" shell is worthless in a cabinet. A live shell is one which has been collected with a living mollusc in it, and then duly cleaned, preserving all its beautiful colors. A dead shell is one in which the occupant died a natural death, has lain and bleached in the sunshine until its colors are entirely gone, and its form also ruined by the weather. Therefore I say, leave dead shells alone, unless it be that you are making an exhaustive collection of the species in a given locality, when a dead shell which is identifiable is as good a record as a living one. Where a shell is actually devoid of color, a dead shell is as good as a living one, provided it is collected before its edges or its angles have been rounded by exposure to the sun and rain. Many a living shell has an epidermis, the same as an animal, while a dead shell has none.

When shells are obtainable, who can resist the impulse to gather them? The man, woman, or child who is proof against the seductive powers of the beautiful and many-colored shells of the seashore "is fit for treason, stratagems, and spoils." Next to the pleasure of collecting shells one's self is that of witnessing the keen delight of children and ladies in gathering these beautiful treasures of the sea. If you have never yet had an opportunity to stroll along the smooth sands of an ocean beach at low tide, and gather your basketful of beautiful shells, curious sponges, bits of coral and coralline, while your soul is soothed by the rhythmic music of the surf, then I pity you. You have indeed yet something left to live for.

Hooker has divided the shell-bearing mollusca into three great groups—land, fresh-water, and marine—and the shell collector will do well to study each one separately.

Land Shells.—These are most abundant in the tropics, less so in the subtropical regions, and are rare elsewhere. They are seldom found where moisture is not abundant. In the tropics they are to be collected all the year round, but in the temperate zone it is best to collect them in the autumn, when they arefully grown. It is impossible, without devoting too much space to this subject, to give more than a general idea of the situations in which land shells are found. Some species are to be looked for on trees and bushes; others on rocks and stone walls; others again on the ground, and others again on the blades or in the roots of grass. In the tropics it is particularly desirable to watch for the beautiful land snails, which are almost strictly arboreal in their habits. They are to be found on the trunks and leaves of palms, the banana, myrtle, orange, and scores of other trees and shrubs.

Fresh-Water Shellswhich inhabit clear and shallow water are easily gathered with a stout hand-net. Where the water is murky, or so deep that the bottom cannot be seen, it is necessary to have an instrument like an iron-toothed rake, with the teeth set closely together, to be used as a sort of clam-dredge, raking the bottom and gathering up the mussels. In our own country the amateur collector will doubtless be surprised at the number of species ofUniowhich will repay the labors of a diligent collector.

Marine Shells.—If you would have one of the jolliest picnics in the world, don a suit of old clothes, equip yourself with a stout basket, a screw-driver with a long handle, and a case-knife with a thin blade,

"Hang up thy lute and hie thee to the sea."

"Hang up thy lute and hie thee to the sea."

Go before the tide is at its lowest ebb, and search in the vicinity of the largest boulders,[** bowlders] under ledges of rock, under loose stones, in shallow pools, in bunches of sea-weed, in fact everywhere along the shore. In these various places you will find cowries, ormers (Haliotis), chitons, limpets, and more others than I could name in an hour.

When wading in shallow water it is well to look out for the pestiferous sting-ray, and not step on one unawares, lest you find its caudal spine driven through your foot like a poisoned arrow. But, fortunately, they seldom trouble the collector. With the limpets, chitons, and other small shell-fish, you must work the point of your case-knife under them, and with it gradually detach them from the rock. Where such prey is plentiful, the collecting of it is grand fun, I assure you.

There are many bivalves which burrow or bury in the mud or sand, which must be dug out with a stick or trowel, while other species, still more enterprising, bore into wooden piles, and even into rocks! These, of course, can be collected only with the aid of a hatchet, or chisel, or stone-hammer, as the case may be. If you are on the Florida coast you will do well to search over the coral reefs and the mud flats at low tide. On the latter you will find conch-shells, pinnas, and numerous other species. I once made a very successful search for pinnas by wading around barefooted on a sandy flat on which the receding tide had left the water but little over a foot in depth. These shells were always found standing up in the sand, at bay, with their sharp edge up. By going barefooted as I did, you find the shells by stepping on them and cutting your feet, which is to be accomplished, however, without hurting the thin edge of the shell. A cut foot will heal up, but a broken shell never will.

Cleaning Shells.[7]—In gathering shells, particularly the marine species, many of them will be found covered with a thick, leathery, and persistent epidermis, and many others will be so buried under rough, limy accretions that their own fathers would scarcely recognize them. However beautiful such shells may be when cleaned, it is no child's play to clean them and get them ready for the cabinet. To any one willing to learn, the processes are really very simple; and what manual labor under the sun could be more interesting to a lover of natural history?

Removing the Animal.—With a large shell, such as a conch, the first step is to remove the living animal. In some cases I have accomplished this by hooking a fish-hook into the head of the animal and hanging it up so that the weight of the shell constantly pulling down on the animal would cause it to gradually relax and draw out. An excellent plan is to place the shell for a few days in fresh water and macerate the animal sufficiently that it may be drawn out. Fortunately the great majority of molluscs are very small, and it is possible to prepare them for

the cabinet without the necessity of removing the animal. Mr. Greegor's plan is to soak the shell in alcohol for a few days, to completely preserve the animal, and then dry it thoroughly to expel all the water from it. When that is done, the final step is to pour into the shell, through a rubber tube, a little thick varnish, or hot beeswax mixed with a little vaseline to make it flow readily, and thus cover the dried-up remains of the animal with an impervious coating which does away with all odors which might otherwise arise from it. This part of the process, be it understood, is to be attended toafterthe cleaning and polishing has been done.

Removing the Epidermis.—The epidermis is so tough and horny, and sticks so tightly to the shell that tools cannot remove it successfully and it must be done chemically. Make a strong solution of chloride of lime and water, by putting into a jar one-fourth its bulk of chloride of lime, two-fourths water, and leaving the remaining fourth part of the space for the froth that will rise. Soak shells in this pasty solution for a short time, and it will eat the epidermis off.

Removing Limy Accretions.—The bulk of all these thick, irregular coatings must be removed with steel tools—file, scraper, knife, sand-paper, or hammer—to suit each individual case. The tool that Mr. Greegor most relies upon is a small and very light hammer, made especially for him, which is shaped somewhat like a square-headed tack-hammer, with the pointed end drawn out to a blunt cutting edge, like the edge of a cold chisel. With this cutting edge a skilful hand can peck the lime or coral incrustations off a shell very neatly, and without injury to the surface of the specimen. Acid will not remove the thick, limy deposits, and they must be cleaned off by mechanical means.

After the bulk of the limy deposits have been removed by means of tools, the shell usually has a dull, lustreless appearance, and appears to require something that will remove the remaining particles of lime, impart to it a permanent gloss, and bring out its beautiful colors. Fortunately there is a way to do this to perfection, which consists in dipping the shell in a weak solution of muriatic acid and water, boiling hot. The strength of this solution must vary according to the nature of the specimen. For thick and strong shells, which by their solid character youare assured cannot be damaged by a maximum of acid, put 3 parts of muriatic acid in 10 parts water. For thin and delicate specimens, use 1 part acid to 10 of water, varying the amount of acid from 1 part to 3, as your experience will soon teach you is most desirable. Put this solution in a porcelain kettle, bring it to a boil, and then with a pair of wooden tongs or forceps dip each shell into it and hold it there for a second or more, as may be necessary. On removing it, wash it in clear water and dry it, and if its appearance is not satisfactory dip it again.

For very delicate shells, having a thin surface color, such as theCypreasandOlivias, or such shells as have very delicate sculpture, the weaker solution is best. When it is desired to cut more on one part of a shell than another, the acid may be applied with a brush, finishing with a quick dip. Never allow any of the acid solution to remain on the shell, or it will eat into it and dull the lustre. For fine work, dry each specimen with a towel.

Shells which have on their exterior a great deal of horny or organic matter, such asHaliotis,Ostrea,Lingula, and a few others, work badly in acid, and require to be brushed constantly while cutting, to remove the organic matter, for the reason that the acid acts only on the lime of the shell.

Chloride of lime and muriatic acid are both very volatile, and when not in use should be kept in tightly closed vessels.

Identification.—Positive and unmistakable identification ofthe builder and occupant of a nest is quite as imperative on the collector as the gathering of the nest and eggs themselves. There must be no guess-work on this point, for eggs without a pedigree are often valueless. If an oological expert is within reach—one who can tell to a certainty the species of doubtful eggs, or if the eggs themselves are so characteristic and unique in their shape, size, and markings as to render their certain identification an easy matter, then is it safe to take home a "find" without finding the owner.

It is only the fledgling oologist who needs to be told that in all cases of doubt regarding the identity (i.e., the exact species) of a nest-builder, the only proper course is to collect the bird as well as the nest and eggs. This may often involve long watching, but it relieves the result from all uncertainty. No collector should think of going afield in quest of nests and eggs without taking his gun along. In South America, the only way in which I could get possession of the wonderful pensile nest of the crested cacique was by cutting off the limb to which it hung, with a rifle bullet.

In all timbered regions the collector must have a pair of good climbing-irons, such as telegraph linemen use, to enable him to climb with ease the nest-bearing trees that would otherwise defy him. It was before the days of climbing-irons that aspiring Sir Walter Raleigh wrote for the fair eyes of Queen Elizabeth,

"Fain would I climb, but that I fear to fall,"

"Fain would I climb, but that I fear to fall,"

to which his august mistress promptly responded with a piece of wisdom which every young oologist will do well to paste in his hat:

"If thy mind fail thee, do not climb at all!"

"If thy mind fail thee, do not climb at all!"

Very good and serviceable climbing-irons can be obtained of Mr. Frank B. Webster, 409 Washington Street, Boston, for $3.50 per pair. Mr. Webster also keeps, at his very complete naturalist's supply depot, nearly every requisite that an oologist or taxidermist requires, except one thing that is indispensable in hunting and lofty tree-climbing,—nerve. Every collector or taxidermist should send Mr. Webster ten cents for a copy of his illustrated catalogue, which of itself is probably the finest of its kind ever issued, and in which all naturalist's and oologist's supplies are pictured, described, and priced. The following are the principal articles needed to make up a proper outfit for an egg collector, and Mr. Webster's prices thereon:

Collecting Nests.—Our boys pay too much attention to collecting eggs, and not half enough to nests. To the average observer who takes an interest in perusing the pages of Nature's story-book, a fine collection of bird's nests is a joy forever. It is ever ready to unfold chapter after chapter of bird lore, tales of wonderful intelligence and divine ingenuity in adapting means to ends, and stories galore of difficulties surmounted by the cunningest little architects in the world. Notice, if you please, the bewildering variety of materials employed in the construction of these bird-dwellings, great and small. Why, even the human architects of our own time are completely surpassed by the Baltimore oriole, the marsh wren, and the humming-bird.

There is food for thought and cause for admiration in a really good collection of bird's nests. To me there is much more of interest in any nest than in the eggs it contains. The latter is a plain and simple product of nature, to which the bird is merely an interested party to circumstances beyond its own control. The former is an exhibit of the instinct, intelligence, reasoning powers, industry, and mechanical and artistic skill of aliving creature of a high order. The nest is what the bird makes it, and it often tells quite a story. Boys, let us give eggs and skins a rest, and make a fine collection of nests,in situ, as the rockologists say. We can do this after the nestlings have flown, if you like, without stealing any eggs or shedding any innocent blood. After the young have tumbled out, the nest is a back number, and becomes your lawful prey. Take it, and enjoy it, without remorse over blood that you haven't shed.

Fig. 21.—Bird Nest,in situ.

The most interesting and valuable nests are those that are collectedin situ, or, in other words, in the particular crotch, or bunch of grass, or bush in which the bird placed it. Anything that will show just where a nest was placed by its builder adds immensely to its interest, and increases its scientific value. The accompanying illustration of such a nest in Captain Bendire's collection (Fig. 21), may be taken as an example of how nests of a certain class can be collected and displayed. The section of the sapling was sawn squarely off a few inches below the nest, and screwed (from below) upon a highly polished ebonized pedestal. In drawing this specimen the label was removed in order that no portion of the principal object should be concealed, but Captain Bendire's system of labelling is fully shown in another figure.

The possibilities in collecting and displaying nestsin situare almost endless. Indeed, so far as I have observed, this is a new and very attractive field for the collector, for although I have visited a great many large museums, and in both the New and the Old World have seen many ornithological collections, I have never yet seen a collection of birds' nests which represented a tithe of the possibilities in that direction. Every oologist should have in his library a copy of Rev. J.G. Wood's charming book, "Homes without Hands," which portrays many of the wonders of bird architecture.

Fig. 22.—Wire Standard for Nests.

In collecting nests one must go prepared to saw off branches, to cut sections of grassy earth, to gather up big tufts of grass, and transport all these to some safe destination. Very often it will be necessary to protect a nest by filling its cavity with some soft material, and then with fine thread or wire to wrap it securely to the limb on which it is placed. Or again, it may be necessary to remove a nest temporarily from its resting place, wrap it thoroughly, and transport it separately to the museum, to be put in its place later on.

Most naked nests,i.e., those that have been plucked from their resting-place, require to be wrapped to keep them from gradually falling to pieces. This may be done with fine thread of the same color as the outside materials of the nest, or, what Captain Bendire uses and recommends as being better, the finest kind of wire which, in large cities, can be bought, neatly made up on spools, at five to ten cents a spool. The wire or thread is wound on quite as one would wind thread on a ball, except that the wire must never be allowed to cross the cavity of the nest, which would at once make it conspicuous. Put on only enough winding to hold the nest well together, and distribute it so that the wire will not be noticed when the nest is placed on exhibition.

For the display of naked nests, Captain Bendire uses a very simple but ingenious little standard made of four wires twisted together so as to form an upright stem, a horizontal platform of the right size, with four perpendicular standards to receive and hold the nest. These standards are easily bent to conform to the shape of the nest, and if the upper ends project above the nest they are snipped off with a pair of cutting pliers. The illustration on page 93 (Fig. 22) shows the exact character of the wire standard, and Fig. 23 shows it in use, supporting a naked nest. Captain Bendire's method of labelling his nests is also shown in full. It is to be noted that the locality of the specimen exhibited, and the name of the collector, appears in full upon the label—two features which should never be omitted on a specimen that is of sufficient value to occupy a place in a museum. Nevertheless, by less careful curators both these statements are frequently omitted from labels.


Back to IndexNext