Strassburg Clock and Globe of Conrad Dasypodius, 1574.Fig. 70. Strassburg Clock and Globe of Conrad Dasypodius, 1574.
Fig. 70. Strassburg Clock and Globe of Conrad Dasypodius, 1574.
Peter Apianus (Bienewitz or Bennewitz) (1495-1552) was a native of Leisnig, Saxony.345His earliest education was received in the village of Roschlitz, but at the age of twenty-three he entered the University of Leipzig, where it appears that astronomy and mathematics chiefly claimed his interest (Fig.71). In 1527 he received and accepted an appointment as professor of mathematics in the University of Ingolstadt, and in 1541, for his distinguished abilities, he was ennobled by the Emperor Charles V. In addition to the fame acquired through his mathematical treatises he became widely known as a maker of physical and astronomical instruments, among which were celestial globes. Numerous as appear to have been these globes of his construction, no example at present is known bearing the unmistakable evidence of his workmanship. Clemens, in his description of the Library of the Escorial,346gives us to understand that it possessed at one time one or more Peter Apianus globes, which were probablycarried to Spain by the Emperor himself. It seems probable that a diligent search through public and private libraries and museums in that country would lead to the discovery of some of his globes or mathematical instruments.
Portrait of Peter Apianus.Fig. 71. Portrait of Peter Apianus.
Fig. 71. Portrait of Peter Apianus.
Kepler tells us of an Apianus globe which he saw on a journey from Würtemberg to Gratz, noting that it was so constructed that the stars could be removed at pleasure from the sphere.347Of this particular globe nothing seems now to be known. It is thought hardly probable that the one referred to by Kepler is that fine celestial Apianus globe (Fig.72) belonging to the K. B. Hof- u. Staats Bibliothek of Munich. There seems to be scarcely a doubt that this, as its companion, a terrestrial globe, is the work of the son Philip. Repeated inquiry has not resulted in obtaining definite answer as to the dimensions of these globes nor a description of such detailed features as would here prove of interest. The photographic reproductions show them to be of remarkably artistic workmanship. Each is furnished with a heavy meridian circle, and with a similarly designed horizon circle supported by a semicircle which rests upon an elaborately constructed base.348The history of these globes seems not to be known, as stated above. We have an inventory of the Herzoglich-Bayrische collection of mathematical and astronomical instruments, prepared by the Jesuit, Fickler, which contains, page 147, the following entry relative to the globes to be found therein: “Folget die Tafl. Nr. 34. Daraus stehen drey grosser hulzinen Globi Coelestes, davon d. ain in einem messingen gestell, mit ainem messingem zodiaco, der dritt von mettall. 1777. Sechs grosser Globi terrestres von Holz. mit mettallinen zodiacis 1778. Zwei claine Globi der ain Coelestis der ander Terrestris, auf gedraxelten holzen fuesslen.”349“Next in order is table No. 34. On this there stand three large celestial globes of wood, one of which has a base of brass, with a brass horizon circle, the third of metal, 1777. There are six large terrestrial globes of wood, with metal horizon circles, 1778. Two small globes, onecelestial, the other terrestrial, resting on turned wooden feet.” It will be noted, however, that there is no mention therein of Apianus globes. Kobalt tells us that Apianus “vertigte allerley mathematische instrumente, als Cosmolabium, Globos duos Caeli et Terrae maximos, und Planisphaerium,” “constructed many kinds of mathematical instruments such as astrolabes, two large globes celestial and terrestrial and planispheres.” This same author gives us the information that “in der k. b. Central-Bibliothek befinden sich zwei grosse, von Apian ververtigte und von Johann Mielichs gemalte Globi Coelestes et Terrestres, worauf folgende Inschrift zo lesen ist, ‘Illustrss Seren. Principi ac Domino D. Alberto Com. Pal. Rheni. Sub. Inf. que Bar. Duci Domino suo Clementissimo Globum hunc geographicum cels. ejus jussu juxta veterum ac recentium Historiographorum Observationes Traditionesque Descr. et Ded. Philippus Apianus M. D. Anno Salutis 1576.’” “In the K. B. Central Library there are two large globes celestial and terrestrial constructed by Apianus and painted by Johan Müelichs, on which is the following inscription: ‘To the Most Illustrious, Most Serene Prince and Lord D. Albert Count of the Rhenish Palatinate, etc. His Most Clement Lord this celestial globe by his command, fashioned according to the observations and traditions of both ancient and modern historiographers dedicates Philip Apianus in the year of Salvation 1576.’”350It seems, therefore, probable, from the above citation, that it was the son Philip who constructed these Munich globes. It was in the year 1552 that he followed his father as professor of mathematics in the University of Ingolstadt and like his father soon won distinction for himself as cartographer, producing his famous Bayrische Landtafeln as his first work of note. It seems further probable that shortly after this work he became interested in globe construction, in which line of activity he made for himself a place of first rank.
Globes of Philip Apianus, 1576.Fig. 72. Globes of Philip Apianus, 1576.
Fig. 72. Globes of Philip Apianus, 1576.
The celestial globe referred to above has represented onits surface the several Ptolemaic constellations, exquisitely colored, and the stars have been given names in Greek, Latin, and Arabic. The terrestrial globe map is considerably injured, especially in the polar regions, but the continental and other outlines are all clearly traceable. Three large compass roses, of ornamental pattern, are placed along the Line of Demarcation. The coast outline of Europe is, in the main, well done, as is that of Africa and the New World. The Nile and the Niger rivers no longer find their source in the same common lake. The representations of the far eastern regions indicate that Apianus had a fairly good knowledge of the records of the Holland explorers.
A fine example of the metal worker’s art of this period may be found in a silvered bronze celestial globe (Fig.73) belonging to the Morgan collection recently placed in the Metropolitan Museum of New York. On the meridian circle we find the maker and date legend reading “Gerhard Emmoser, sac. caes. meis horologiarius, F. Viennae 1579.” The sphere, which can be opened on the line of the ecliptic, has a diameter of about 13 cm. Within has been placed a delicately constructed mechanism by means of which the sphere is made to rotate once in twenty-four hours on its equatorial axis, the key winding stem for this machinery projecting at the north pole through an engraved hour plate with pointer. With its meridian and its horizon circle it is adjusted to make one revolution in three hundred and sixty-five days. A stationary ring, about 2 cm. in width, which closely surrounds the horizon circle and in its same plane, fits the instrument as a calendar. This ring has engraved on its surface crossing lines, one for each day of the year, to each month there being assigned its proper number of days or lines, as, for example, “October habet 31 dies,” “November habet 30 dies.” As the sphere with its circles revolves, a pointer attached to the horizon circle indicates on the calendar ring each day of each month in succession. The surface of the sphere is exquisitely engravedwith representations of the several constellations, the name of each being given in Latin. The instrument is made to rest upon the back of a winged horse in silvered bronze, this in turn standing upon an artistic circle base. It is well preserved and is a choice example of such instruments, which in this period were in particular favor.
Silver-Gilt Globe of Gerhard Emmoser, 1573.Fig. 73. Silver-Gilt Globe of Gerhard Emmoser, 1573.
Fig. 73. Silver-Gilt Globe of Gerhard Emmoser, 1573.
Carlus Platus, a maker of metal globes in the last quarter of the sixteenth century, is known to us through two fine extant examples of his work.351The first of these, inscribed “Romae a. 1578 Car. Pl.,” may be found in the Museo di Strumenti Antichi of Florence, having been added to this collection by its former distinguished director, F. Meucci. The horizon diameter of this armillary sphere is about 21 cm. It has been described as one beautifully constructed of brass and mounted on a carved wooden base. The circle representing the course of the sun and that made to represent the course of the moon are made to revolve on the axis of the ecliptic, and a small ball, of recent construction, representing the earth, is placed in the common center of the armillae, and is made to revolve on the axis of the equator. A dial attached to the axis of the earth below the meridian circle marks the hours, which are engraved on the Arctic polar circle. A few points marked on the colures indicate the position of the principal stars. All of the circles have been carefully graduated. On that one representing the zodiac have been engraved the names of the months and the pictures of the several zodiacal figures, while on the horizon circle are the names of the principal winds in Greek, Latin, and Italian.
A second globe of Platus, signed “Carolus Platus Romae Anno 1598,” may be found in the Biblioteca Barbarini of Rome. It is composed of two hollow brass hemispheres, making a ball 14 cm. in diameter, which is surrounded by a brass meridian and a brass horizon circle, the whole resting on a tripod base. It is a fine example of an early metalengraved globe, the representation of the figures of the constellations in particular being done in a very superior manner. On the surface of the sphere the equator, the ecliptic, the equinoctial, and the solstitial colures are represented. The history of the globe seems not to be known, but it is probable that it came to the Barbarini Palace in the time of Pope Urban VIII, who, before filling his pontifical office, was known as Maffeo Barbarini.
Of the celestial globes constructed by George Roll and Joannes Reinhold three examples are known.352One of these may be found in the collection of the Mathematical Salon of Dresden (Fig.74) one in the Osservatorio di Capodimonte of Naples and one in the K. K. Hofbibliothek in Vienna. The Roll and Reinhold globe of the Dresden collection, bearing the inscription “Georg Roll et Joannes Reinhold elaborabant Augustae 1586,” is an exceedingly interesting instrument, unique in the manner of its construction and remarkably well preserved. It is of brass, having a diameter of 36 cm., and is furnished with numerous movable circles, a large meridian circle surmounted with an armillary sphere, and a brass horizon circle on which are marked the old and the new calendars, the names of the twelve months and of the important holy days. The globe base, very artistically wrought, rests upon four griffin’s feet, between which a small terrestrial globe 10 cm. in diameter has been placed, this having been furnished with its own independent support. The large celestial sphere is furnished with a clocklike mechanism by means of which it is made to revolve in representation of the diurnal motion of the heavens. According to existing records it was purchased in the year 1593 by order of the Elector Christian II, and by him was presented to the Academy of Arts of Dresden. Zeiller tells us that this and the Heyden globe were those “with which the Prince Elector Augustus was accustomed to amuse himself.”
Globe of George Roll and Johannes Reinhold, 1586.Fig. 74. Globe of George Roll and Johannes Reinhold, 1586.
Fig. 74. Globe of George Roll and Johannes Reinhold, 1586.
It has not been possible to obtain a description of the Vienna globe. It appears that it was constructed in the year1588, and that, like the Dresden example, the celestial sphere is made to revolve by means of clockwork.
The Roll and Reinhold globe belonging to the Osservatorio di Capodimonte, according to Fiorini, is one especially worthy of mention.353This is described as a hollow ball having a diameter of about 21 cm. The sphere itself is made of copper, the remaining parts of gilded brass. The horizon circle is composed of several overlapping brass plates. A clockwork mechanism is supplied, by means of which the sphere and certain circles may be made to revolve. The surface of the copper sphere is artistically engraved, having numerous circles representing the ecliptic system with its parallels and meridians, and the equatorial system including its five zones. The Ptolemaic constellations are represented, the figure of each being engraved in outline with the name in Latin. The several stars are not named but near each is an engraved number to indicate its magnitude, these numbers ranging from 1 to 6. Nebulae are distinguished by small circles, and the Milky Way by numerous dots. The meridian circle, in which the sphere revolves, has the usual graduation from 0 to 90, but has in addition a climatic graduation designed “Climata ex Ptolomeo,” and a division into zones called “Torrida Zona,” “Zona habitabilis temperata,” and “Frigida zona.” On the convex surface of the horizon circle we find engraved the names of the four cardinal points, and on the upper surface of this circle are engraved the Julian and the Gregorian calendars, the names of the saints, the dates on which the sun enters the various signs of the zodiac, and the ancient names of the principal winds. The globe mountings, all of brass, are artistic and well preserved. Like the Dresden example it rests upon a four-branched support, the extremities of each branch representing the claws of the griffin. Including the base, the instrument is 43 cm. in height. It seems not to be known when or how this globe, constructed in Augsburg, found its way to the NaplesMuseum, where it is treasured as one of the choicest of ancient astronomical instruments.
Tycho Brahe, the great Danish astronomer (Fig.75), was a native of Knudtstrup near Helsingborg, born in the year 1546.354The care of his early education was assumed by an uncle, George Brahe, who in the year 1559 sent him to the Academy of Copenhagen with the intention of fitting him for the legal profession. Three years later we find him registered at the University of Leipzig, then famous for its department of jurisprudence. Like many another of the world’s great men for whom, in the days of his youth, interested relatives or friends have chosen a life career only to find in later life the choice not well made, Tycho’s bent was not for the legal profession but for science, that is, for mathematics and astronomy. While yet a student in Copenhagen an eclipse of the sun which occurred August 21, 1560, interested him greatly, and here we seem to find the beginning of that great future which was to be his. Forbidden by his schoolmaster to give his time to a study of the stars, in the quiet of the night he would secretly betake himself into the open, there to watch with unaided eye the movements of the heavenly bodies, or to follow these movements as best he could with the assistance of a simple astronomical circle and a small celestial globe which he had been able to purchase. It probably was in his Leipzig days that he became intimate with Bartholomaus Scultetus (Schultz), lecturer on mathematical subjects, and by him was encouraged to pursue further his astronomical studies. Among the first practical results of his activities in this field we have his correction table for readings with the Jacob staff. The death of his uncle in the year 1565 occasioned his return to his native country, but Germany offering him special opportunities for continued study in his favorite field, we soon find him in Wittenberg, later in Rostock, where in a quarrel with a peasant he lost part of his nose and thereafter to the end of his days wore a silver substitute. In 1567 we find himin Lauingen engaged in the study of astronomy with the distinguished Cyprian Leowitz, in 1568 in Basel with Peter Ramus, and for two years thereafter in Augsburg with the brothers Johan and Paul Hainzel, with whom he constructed a large quadrant having a radius of seventeen and one half feet. While in Augsburg it appears that he began the construction of a celestial globe four feet in diameter, but there is some uncertainty as to his completion of this work. A short but unhappy sojourn in his native town followed his years of congenial study in Germany, and we soon learn of his visit to the observatory of Landgraf Wilhelm of Cassel, an event of great significance for him. His travels carried him to other cities of Germany, including the city of Regensburg, where he witnessed the coronation of the Emperor Rudolf II. Landgraf Wilhelm, a Maecenas of wide repute in his day, had been greatly impressed with the abilities of Tycho, and he urged upon the Danish King Frederick that he should make suitable provision for the further astronomical studies of his distinguished subject, which suggestion the King generously met. In the year 1575 the documents were signed and sealed granting to Tycho full possession for life of the little Island of Hveen, lying between Seeland and Schonen; in addition he was furnished with all the means necessary for the erection of an observatory and the adequate equipment of the same (Fig.76). The Uranienburg, as his observatory was called,355became a great center for astronomical studies, and students came to him from various European lands, among these being Arnold van Langren, Willem Jansz. Blaeu, and Longomontanus (Christian Severin of Longberg). The death of his patron, King Frederick II, in the year 1588 brought misfortune to Tycho, in so far as his life and studies on the Island of Hveen were concerned, since the succeeding ruler, Christian IV, was but little interested in the further promotion of astronomical science. Enduring court intrigue for nine years, he determined, in the year 1597, to leave the scenes of his remarkable successes, andafter a brief sojourn with Count Henry of Ranzau near Hamburg, he accepted an invitation from the Emperor Rudolf II to become imperial astronomer and counselor at Prague. Thither he went with his family in the year 1599, at the same time taking with him those astronomical instruments which had served him in his studies in the northern island home. While preparations were under way for the erection of a new observatory for him he died in the year 1601. From Tycho’s heirs the Emperor Rudolf purchased his instruments and manuscripts, the latter passing into the hands of Kepler, his successor at the Imperial Court, but as to the fate of his instruments little seems to be known. Kästner tells us that in 1619, during an uprising in the city of Prague, some of these were destroyed while others were carried away, and at present only an iron quadrant, once in his observatory, remains in that city.
Portrait of Tycho Brahe.Fig. 75. Portrait of Tycho Brahe.
Fig. 75. Portrait of Tycho Brahe.
Interior of Tycho Brahe’s Observatory at Uranienburg.Fig. 76. Interior of Tycho Brahe’s Observatory at Uranienburg.
Fig. 76. Interior of Tycho Brahe’s Observatory at Uranienburg.
His large brass celestial globe, six feet in diameter, was carried back to Copenhagen in the year 1623 by King Christian’s son, Ulrich, and there it was carefully kept until the year 1728, when with the castle in which it had been placed it was destroyed by fire.
Recalling the far-reaching influence of Tycho Brahe on astronomical studies and on celestial globe making, it cannot be without interest to quote here his own reference to his great globe, wherein he describes its construction.
“This globe,” he says,356“which is a very large one, we have made with great care, but with none the less than we have employed in all of our others. The interior is of wood with many intersecting circles and special supports, strengthened here and there from the center, and being then fashioned into a spherical shape. As for its parts of wood, these were made at Augsburg in the year 1570 before I returned to my native land, as I found there a capable workman, having sought for a long time elsewhere in vain for such an one. There, on account of its size, which made it difficult to move, it had remained for five years, when Ireturned to Augsburg; this was in the year 1575 as I came out of Italy on my way to Ratisbon to be present at the coronation of the August Emperor Rudolf II, when I found the globe had been finished some time previously. But its shape (sphericity) did not altogether satisfy me, moreover certain cracks could be seen. In the following year, and not without much difficulty I had it carried to Denmark. There the cracks were filled in and the sphericity made more nearly perfect by laying over the surface about one hundred skins. There followed a testing for a period of two years to ascertain whether the cracks would reappear after two summers and two winters. When, after this test, I saw that it retained its sphericity, I covered it over with thin brass plates of uniform thickness without mishap, and this I did with such care and skill that you would be led to say the globe was made of solid brass, the joinings of the plates being scarcely visible. I next fashioned it into a perfect sphere and marked thereon the zodiac, and the equator with its poles, also the degrees each of sixty minutes by engraved lines as we do in such work. I then left it for the space of one year, as there was some doubt after putting on the brass plates as to whether the globe would retain its sphericity in winter and in summer. When it had been sufficiently tested not only did I indicate the circles of which I have spoken but also all the stars of the eighth sphere I represented in their proper places, as many stars as were to be seen in the heavens, and I increased their number more and more in succeeding years up to 1600. Thus I with purpose added all the stars visible to the naked eye, in their proper places adapted to the year 1600 which was near at hand. And so there passed nearly twenty-five years from the first work on this globe until it was finished, by the addition of its proper divisions and its stars. This delay, although it might seem tedious, was not without its value; for all things were thus done more carefully and better. ‘Work quickly only if you work well.’ Then the outer circles were fitted to it, that is, a meridian andafter that a horizon circle. This meridian is made of brass, and each degree is divided into minutes, and the horizon has the width of a palm of the hand, being covered with brass having the degrees and minutes marked. The vertical quadrant passing from the zenith to the horizon is of brass.
“The globe rests on a firm base having two iron supports crossing each other, two of which you see on one side and two on the other. These are for the purpose of giving strength lest the horizon of the instrument should not be firm because of its bulk and weight.
“The entire support is five feet high, and on the lower part of the structure various mathematical devices are to be seen skilfully painted for the sake of ornamentation, and with the other features adding beauty to the whole. The globe itself is approximately six feet in diameter, and from this dimension the size of the meridian, of the horizon and of the rest of the instrument can be obtained.
“Such a globe, so solidly made, so finely wrought, and in every part so finely constructed and properly constituted never before in any part of the world, so I believe and say without the thought of arousing envy, has been completed. It is an immense and a magnificent work; so much so that many have come from various countries to Denmark that they might have a view of it together with my other instruments, while the Kingdom of Urania and its far-famed citadel were standing.
“Around the horizon circle one could read in letters of gold ‘In the year of Christ CIƆ IƆ XXCIV (1584), Frederick II reigning in Denmark, this globe like unto a celestial machine, in which are fixed the stars of the eighth sphere as set down on his globe each exactly in its place, also the wandering stars as they appear among these, Tycho Brahe, to all on earth who desire to understand this matter, shows the heavens by this mechanical device which he perfected for his sons, for himself and for posterity.’
“The date 1584 is inscribed hereon because that is themiddle of the period of time in which it was in the process of construction, and further it is the year before the death of King Frederick of most worthy memory, who liberally supported both myself and my work, and his princely love followed me as long as he lived. I will add only this one thing—this globe has a canopy indicated by Y Z (Fig.77) circular, and concave within to enclose the upper half of the globe, which canopy, fastened to the roof by a chain, may be let down as a protection from dust and from other injury. The use of the globe is the same as is that of others, and this use I have decided to describe in a special work during my leisure time, since it cannot be done in few words. This globe has, on account of its great size, an advantage over all others, namely that all details on it can be given with the utmost exactness and minuteness. And those points concerning the doctrine of theprimum mobilumand the study of the heavenly bodies in their relations to the position of the ecliptic and the equator and of certain other circles on the globe, are easily determined with a minimum of trouble and without any laborious effort, by the machine.”
Globus Magnus of Tycho Brahe, 1584.Fig. 77. Globus Magnus of Tycho Brahe, 1584.
Fig. 77. Globus Magnus of Tycho Brahe, 1584.
Van Raemdonck refers to a globe by Titon du Tillet, of the year 1584, citing a reference to this work to be found in “Memoirs lus à la Sorbonne.” We have been unable to obtain concerning Titon any additional information to that given in the above citations.357
In March, 1861, the Bibliothèque Nationale of Paris acquired by purchase a copper engraved globe mounted on a metal base.358The record referring to the purchase reads “Trouvé à Lignières (Cher) et provenant de l’abbé L’Écuy.” (Fig.78.)
L’Écuy Terrestrial Globe, ca. 1578.Fig. 78. L’Écuy Terrestrial Globe, ca. 1578.
Fig. 78. L’Écuy Terrestrial Globe, ca. 1578.
Aside from its geographical interest it is particularly significant in that it is the only globe of metal known to have been made in Rouen in that period. It is neither signed nor dated, but its inscriptions seem to assure us that it was not made prior to 1578, yet in all probability before 1600. It seems not to be known how the globe found its way into thelocality designated. The Abbé L’Écuy died in Paris in the year 1634 at the age of eighty-four, Vicar General of the Prebendary of Nôtre Dame. It is probable that at the death of the Abbé the globe was taken to the province of Cher by some dealer or purchaser, as he was born in the town Yvoi-Carignan in French Luxembourg. Of the earliest history of this remarkably interesting object we know only that it was made in Rouen, at a date we cannot definitely fix.
It has a diameter of 25.6 cm. In an oval cartouch one finds the inscription “Nova et integra universi orbis descriptio. Rothomagi.” “A new and complete description of the world. Rouen.” Below the last line there appears to be space left for the insertion of the author’s name, a thought suggested by the arrangement for the inscription, and underneath the cartouch is engraved a representation of Neptune driving his sea horses and chariot and armed with a trident. There are numerous vessels represented on the globe, sailing the seas, in the style of the sixteenth century. The prime meridian passes through the Canary Islands. The author seems to have drawn largely from Spanish sources, but to some extent from the Portuguese.
The outlines of the several countries of the Old World are not particularly well drawn, and it does not appear that the author thought of making an especial point of accuracy. Africa has the outlines of the maps of the sixteenth century, but with an indifference to details. The Senegal and the Niger are made to unite to form the Nile. Asia is not particularly well drawn. Below the island of Cipango the author has engraved the following legend, “Hoc loco secuti sumus recentiores hanc partem verius a continente separantes.” “In this place we have followed the most recent (observers) who rightly separate this part from the continent.”
The western coast of America gives evidence of a want of detailed knowledge. Here we read “Haec littora nondum cognita,” “this coast is not yet known,” and below this,“Novus orbis,” and “Hispania major a Nuño Gusmano devicta anno 1539,” “Greater Spain conquered by Nuño Gusman in the year 1539.” California is represented as a peninsula and not an island as on so many of the maps of the closing years of the sixteenth century. The nomenclature along the coast of Mexico is exceedingly rich. Pizarro’s conquest is referred to, but Chili is unknown, “Ulterius incognitum.” The estuary of La Plata is represented as very large. The coast names north of Florida seem to have been obtained from the Verrazano sources of 1524. In the region of Newfoundland, which is represented as a region of numerous small islands, we find “Baccalearum regio,” “Gamas,” “insule Corteralis,” “terro de laborador.” The strait separating Greenland from the mainland is referred to as “Fretum arcticum per quod Lusitani in orientem et ad Indos et Molucas navigare conati sunt,” “Arctic strait through which the Portuguese attempted to sail to the east and to the Indies and the Moluccas,” an allusion to the unhappy results of the Cortereal expedition. Along the coast of the strait which forms the northern boundary of North America we read “Terra per Britannos inventa,” “Land discovered by the British.” A very curious legend along the east coast of Greenland reads “Quii populi ad quos Joañes Scovus Danus pervenit anno 1476,” “These are the people to whom the Dane John Scovus came in the year 1476.” Humboldt was one of the first to call attention to this expedition, and Gomara was actually the first to mention it, that is, to give a reference to the Dane Skolnus.359
There are no more interesting survivals among the globes of the late sixteenth century than are those constructed by Emery Molyneux, now belonging to the Middle Temple Library of London (Fig.79), which Sir Clements Markham refers to as “their burial place,” considering this to be “a strange depository for geographical documents of such interest and importance.” In the address “To the Reader” or preface to his ‘Voyages,’ Hakluyt gives the first referencein print to these globes. “Nowe,” he says, “because peraduenture it would bee expected as necessarie, that the descriptions of so many parts of the world would farre more easily be conceiued of the Readers, by adding Geographicall, and Hydrographicall tables thereunto, thou art by the way to be admonished that I have contented my selfe with inserting into the worke one of the best generall mappes of the world onely, untill the coming out of a very large and most exact terrestriall Globe, collected and reformed according to the newest, secretest, and latest discoueries, both Spanish, Portugall, and English, composed by M. Emmerie Mollineux of Lambeth, a rare gentleman in his profession, being therein for diuers yeeres, gratly supported by the purse and liberalitie of the worshipfull marchant M. William Sanderson.”360It was not until near the close of the year 1592 that the globes were completed, and soon thereafter we have their first printed description, which description was given by Dr. Hood of Trinity College, Cambridge, a lecturer on mathematics and navigation in the city of London.361Blundeville, in his ‘Exercises,’362refers to them, and in 1594 Robert Hues published the first edition of his most valuable and interesting treatise on globes, bearing the title, ‘Tractatus de Globis et eorum usu, accomodatus iis qui Londini editi sunt anno 1593,’ taking the Molyneux globes as the basis for his observations.
Terrestrial Globe of Emery Molyneux, 1592.Fig. 79. Terrestrial Globe of Emery Molyneux, 1592.
Fig. 79. Terrestrial Globe of Emery Molyneux, 1592.
Very little is known of the life of Molyneux. He appears to have been a member of the Cavendish expedition of the years 1586-1588, as is suggested by one of the legends on his terrestrial globe. He was known to Sir Walter Raleigh, to Richard Hakluyt, to Edward Wright, and to John Davis. To the suggestions of the last-named we perhaps owe the existence of these globes.363As noted by Hakluyt in his preface, the globes were constructed at the expense of William Sanderson, a merchant prince of London, a liberal and patriotic citizen, one interested in geographical exploration, who had fitted out the Davis Arctic Expedition.
Sir Clements Markham, in his edition of Robert Hues’ ‘Tractatus de Globis,’364edited for the Hakluyt Society and published in the year 1889, gives in his introduction the following brief but adequate description of these globes: “The Molyneux globes are 2 feet 2 inches in diameter, and are fixed on stands. They have graduated brass meridians, and on that of the terrestrial globe a dial circle or ‘Horarius’ is fixed. The broad wooden equator, forming the upper part of the stand, is painted with the zodiac signs, the months, the Roman calendar, the points of the compass, and the same in Latin, in concentric circles. Rhumb lines are drawn from numerous centers over the surface of the terrestrial globe. The equator, the ecliptic, the polar circles are painted boldly; while the parallels of latitude and meridians, at every ten degrees, are very faint lines. The globe received additions, including the discoveries of Barents in Novaya Zemlya, and the date has been altered with a pen from 1592 to 1603. The constellations and fixed stars on the celestial globe are the same as those on the globe of Mercator, except that the Southern Cross has been added. On both the celestial and the terrestrial globes of Molyneux there is a square label with this inscription ‘This globe, belonging to the Middle Temple, was repaired in the year 1818 by J. and W. Newton, Globe Makers, Chancery Lane.’
“Over North America are the arms of France and England quarterly; supporters, a lion and dragon; motto of the garter; crown, crest, and baldrequin; standing on a label, with a long dedication to Queen Elizabeth.
“The achievement of Mr. William Sanderson is painted on the imaginary southern continent to the south of Africa. The crest is a globe with the sun’s rays behind. It stands on a squire’s helmet with baldrequin. The shield is quarterly; 1st, paly of six azure and argent, over all a bend sable for Sanderson; 2nd, gules, lions, and castles in the quarters for Skirne alias Castilion; 3rd, or, a chevron between 3 eagles displayed sable, in chief a label of three points sable forWall; 4th, quarterly, or and azure, over all a bend gules for Langston. Beneath there is an address from William Sanderson to the gentle reader, English and Latin, in parallel columns.
“In the north polar regions there are several new additions, delineating the discoveries of English and Dutch explorers for the first time. John Davis wrote, in his ‘World’s Hydrographical Discovery’: ‘How far I proceeded doth appear on the globe made by Master Emerie Molyneus.’ Davis Strait is shown with all the names on its shores which were given by its discoverer, and the following legend ‘Joannes Davis Anglus anno 1583-86-87 littora Americae circumspectantia a quinquagesimo quinto grado ad 73 sub polarem scrutando perlegit.’ (‘John Davis, an Englishman in the years 1583-86-87, gave these names when he mapped the shores of America lying between the parallels of 55 degrees and 73 degrees north latitude.’) On another legend we have ‘Additions in the north parts to 1603’; and below it are the discoveries of Barents, with his Novaya Zemlya winter quarters—‘Het behouden huis.’ Between Novaya Zemlya and Greenland there is an island called ‘Sir Hugo Willoghbi his land.’ This insertion arose from a great error in longitude, Willoughby having sighted the coast of Novaya Zemlya; and the island, of course had no existence, though it long remained on the maps. To the north of Siberia there are two legends, ‘Rd. Cancelarius et Stephanus Burrow Angli Lappiae et Coreliae oras marinas et Simm. S. Nicolai vulgo dictum anno 1553 menso Augusto exploraverunt’ (‘Richard Chancelor and Stephen Burrow Englishmen explored the shore of Lapland and Corelia, and of Simm. S. Nicolai commonly so called, in the month of August 1553’), and ‘Joannes Mandevillanus eques Anglius ex Anglia anno 1332 Cathaiae et Tartariae regiones penetravenit.’ (‘John Mandeville an English knight from England in the year 1322 entered the regions of Cathay and Tartary.’)
“Many imaginary islands, in the Atlantic, are retained on the globe: including ‘Frisland,’ ‘Buss Ins,’ ‘Brasil,’ ‘Maidas,’ ‘Heptapolis,’ ‘St. Brandan.’ On the eastern side of North America are the countries of Florida, Virginia, and Norumbega; and also a large town of Norumbega up a gulf full of islands.
“The learned Dr. Dee had composed a treatise on the title of Queen Elizabeth to Norumbega; and in modern times Professor Horsford has written a memoir to identify Norumbega with a site up the Charles River, near Boston. On the Atlantic, near the American coast, is the following legend ‘Virginia primum lustrata, habitata, et cultu ab Anglis impensis D. Gualteri de Ralegh Equitis Aurati ammenti Elizabethae Angliae Reginae.’ (‘Virginia first surveyed, inhabited and cultivated by the English at the expense of Sir Walter Raleigh, Knight, subsidized by the gold of Elizabeth Queen of England.’)
“A legend in the Pacific Ocean furnishes direct evidence that information, for compiling the globe was supplied by Sir Walter Raleigh. It is in Spanish: ‘Islas estas descubrio Pedro Sarmiento de Gamboa por la Corona de Castella y Leon desde el ano 1568 llamolas Islas de Jesus aunque vulfarmente las llaman Islas de Salomon.’ (‘Pedro Sarmiento of Gamboa discovered these islands in the year 1568 for the crown of Castile and Leon calling them the Islands of Jesus though they are commonly called the Salomon Islands.’)
“Pedro Sarmiento was the officer who was sent to fortify the Strait of Magellan after Drake had passed through. He was taken prisoner by an English ship on his way to Spain, and was the guest of Raleigh in London for several weeks, so that it must have been on information communicated by Raleigh that the statement respecting Sarmiento on this legend was based.
“Besides ‘Insulae Salmonis’ there are two islands in the Pacific, ‘Y Sequenda de los Tubarones,’ and ‘San Pedro,’as well as the north coast of New Guinea, with the names given on Mercator’s map.
“Cavendish also appears to have given assistance, or possibly Molyneux himself accompanied that circumnavigator in his voyage of 1587. The words of a legend off the Patagonian coast seem to countenance this idea, reading, ‘Thomas Caundish 18 Dec. 1587 haec terra sub nostris oculis primum obtulit sub latitud 47 cujus seu admodum salubris Incolae maturi ex parte proceri sunt gigantes et vasti magnitudinis.’
“The great southern continent is made to include Tierra del Fuego and the south coast of Magellan’s Strait, and extends over the greater part of the south frigid zone.
“S. Matheo, an island in the Atlantic, south of the line, was visited by the Spanish ships under Loaysa and Sebastian del Cano, but has never been seen since. It appears on the globe. In the south Atlantic there are painted a sea-serpent, a whale, Orpheus riding on a dolphin, and ships under full sail—fore and main courses and topsails, a sprit sail, and the mizzen with a long lateen yard.
“The track of the voyage of Sir Francis Drake and Master Thomas Cavendish round the world are shown, the one by a red and the other by a blue line. That these tracks were put on when the globe was first made is proved by the reference to them in Blundeville’s ‘Exercises.’
“The name of the author of the globe is thus given: ‘Emerum Mullineus Angl. sumptibus Guilelm Sanderson Londinensis descripsit.’”
Markham likewise tells us that the celestial globe, in its general features, closely resembles the terrestrial. It carries the same arms of Sanderson, and the same label of Newton, but a briefer dedication to the Queen. It appears that the map was engraved and printed by Hondius of Amsterdam, since it carries the brief legend “Judocus Hondius Fon. Sc.” In addition to the Molyneux globes in the Middle Temple, a pair may be found in the Royal Museum of Cassel. Adetailed description of this pair it has not been possible to obtain.
Jost Bürgi, a native of Lichtensteig in the Toggenburg, Switzerland, was born in the year 1552 and died in Cassel in the year 1632.365Early in life he became a clock maker’s apprentice, and for some time was engaged with Dasypodius in the construction of the famous Strassburg Cathedral clock. In the year 1579 he was called to the court of Landgrave William IV in Cassel, under whose patronage he won great distinction as a maker of astronomical and mathematical instruments. In the year 1603 he was called into the service of the Emperor at Prague, but in the year 1631 he returned to Cassel, where he died in the following year. Bürgi, skilful workman that he was, seems not to have found time to tell in words of his various activities. “He found pleasure in work,” says one of his biographers, and left it for others to write of his attainments, which, it may here be said, they seem not to have done in a very detailed manner.
Landgrave William’s interest in the promotion of scientific studies led him to the founding of a museum to which he made numerous contributions of apparatus, mathematical and astronomical. This museum, in the course of years, became one of the most famous of its kind in all Europe, and indeed remains such to this day. In its collections the work of Bürgi is well represented, which in the quality of the workmanship exhibited, as in the interest it awakens by reason of its place as a nucleus around which so much of value has been gathered, is unsurpassed.
Among the first of his instruments may be mentioned an astronomical clock, elaborately wrought, with movable discs and circles for illustrating the movements of the heavenly bodies, and surmounted with an engraved celestial globe, which, driven by clockwork, is made to turn on its axis once in twenty-four hours. It seems evident that Bürgi constructedother clocks of like character, supplied, as is this example, with a celestial globe.
In this same Museum of Cassel there is a second celestial globe, the work of Bürgi, which was begun in the year 1585, and not entirely completed until the year 1693 by Heinrich van Lannep. This copper sphere, 72 cm. in diameter, is remarkably well preserved. It has a heavy brass meridian circle to which is attached an engraved hour circle 46 cm. in diameter. A large brass semicircle intersects this meridian circle at right angles through the north pole, and is attached to the horizon circle at its extremities. The instrument rests upon an artistic and substantial brass support. On the surface of the sphere are engraved the principal celestial circles, including the colures, the equator, the tropics, the polar circles, the ecliptic, and twelve parallels. The stars, of which the largest are distinguished by a bit of inlaid silver, and the several figures of the constellations which are very artistically engraved, are clearly the work of a master.
A third globe of gilded brass, containing clockwork within by means of which it is made to revolve and apparently the work of Bürgi, may also be found in this Cassel collection. A small silver sun, movable along the equator, is mechanically attached in such manner as to serve admirably for demonstrative purposes. The engraved surface of the globe is equal in its artistic merits to that of the copper globe referred to above.
There is yet a fourth metal globe in this collection, apparently the work of Bürgi, which is not gilded. In other respects it is said to resemble the one designated above as the third globe. Kepler is said to have held in the highest esteem the scientific work of Bürgi, and to have placed him, within his field, as high as he did Albrecht Dürer among artists. There appears to be good reason for attributing the invention of the pendulum clock to Jost Bürgi, and that before 1600 he had proved this method of clock regulation practical.
Among the numerous and interesting treasures to be found in the Landesmuseum of Zürich is a terrestrial globe (Fig.80) having neither name of maker nor date of construction, but belonging, undoubtedly, to the late sixteenth century.366The sphere has a diameter of about 121 cm., is mounted on a substantial wooden base, and appears to have been made for the monastery of St. Gall, from which place it was taken to Zürich in the year 1712. On the semicircular arms which support the equatorial circle are represented the armorial bearings of the abbey and monks of St. Gall, and the date in gold, 1595, which may refer to the date of construction or to the date when it was placed in the monastery. On the equatorial circle one finds represented the signs of the zodiac, the calendar, the names of the saints and of the winds. On the heavy meridian circle are indicated the climatic zones and the degrees of latitude. The prime meridian is made to pass through the Azores Islands. The sphere is of papier-mâché and plaster, on which the engraved gores are mounted. The seas have been colored green, the lands a dull yellow, the mountain ranges brown. Numerous barbaric kings are represented in picture, likewise numerous animals of land and sea, and ships artistically drawn sail hither and thither over the oceans. The austral continent is wanting. Marcel especially notes the striking resemblance of the globe map to the Mercator map of 1569, suggesting the possibility of its Mercatorian origin, in support of which suggestion he quotes a number of geographical names as well as certain legends. The globe, it appears, has never been critically studied, but is clearly an interesting geographical monument of the period.