Chapter IV

68Information courteously given by M. L. Vallée.

68Information courteously given by M. L. Vallée.

69Dorn, B. Drei in der kaiserlichen öffentlichen Bibliothek zu St. Petersburg befindliche astronomische Instrumente mit arabischen Inschriften. (In: Mémoires de l’Académie Impériale des Sciences de St. Pétersbourg. St. Pétersbourg, 1865. VIIeserie, Tome IX, No. 1.)

69Dorn, B. Drei in der kaiserlichen öffentlichen Bibliothek zu St. Petersburg befindliche astronomische Instrumente mit arabischen Inschriften. (In: Mémoires de l’Académie Impériale des Sciences de St. Pétersbourg. St. Pétersbourg, 1865. VIIeserie, Tome IX, No. 1.)

Arabic Celestial Globe. From Dorn’s illustration.

General attitude of the period toward the theories of the Greeks and the Romans.—Scripture statements as sources of information.—Inclination of certain early writers to accept the doctrine of a spherical earth.—The particular attitude of Pope Sylvester II.—The asserted interest of Emperor Frederick II in scientific studies.—Alfonso the Wise and the Alfonsian tables.—Interesting allusions in Alfonso’s work to globes and globe construction.—Giovanni Campano of Novara and the statements in his ‘Tractatis de sphera solida.’—The attitude of Albertus Magnus, Sacrobosco, Roger Bacon, Vincent of Beauvais, Dante.

General attitude of the period toward the theories of the Greeks and the Romans.—Scripture statements as sources of information.—Inclination of certain early writers to accept the doctrine of a spherical earth.—The particular attitude of Pope Sylvester II.—The asserted interest of Emperor Frederick II in scientific studies.—Alfonso the Wise and the Alfonsian tables.—Interesting allusions in Alfonso’s work to globes and globe construction.—Giovanni Campano of Novara and the statements in his ‘Tractatis de sphera solida.’—The attitude of Albertus Magnus, Sacrobosco, Roger Bacon, Vincent of Beauvais, Dante.

FORmany centuries following the fall of the Western Roman Empire, there appears to have been in Christian Europe but little interest in the fundamental principles of geographical or astronomical science. The theories of the Greeks and the Romans respecting a spherical earth and a spherical firmament encompassing it, in illustration of which they had constructed globes, were not entirely forgotten, but such theories in general were considered to be valueless, hindrances rather than helps to the theological beliefs of the new Christian era.70

Though the early Church Fathers were inclined to reject the idea of a globular earth,71there were not a few among them who found the theory of a circular earth an acceptable one. The latter, it is true, was an early Greek belief, referredto above as having been entertained in Homer’s day, and as having been passed down to succeeding centuries, but Christian writers did not find in the fact of its pagan origin a particular argument for accepting it; on the contrary, the Bible was held by many to be the fountain of all knowledge, and a sure guide no less in the solution of problems pertaining to the physical sciences than in the solution of problems pertaining to faith and doctrine. What was contained in the Scriptures found a more ready acceptance than what was to be found in pagan writers.72Isaiah’s statement, “It is He that sitteth upon the circle of the earth,” was regarded as one altogether adequate on which to found a theory of the form of the earth, and it was accepted by such biblical interpreters as Lactantius, Cosmas Indicopleustes (Figs.16,17), Diodorus of Tarsus, Chrysostom, Severian of Gabala, by those who were known as the Syrians, by Procopius and Decuil.73Men, however, such as Basil, Gregory of Nyssa, and Philoponos inclined strongly toward the Aristotelian doctrine of a spherical earth.74Isidore ofSeville appears to have been a supporter of the spherical doctrine,75as was also the Venerable Bede, who, in his ‘De natura rerum,’ upholds the doctrine of a spherical earth on practically the same grounds as those advanced by Aristotle.76

The Universe according to Cosmas Indicopleustes, Sixth Century.Fig. 16. The Universe according to Cosmas Indicopleustes, Sixth Century.

Fig. 16. The Universe according to Cosmas Indicopleustes, Sixth Century.

The Universe according to Cosmas Indicopleustes, Sixth Century.Fig. 17. Cosmas’ Illustration Confuting the Existence of Antipodal Peoples.

Fig. 17. Cosmas’ Illustration Confuting the Existence of Antipodal Peoples.

In illustration of the doctrine of a circular earth, terrestrial globes certainly could not have been thought of as having any practical value. With a rejection of the spherical theory of the ancients very naturally went the rejection of their globes.

The circular or Homeric theory, as noted above, had its supporters, even to the close of the middle ages, but the inclination is more or less marked, even as early as the seventh century, to accept again the doctrine of a spherical earth. It seems to have come into prominence again with the growing belief in the importance of the place of the earth in the universe. After the eighth century this theory may besaid to have had a very general acceptance by those who, Faust-like, felt a desire for a larger freedom from theological restraint than the church encouraged. (Figs.18,19.)

Hereford World Map, ca. 1283.Fig. 18. Hereford World Map, ca. 1283.

Fig. 18. Hereford World Map, ca. 1283.

The Earth Pictured as a Sphere by Nicolas d'Oresme, 1377.Fig. 19. The Earth Pictured as a Sphere by Nicolas d’Oresme, 1377.

Fig. 19. The Earth Pictured as a Sphere by Nicolas d’Oresme, 1377.

Attention has been called to the attitude of the writings of the Anglo-Saxon Church Father, the Venerable Bede. Although we have no unquestionable proof that Bede, or Alcuin,77who was greatly influenced by him, insisted on the use of globes in geographical instruction, there is good reason for thinking these scholars would have inclined to encourage their use. The monastic schools, which, in the methods of instruction, rested upon the plan wrought out by Alcuin for the Palace School of Charles the Great, considered globes to be apparatus of great educational value. Professor Günther is inclined to think it probable that celestial globes were used throughout the early centuries of this mediaeval period in the better schools, though no positive statement to that effect can be cited.78

We know that an exact knowledge of the movements of the sun, of the moon, and of the constellations was considered to be of first importance for the priesthood in the middle ages, since it was through a knowledge of their movements that the times for the observance of the rigid church rules were fixed.79The acquisition of such knowledge could best be secured through the use of the celestial globe.80We learn from Notker Labeo (950-1022), one of the most distinguished teachers of the monastic school of St. Gallen, that he made use of such globes for astro-geographical instruction, which, in their important features, were like our modern celestial globes, for he tells us “they were supplied with all necessary parts.” It seems evident that those of which he made use could be adjusted to every desired altitude of the pole.81

One of the most distinguished scholars of the tenth century was Bishop Gerbert (ca. 940-1003), later Pope Sylvester II, of whose learning we possess reliable evidence.82His astronomical knowledge so astonished his contemporaries that he was thought to be a necromancer and wasaccused of being in league with the evil one.83He was a diligent student of the literature of antiquity, which had survived to his day, especially surpassing all others, it is reported, in his acquaintance with the learning of pagan Rome. In the instruction which he gave in astronomical science he made use of various instruments, to the end that his pupils might the better understand the subject, among which instruments were celestial globes and armillary spheres. These were a source of much wonderment to his contemporaries. It is said that one of these instruments was so skilfully constructed that even the untrained by its use, having one constellation pointed out, would be able to locate all others “with the aid of a globe and without the aid of a teacher.”84In a letter to the monastic teacher Constantius, with whom Gerbert stood in the friendliest relations for many years at Rheims, he refers to the construction of a celestial globe, and in a more detailed manner he makes mention of this when writing to Remigius of Trier. In four of his letters to this last named prelate, Gerbert touches upon his purpose to construct a globe, but on account of the added duties which were his, occasioned by the death of Archbishop Adalbero, he seems not to have been able to complete his work. He expresses himself, in the third one of these letters, as hopeful that a favorable time might yet come for him to take up the plan, but the increasing opposition of his enemies left him no leisure for scientific labors of this character, and it does not appear that he turned his attention again to globe making.85

The thirteenth century furnishes us with the names of two distinguished princes who were especially active in advancing scientific studies of their times. One of these was the Hohenstaufen Frederick II, concerning whom we are informed that he directed a learned Arabian, who sojourned at his court, to construct for him a celestial globe of gold on which the stars were to be represented by pearls.86Weare further told that as an outcome of his friendly relations with the rulers of the East, the Sultan of Egypt sent to him an astronomical tent of wonderful construction. In this the sun and the moon were represented and by means of a skilfully constructed mechanism they were made to rise and set, marking out the hours of day and night.87

As a ruler of like intellectual and scientific interests, the Castilian, Alfonso X, who lived in the thirteenth century, known as “The Wise” and as “The Astronomer,” deserves to be especially mentioned. By his order an elaborate astronomical work was prepared, which holds a place of first importance among mediaeval productions of its character. In this work the construction of globes is discussed in a very detailed manner, mention being made of every feature regarded as belonging to a properly constructed celestial sphere. So significant are certain chapters of this work for the history of globes and of globe making that a free translation is here given of that part relating to materials of which globes may be constructed.88“A sphere may be made of many materials,” says the author, “as of gold, or silver, or copper, or brass, or iron, or lead, or tin, or of a combination of these metals; or they may be made of stone, or clay, or wood. They may also be made of leather, of cloth, of parchment in many layers, and of many other materials which men employ when they wish to give an exhibition of their skill. Those, however, who have carefully considered these things, have decided that there is nothing more suitable than wood and for the following reasons. If the globe should be made of gold, only a very rich man would be able to possess it; furthermore it would be very heavy. If it should be made of thin sheets of gold it could be easily indented and would not long remain a perfect sphere. If it should be made small, that which was represented thereon would not appear distinct. The same thing may be said of silver, although it is a metal stronger than gold, as it is likewise harder, and therefore is not so easily indented. Copper is a metal harder than either silver or gold, but isso dry that it can not be easily fashioned into a globe, which should always be well made. Brass, which is like dark colored copper, may be more easily fashioned, because it is more malleable than copper, and is stronger than either gold or silver. If, however, a globe made of this material should be thin it might easily lose its shape, and if thick it would be very heavy. Of all metals, however, this is the one most suitable for use in making spheres, as it is the one most commonly employed. A globe of iron would be very difficult to make and would be very heavy, and since the rust would have to be removed from it very frequently, there would be much danger of destroying the figures. A globe of tin, if made of a thin sheet, could be easily indented, and would be very heavy if the sheet of which made were thick. Lead, if thin, would offer less resistance to injury than tin, and is a material much heavier. Furthermore, as lead is inclined to turn black, the figures and the stars represented on a globe of this material would soon become so discolored as to be no longer visible. There is no way by which it can be cleaned without wiping out the figures. Although the metal could be combined to form that material of which water jugs and buckets are made it would be so fragile as to break like glass. Clay, which is also used for the making of water jugs, mortars, and fountains, is not suitable for globes, because if thin it would break easily, and if thick it would be very heavy. Moreover this material when prepared must be baked in a kiln which fact renders it unsuitable for use in making spheres. A globe should not be made of stone, since if this were transparent the figures could not easily be seen, and such material would be very heavy. It would not be fitting to make so noble an object as a sphere of the material of which jars are made. Leather would not be suitable, though it might be fashioned into a permanent spherical shape. Such material shrinks in hot weather or when brought near a fire. Cloth would not be suitable, though it were madevery strong, since heat would cause it to shrink, and moisture would cause it to lose its shape, and this same thing may be said of parchment. A sphere of wood is strong and is of reasonable weight and may be made in the manner which we shall set forth.” The original manuscript of this work is profusely illustrated, including representations of the figures of the several constellations (Fig.20).

The Constellation Taurus.Fig. 20. The Constellation Taurus.

Fig. 20. The Constellation Taurus.

In the latter part of the thirteenth century the mathematician, Giovanni Campano, a native of Novara and it appears a particular friend and supporter of Pope Urban IV, won distinction for his scholarly attainments in the field of astronomy.89In addition to his work, titled, ‘Teorica planetarum,’ wherein he comments on the subject of astronomy and geometry, and makes copious references to the Greek geometrician Euclid, whose works he had translated into Latin, he prepared a treatise which he called ‘Tractatis de sphera solida.’ In the prologue to this work, after noting that the number of astronomical instruments which have been constructed is large, he states that in the main they agree in their representation of the movements of the heavens, adding that as the heavens are spherical, spherical instruments are to be preferred. In his first chapter, after alluding to the astronomical instruments described by Ptolemy, he proceeds to treat of the composition of solid spheres, which he says may be made of metal, or better, of wood. He gives rules for making the same by the use of the lathe, and notes in conclusion it is well to make the sphere hollow in order to lighten the weight. In the following chapters he treats of the inscription of the circles of the sphere, of the construction of the several rings employed in the mounting, such as the horizon and the meridian circles, and gives consideration to the representation of the several constellations on the surface of the ball. In the second part of his treatise he gives instruction as to how to use the instrument in the solution of astronomical problems.

There appears to be only the slightest evidence that Campano was acquainted with the work of Alfonso. His presentation of the subject, in all probability, was altogether independent of a knowledge of the Alfonsian tables. It is interesting to observe that in the day when astrology was in great favor in the universities of Europe, Campano continued to be interested in genuine astronomical science.

Albertus Magnus, in his ‘Liber de coelo et mondo,’90devotes an entire chapter to a theoretical consideration of gravitation, asserting that the earth is spherical (Spherica sive orbicularis necessario), and proceeds to a demonstration of the theory, in which he practically follows the arguments of Aristotle, that every particle of the earth away from the center is continually in movement seeking that center, the result being the formation of a spherical body. He advances further, as argument in proof of a spherical earth, that the shadow it casts in an eclipse of the moon is circular.

Sacrobosco (John of Holywood or Halifax) (fl. 1230),91who was active in the first half of the thirteenth century, much of the time as professor of mathematics in the University of Paris, prepared a work bearing the title, ‘Tractatus de sphaera,’ being in part a summary of the ‘Almagest’ of Ptolemy. In this work the theory of a spherical earth is supported in much the same manner as was done by Campano. The ‘Tractatus’ proved to be one of the most important quasi scientific geographical and astronomical textbooks of the later middle ages, being frequently copied, and frequently printed after the invention of that art.92

Further reference might be made to a belief in a spherical earth, as held by Roger Bacon (1214-1294),93by Thomas Aquinas (1225-1274),94by Vincent of Beauvais (1190-1264),95by Dante (1265-1321),96and still others of the thirteenth, fourteenth, and fifteenth centuries. It should, however, be stated that nowhere in the works of these authors does there appear a reference to the constructionof terrestrial globes, and only incidentally the implication that they knew of or approved the construction of celestial globes.

The increasing interest in geography and in astronomy in the closing years of the middle ages led most naturally, in time, to much activity in globe construction, and to this fact attention is directed in the following chapter.

70Beazley’s monumental work, previously cited, considers the geographical knowledge of the Christian middle ages, from the closing years of the Western Roman Empire to the early years of the fifteenth century. See especially Vol. I, chap. vi; Vol. II, chap. vi; Vol. III, chap. vi. Marinelli, G. Die Erdkunde bei den Kirchvätern. Leipzig, 1884; Kretschmer, K. Die physische Erdkunde im christlichen Mittelalter. Wien, 1889; Cosmas Indicopleustes. Christian Topography, tr. by J. M. McCrindle. (In: Hakluyt Society Publications. London, 1897); Günther, S. Die kosmographischen Anschauung des Mittelalters. (In: Deutsch. Rundschau für Geographie und Statistik. Vol. IV, pp. 135 ff.)

70Beazley’s monumental work, previously cited, considers the geographical knowledge of the Christian middle ages, from the closing years of the Western Roman Empire to the early years of the fifteenth century. See especially Vol. I, chap. vi; Vol. II, chap. vi; Vol. III, chap. vi. Marinelli, G. Die Erdkunde bei den Kirchvätern. Leipzig, 1884; Kretschmer, K. Die physische Erdkunde im christlichen Mittelalter. Wien, 1889; Cosmas Indicopleustes. Christian Topography, tr. by J. M. McCrindle. (In: Hakluyt Society Publications. London, 1897); Günther, S. Die kosmographischen Anschauung des Mittelalters. (In: Deutsch. Rundschau für Geographie und Statistik. Vol. IV, pp. 135 ff.)

71Zöckler, O. Geschichte der Beziehungen zwischen Theologie und Naturwissenschaft. Gütersloh, 1877. pp. 122 ff.; White, A. D. A History of the Warfare of Science with Theology in Christendom. New York, 1895-1897. See especially chaps. ii-iii. See also references innote 1.

71Zöckler, O. Geschichte der Beziehungen zwischen Theologie und Naturwissenschaft. Gütersloh, 1877. pp. 122 ff.; White, A. D. A History of the Warfare of Science with Theology in Christendom. New York, 1895-1897. See especially chaps. ii-iii. See also references innote 1.

72Isaiah, chap. xl, v. 20; Ezechiel, chap. xxxviii, v. 12; Job, chap, xxvi, v. 7, 10; Psalm cxxxvi, 6.

72Isaiah, chap. xl, v. 20; Ezechiel, chap. xxxviii, v. 12; Job, chap, xxvi, v. 7, 10; Psalm cxxxvi, 6.

73Note summary and citations in Kretschmer, op. cit.

73Note summary and citations in Kretschmer, op. cit.

74Note citations in Kretschmer, op. cit.

74Note citations in Kretschmer, op. cit.

75See his works, Etymologia, 3, 24-71, and De natura rerum, 9-27. Brehaut, E. An Encyclopedist of the Dark Ages. Isidore of Seville. (In: Studies in History, Economics and Public Law, Columbia University. New York, 1912. Vol. xlviii, No. 1.)It must be admitted that there is considerable incoherence in the views of the world as expressed by the great majority of the mediaeval writers. One not infrequently lands in confusion when undertaking an investigation of their opinions.

75See his works, Etymologia, 3, 24-71, and De natura rerum, 9-27. Brehaut, E. An Encyclopedist of the Dark Ages. Isidore of Seville. (In: Studies in History, Economics and Public Law, Columbia University. New York, 1912. Vol. xlviii, No. 1.)

It must be admitted that there is considerable incoherence in the views of the world as expressed by the great majority of the mediaeval writers. One not infrequently lands in confusion when undertaking an investigation of their opinions.

76Beda. Opuscula scientifica. Ed. by J. A. Giles. London, 1843. See De natura rerum, chap. xlvi, titled, “Terram globo similem.”

76Beda. Opuscula scientifica. Ed. by J. A. Giles. London, 1843. See De natura rerum, chap. xlvi, titled, “Terram globo similem.”

77West, A. F. Alcuin and the Rise of Christian Schools. New York, 1892; Mullinger, J. B. The Schools of Charles the Great. New York, 1911; Fellner, R. Kompendium der Naturwissenschaften an der Schule zu Fulda. Berlin, 1879.The real founder of the monastic schools was Hrabanus Maurus, who was a pupil of Alcuin, and who carried to the monastery of Fulda that Englishman’s love for the Quadrivium.

77West, A. F. Alcuin and the Rise of Christian Schools. New York, 1892; Mullinger, J. B. The Schools of Charles the Great. New York, 1911; Fellner, R. Kompendium der Naturwissenschaften an der Schule zu Fulda. Berlin, 1879.

The real founder of the monastic schools was Hrabanus Maurus, who was a pupil of Alcuin, and who carried to the monastery of Fulda that Englishman’s love for the Quadrivium.

78Günther, S.-Fiorini, M. Erd- und Himmelsgloben. Leipzig, 1895. p. 19.

78Günther, S.-Fiorini, M. Erd- und Himmelsgloben. Leipzig, 1895. p. 19.

79Specht, F. A. Geschichte des Unterrichtswesen in Deutschland von den ältesten Zeiten bis zur Mitte des XIII Jahrhunderts. Stuttgart, 1885. pp. 127 ff.

79Specht, F. A. Geschichte des Unterrichtswesen in Deutschland von den ältesten Zeiten bis zur Mitte des XIII Jahrhunderts. Stuttgart, 1885. pp. 127 ff.

80Günther-Fiorini, op. cit., p. 18, n. 4, refers to a star map made in the monastery of St. Emeran in the early fifteenth century, and now belonging to the K. K. Hof- und Staats-Bibliothek of Munich, which was intended for a “Compositio spere solido.”

80Günther-Fiorini, op. cit., p. 18, n. 4, refers to a star map made in the monastery of St. Emeran in the early fifteenth century, and now belonging to the K. K. Hof- und Staats-Bibliothek of Munich, which was intended for a “Compositio spere solido.”

81Arx, J. v. Geschichte des Kantons St. Gallen. St. Gallen, 1810. p. 265.

81Arx, J. v. Geschichte des Kantons St. Gallen. St. Gallen, 1810. p. 265.

82Büdinger, M. Über Gerberts wissenschaftliche und politische Stellung. Marburg, 1851; Werner, K. Gerbert von Aurillac, die Kirche und die Wissenschaft seiner Zeit. Wien, 1878.

82Büdinger, M. Über Gerberts wissenschaftliche und politische Stellung. Marburg, 1851; Werner, K. Gerbert von Aurillac, die Kirche und die Wissenschaft seiner Zeit. Wien, 1878.

83Büdinger, op. cit., p. 38.

83Büdinger, op. cit., p. 38.

84Specht, op. cit., pp. 138-139; Dummler, E. Ekkehart IV von St. Gallen. (In: Zeitschrift für deutsches Altertum. Berlin, 1869. Neue Folge, Vol. 2, p. 23.) The implication in the last named work seems to be that globes were used in many of the schools of this early day. Mabillon, J. Veterum analectorum. Paris, 1676. Tom. 2, p. 212. The statement here made clearly refers to the use of globes in astronomical instruction.

84Specht, op. cit., pp. 138-139; Dummler, E. Ekkehart IV von St. Gallen. (In: Zeitschrift für deutsches Altertum. Berlin, 1869. Neue Folge, Vol. 2, p. 23.) The implication in the last named work seems to be that globes were used in many of the schools of this early day. Mabillon, J. Veterum analectorum. Paris, 1676. Tom. 2, p. 212. The statement here made clearly refers to the use of globes in astronomical instruction.

85Gerbert, Letters of, 983-997, publiées avec une introduction et des notes par J. Havet. Paris, 1889. See especially Nos. 134, 148, 152, 162. Gerbert refers, in these letters to Remigius, to a globe which he intended to construct.

85Gerbert, Letters of, 983-997, publiées avec une introduction et des notes par J. Havet. Paris, 1889. See especially Nos. 134, 148, 152, 162. Gerbert refers, in these letters to Remigius, to a globe which he intended to construct.

86Lelewel, op. cit., Vol. II, p. 2.

86Lelewel, op. cit., Vol. II, p. 2.

87Raumer, F. v. Geschichte der Hohenstaufen und ihre Zeit. Leipzig, 1878. Vol. III, p. 493. This astronomical tent has sometimes been referred to as a globe.

87Raumer, F. v. Geschichte der Hohenstaufen und ihre Zeit. Leipzig, 1878. Vol. III, p. 493. This astronomical tent has sometimes been referred to as a globe.

88Libros del Saber de Astronomia del Rey D. Alfonso X de Castilla. Compilados, anotados y comentados por Don Manuel Rico y Sinobas. Madrid, 1863-1867. See especially Vol. I, pp. 153 ff.

88Libros del Saber de Astronomia del Rey D. Alfonso X de Castilla. Compilados, anotados y comentados por Don Manuel Rico y Sinobas. Madrid, 1863-1867. See especially Vol. I, pp. 153 ff.

89Enciclopedia Universal illustrada, “Campano”; Tiraboschi, G. Storia della letteratura italiana. Roma, 1782-1785. Tom. IV, lib. ii, cap. ii, §v; Fiorini. Sfere terrestri. pp. 40-56.There are numerous manuscripts of Campano to be found in the University Library of Bologna, in the Ambrosiana of Milan, and in the Library of San Marco in Venice. Fiorini refers to a number of writers who may be said to have followed and in part copied Campano.

89Enciclopedia Universal illustrada, “Campano”; Tiraboschi, G. Storia della letteratura italiana. Roma, 1782-1785. Tom. IV, lib. ii, cap. ii, §v; Fiorini. Sfere terrestri. pp. 40-56.

There are numerous manuscripts of Campano to be found in the University Library of Bologna, in the Ambrosiana of Milan, and in the Library of San Marco in Venice. Fiorini refers to a number of writers who may be said to have followed and in part copied Campano.

90Albertus Magnus. Liber de coelo et mundo. Lib. II 4, c. 9. For a short biography of Albertus see Encyclopaedia Britannica, “Albertus Magnus.”

90Albertus Magnus. Liber de coelo et mundo. Lib. II 4, c. 9. For a short biography of Albertus see Encyclopaedia Britannica, “Albertus Magnus.”

91Günther, S. Geschichte des mathematischen Unterrichtes, im deutschen Mittelalter bis zum Jahre 1525. Berlin, 1887. pp. 184 ff.

91Günther, S. Geschichte des mathematischen Unterrichtes, im deutschen Mittelalter bis zum Jahre 1525. Berlin, 1887. pp. 184 ff.

92Catalogue of Printed Books in the British Museum contains a list of more than fifty editions, the first being printed in the year 1472.

92Catalogue of Printed Books in the British Museum contains a list of more than fifty editions, the first being printed in the year 1472.

93Biographies are numerous. See Dictionary of National Biography, “Roger Bacon,” with bibliographical list. See Bacon’s Opus Magnus, lib. I, 152-153, “necesse est vero mundum extra habere figuram spericam ...”; also lib. IV, in which he treats of the form of the earth.

93Biographies are numerous. See Dictionary of National Biography, “Roger Bacon,” with bibliographical list. See Bacon’s Opus Magnus, lib. I, 152-153, “necesse est vero mundum extra habere figuram spericam ...”; also lib. IV, in which he treats of the form of the earth.

94See for a short biography Nouvelle biographie. Paris, 1866. “Thomas d’Aquin.”

94See for a short biography Nouvelle biographie. Paris, 1866. “Thomas d’Aquin.”

95Bourgeat, J. B. Études sur Vincent de Beauvais. Paris, 1856.

95Bourgeat, J. B. Études sur Vincent de Beauvais. Paris, 1856.

96Biographies of Dante are numerous. See his Purgatorio, Canto XXVII, lines 1-4, referring to midday on the Ganges when it is dawn in Jerusalem; see also his Aqua et Terra, wherein he gives expression to a belief in the spherical theory.

96Biographies of Dante are numerous. See his Purgatorio, Canto XXVII, lines 1-4, referring to midday on the Ganges when it is dawn in Jerusalem; see also his Aqua et Terra, wherein he gives expression to a belief in the spherical theory.

Increasing interest in geographical discovery and maritime enterprise in the fourteenth and the fifteenth century.—Awakened interest in globe construction.—Martin Behaim and his globe of the year 1492.—The Laon globe.—Christopher and Bartholomew Columbus and their interest in globes.—John Cabot and his globe.—Globes of Johannes Stöffler.—Conrad Celtes and his part in arousing an interest in globes.

Increasing interest in geographical discovery and maritime enterprise in the fourteenth and the fifteenth century.—Awakened interest in globe construction.—Martin Behaim and his globe of the year 1492.—The Laon globe.—Christopher and Bartholomew Columbus and their interest in globes.—John Cabot and his globe.—Globes of Johannes Stöffler.—Conrad Celtes and his part in arousing an interest in globes.

THEfourteenth century witnessed among the peoples of Italy and of the Iberian coast regions a rapidly rising interest in maritime enterprise. The expansion of Europe, which for two centuries had been overland and eastward, was now becoming oceanic, with an outlook southward and westward into the Atlantic. In the fifteenth century, under the inspiration of Prince Henry the Navigator, the Portuguese were feeling their way down the coast of Africa, adding year by year to their knowledge of hitherto unknown lands;97the Atlantic island groups, one by one, were discovered or rediscovered,98and in 1487 Bartholomew Diaz turned the Cape of Good Hope and opened a new way to the Indies of the East.99Through all these enterprises a new and vigorous stimulus was given to interest in geographical studies, just as an awakening had followed the disclosure of the riches of the East by Carpini, Rubruquis, and especially by Marco Polo in the earlier post-crusading years.100

Out of this lively interest in all that pertained to the expansion of knowledge concerning the various regions of the earth came a desire for better map making,101and attention was again intelligently directed to the construction of terrestrial globes on which to represent the most recently discovered seas, islands, and continental coasts.

It was Martin Behaim of Nürnberg (1459-1507),102who, in so far as we have knowledge, constructed one of the first modern terrestrial globes (Fig.21), and it may, indeed, be said of his “Erdapfel,” as he called it, that it is the oldest terrestrial globe extant. Behaim (Fig.22) belonged to the merchant class of a flourishing South German city. He took advantage of the opportunities which were offered him for travel, though it is hardly probable that he is entitled to that renown as an African coast explorer with which certain of his biographers have attempted to crown him, nor does it appear that he is entitled to a very prominent place among the men famed in his day for their astronomical and nautical knowledge. It was doubtless for reasons primarily commercial that he first found his way to Portugal, where, shortly after his arrival, probably in the year 1484, he was honored by King John with an appointment as a member of a nautical or mathematical Junta. During his earlier years in Portugal he was connected with one or more expeditions down the coast of Africa, was knighted by the king, presumably for his services, and made his home for some years on the island of Fayal. In the year 1490 he returned for a visit to his native city, Nürnberg, and there is reason for believing that on this occasion he was received with much honor by his fellow townsmen. It was the suggestion of George Holzschuher, member of the City Council, and himself somewhat famed as a traveler, that eventually brought special renown to our globe maker, for he it was who proposed to his colleagues of the Council that Martin Behaim should be requested to undertake the constructionof a globe on which the recent Portuguese and other discoveries should be represented. From a record on the globe itself, placed within the Antarctic circle, we learn that the work was undertaken on the authority of three distinguished citizens, Gabriel Nutzel, Paul Volckamer, and Nikolaus Groland.103It is an interesting fact that we are able to follow in detail the construction of the globe through its several stages, as the accounts of George Holzschuher, to whom was entrusted the general supervision of the work, have been preserved.104From his report, presented at the conclusion of the undertaking, we learn the names of those who participated in the production of the globe; we learn the amount received by each for his labors, and that the total cost to the city for the completed product was something less than seventy-five dollars. Information is given therein as to the division of the work; how the spherical shell was prepared; how the vellum covering was fitted to the sphere; how the rings and the globe supports were supplied; finally, how the artist, Glockenthon, transferred the map to the prepared surface of the ball and added to the same the several miniatures, illustrating in rich color a variety of subjects.

Globe of Martin Behaim, 1492.Fig. 21. Globe of Martin Behaim, 1492.

Fig. 21. Globe of Martin Behaim, 1492.

Portrait of Martin Behaim.Fig. 22. Portrait of Martin Behaim.

Fig. 22. Portrait of Martin Behaim.

The globe, which still belongs to the Behaim family, was removed in the year 1907, by Baron W. Behaim, from his residence in Egedienplatz, Nürnberg, to the Germanic Museum, where it may now be found. It originally stood on a tripod base of wood, but this was later replaced by one of iron. The iron meridian circle is doubtless the work of Behaim himself, while its brass horizon circle probably dates from the year 1510.105

In his scholarly work Ravenstein thus describes this remarkable monument of a period in which there was a rapid expansion of geographical knowledge. “The globe has a circumference of 1595 mm., consequently a diameter of 507 mm. or 20 inches. Only two great circles are laid down upon it, viz., the equator, divided into 360 degrees, and the ecliptic studded with the signs of the zodiac. The Tropics, the Arctic and the Antarctic circles are likewiseshown. The only meridian is drawn from pole to pole 80 degrees to the west of Lisbon. The sea is colored a dark blue, the land a bright brown or buff with patches of green and silver, representing forests and regions supposed to be buried beneath perennial ice and snow. Perhaps the most attractive feature of the globe consists of 111 miniatures, for which we are indebted to Glockenthon’s clever pencil. The vacant space within the Antarctic circle is occupied by a fine design of the Nürnberg eagle with the virgin’s head, associated with which are the arms of the three chief captains by whose authority the globe was made.... There are, in addition, 48 flags (including 10 of Portugal) and 15 coats of arms, all of them showing heraldic colors. The miniatures represent a variety of subjects. Forty-eight of them show us kings seated within tents or upon thrones; full-length portraits are given of four Saints (St. Peter, St. Paul, St. Matthew, and St. Iago), of missionaries instructing natives, and of travelers. Eleven vessels float upon the sea, which is peopled by fishes, seals, sea-lions, sea-cows, sea-horses, sea-serpents, mermen, and a mermaid. The land animals include elephants, leopards, bears, camels, ostriches, parrots, and serpents.... The only fabulous beings which are represented among the miniatures are a merman and a mermaid, near the Cape Verde Islands, and two Sciapodes in central South Africa, but syrens, satyrs, and men with dogs’ heads are referred to in some of the legends. Nor do we meet with the ‘Iudei clausi,’ or with a ‘garden of Eden,’ still believed in by Columbus.... The globe is crowded with over 1100 place names and numerous legends in black, red, gold, or silver.”106

The legends, in the South German dialect of the period, are very numerous (Fig.23), and are of great interest to students of history and of historical geography. The following will serve to indicate the character of Behaim’s numerous legends. “Nach cristi unsers lieben hern gepurt1431 jar also regiert in portugal jinfante don pedro wurden nach notlusse zegericht zway schiff auf 2 Jar gespeisst von den hochgeburnen Jnfanten don heinrichen dess koniks aufs portogalli bruder zu erfahren wass do wer hinder sanct Jacob finisterre weliche schiff also gerüst segelten alweg nach den untergang der sonnen bey 500 teutsche meilen zuletst wurden sy ains tags ansichtig dies 10 inseln und aufs landt trettendt funden nichts dann wildness und vögel die waren so zam dass sy vor niemandt flohen aber von leutten oder thieren mit vier füssen war von wegē der wildnuss keins darkhumen zu wohen um desswillen die vögel mit scheuh waren also wurden sy geheissen insuln dos azores das ist auf teutsch so vil als der habichen inseln und umb weliche wellen der könik von portugal das ander jar schikt 16 schiff mit allerley zame thiere und liess auf jede insel sein tail thun und darzu multiplieieren.” This legend, which lies to the southeast of the Azores Islands, reads in translation: “1431 years after the birth of our dear Lord, when there reigned in Portugal the Infant Don Pedro, the infant Don Henry, the King of Portugal’s brother, had fitted out two vessels and found with all that was needed for two years, in order to find out what was beyond the St. Jacob’s Cape of Finisterre. The ships thus provisioned sailed continuously to the westward for 500 German miles, and in the end they sighted these ten islands. On landing they found nothing but a wilderness and birds which were so tame that they fled from no one. But of men or of four footed animals none had come to live there because of the wildness, and this accounts for the birds not having been shy. On this ground the islands were called dos Azores, that is, Hawk Islands, and in the year after, the king of Portugal sent sixteen ships with various tame animals and put some of these on each island there to multiply.”107

Globe of Martin Behaim in Hemispheres.

Globe of Martin Behaim in Hemispheres.Fig. 23. Globe of Martin Behaim in Hemispheres.

Fig. 23. Globe of Martin Behaim in Hemispheres.

The following legend relates to the islands of Antilia. “Als man zelt nach cristi gepurt 734 jar als ganz hispania von dn̄ heiden auf affrica gewonon wurdt do wurdt bewont di obgeschriben Insuln Antilia genant Septe citade von einemerzbischoff von porto portigal mit sech andern bischoffs und andern cristen man und frawen dj zu sciff von hispanie das geflohen kommen mit Irem vieh hab und gut anno 1414 ist ein schiff aus hispania ungefert darbei gewest am negsten.” “In the year 734 of Christ when the whole of Spain had been won by the heathen of Africa, the above island Antilia called Septa Citade (Seven Cities) was inhabited by an archbishop from Porto in Portugal, with six other bishops and other Christians, men and women, who had fled thither from Spain by ship, together with their cattle, belongings and goods. 1414 a ship from Spain got nighest it without being endangered.”108

Through the inspiration of Behaim the construction of globes in the city of Nürnberg became a new industry to which the art activities of the city greatly contributed. The chief magistrate induced his fellow citizen to give instruction in the art of making such instruments, yet this seems to have lasted but a short time, for we learn that not long after the completion of his now famous “Erdapfel,” Behaim returned to Portugal, where he died in the year 1507.

Martin Behaim’s map of the world was drawn on parchment which had been pasted over a large sphere. The Laon globe,109apparently following closely in time the former, is an engraved and gilded copper ball, having a diameter of 17 cm. There is evidence that at one time it was part of an astronomical clock.110The engraved surface, on which appear the outlines of continents and islands, is well preserved. It has two meridian circles, which intersect at right angles and which can be moved about a common axis, likewise a horizon circle which is movable. Numerous circles appear engraved on the surface of the ball, including meridians and parallels. The prime meridian passes through the Madeira Islands, a fact which suggests a Portuguese origin, since these islands are generally thought to have been discovered by Lusitanian seamen. One hundred and eightydegrees east of this prime meridian, a second meridian is engraved, equally prominent, passing through the middle of the continent of Asia, and 90 degrees still farther to eastward is a third. Each of these meridians is divided into degrees, which are grouped in fifths and are numbered by tens, starting at the equator. The meridians are intersected by a number of parallels, lightly engraved in the northern hemisphere, less distinct in the southern, and represent the seven climates employed by the cosmographers of the Greek and Roman period, as well as by those of the middle ages, in their division of the earth’s surface.

As to its geographical representations, this terrestrial globe appears to be older than that of Martin Behaim, yet at the southern extremity of Africa we find the name “Mons Niger,” inscribed with the legend “Huc usque Portugalenses navigio pervenere 1493.”

The great enterprise of Christopher Columbus (Fig.24), wherein he may be said to have achieved a final victory for the doctrine of a spherical earth, entitled his name to a place of prominence in the history of terrestrial globes. That Columbus himself constructed globes, as has been sometimes inferred from a statement of Las Casas, may, however, be questioned, since this statement touches the reputed correspondence between Columbus and Toscanelli, which correspondence, in the light of the very searching studies of Mr. Henry Vignaud, must now be considered to be of doubtful authenticity.111It appears, however, from this letter that the famous Italian cosmographer, Pauolo Toscanelli, himself was accustomed to explain problems arising in the field of discovery by the use of the globe, and Las Casas tells us that Columbus resolved to write to him, making known his intentions, which he desired to be able to fulfil, and sent to him a globe through Lorenzo Girardi, a Florentine, at that time residing in Lisbon.112Ferdinand Columbus, referring to this incident, says that “the globe was a small one.”113In referring to Bartholomew, the son of Christopher Columbus, Las Casas observes that “he wasa man of prudence and of great intelligence in all matters pertaining to the seas. I believe not much less learned in cosmography and in what relates thereto, the making of navigator’s charts and globes and other instruments of that kind.”114Again, we find in a letter which Christopher Columbus directed to their Catholic Majesties, that he “sent to their Majesties a certain round representation.”115None of these references to globes, as before stated, necessarily give us to understand that Christopher Columbus was a globe maker. Certain it is that none is now known attributed to him or to his son.


Back to IndexNext