Pocket Globe of James Ferguson, 1750 (?).
Fig. 127a. Pocket Globe of James Ferguson, 1750 (?).
The figures on the celestial map pasted on the inner surface of the terrestrial globe covering representing the several constellations have been very artistically drawn. Both the terrestrial and the celestial parts of this combination globe are remarkably well preserved. A second and later example of this Ferguson globe may be found in the Harvard University Library, once belonging to Ebenezer Storer of the class of 1747. It came into the possession of the University in the year 1914. In addition to the globes of Ferguson, just described, two pairs are known, dated each 1782, subsequent to the author’s death, it will be noted, each having a diameter of 30 cm. These are mounted in the usual manner with wooden horizon and brass meridian circles, with support base columns of wood. On the terrestrial globes English
is the language employed, while all names of the constellations on the celestial globes are in Latin. As on the small terrestrial globe in The Hispanic Society’s collection, the route of Admiral Anson is indicated, omitting that of Captain Cook, and numerous brief legends are given referring to various geographical discoveries. One pair of these globes may be found in the Biblioteca Comunale of Palermo and the other pair in the Osservatorio Meteorico of Syracuse.
Terrestrial Globe of Herman Moll, 1705.
Fig. 127b. Terrestrial Globe of Herman Moll, 1705.
117This society was founded in the year 1666 by Louis XIV, after the model of the Royal Society of London. It was liberally endowed and supported, its members devoting themselves to the science of physics, mathematics, astronomy, botany, zoology, and medicine. The observatory, founded in the year 1667, was an adjunct of the society.
117This society was founded in the year 1666 by Louis XIV, after the model of the Royal Society of London. It was liberally endowed and supported, its members devoting themselves to the science of physics, mathematics, astronomy, botany, zoology, and medicine. The observatory, founded in the year 1667, was an adjunct of the society.
118Niceron, J. F. “Delisle.” (In: Mémoires pour servir à l’histoire des Hommes illustres dans la république des lettres. Paris, 1729. Vol. 1, p. 214.); Fontenelle, B. le B. de. Éloge des académiciens. À la Haye, 1731. Vol. II, pp. 324-339; Sandier, C. Die Reformation der Kartographie um 1700. München, 1905. pp. 14-21.
118Niceron, J. F. “Delisle.” (In: Mémoires pour servir à l’histoire des Hommes illustres dans la république des lettres. Paris, 1729. Vol. 1, p. 214.); Fontenelle, B. le B. de. Éloge des académiciens. À la Haye, 1731. Vol. II, pp. 324-339; Sandier, C. Die Reformation der Kartographie um 1700. München, 1905. pp. 14-21.
119Not that there is less of interest in physical, in commercial, in descriptive geography, but that there is a decided tendency in this day to stress what is sometimes called human geography, which consists in emphasizing the relation of geographical study to real life.
119Not that there is less of interest in physical, in commercial, in descriptive geography, but that there is a decided tendency in this day to stress what is sometimes called human geography, which consists in emphasizing the relation of geographical study to real life.
120This work appears to have established his reputation. In the year 1702 he became a member of the Academy, not as a geographer—this department was not established until the year 1730—but as an astronomer under Cassini. Sandler, loc. cit.; Vivien de Saint-Martin, M. Histoire de la géographie. Paris, 1875. p. 423. This last-named author says: “La Mappemonde de Guillaume Delisle et ses cartes particulières des quarte partiée du monde, publiées en 1700, remenèrent enfin pour la première fois à leurs véritables places et à leurs dimensions réelles les parties orientales de l’ancien continent. Quelle que fussent les améliorations de détail que dût recevoir par la suit la carte du monde,—et ces améliorations etaient immens,—l’honneur d’en avoir apéré la réforme radical suffit pour éterniser le nom Guillaume Delisle.”
120This work appears to have established his reputation. In the year 1702 he became a member of the Academy, not as a geographer—this department was not established until the year 1730—but as an astronomer under Cassini. Sandler, loc. cit.; Vivien de Saint-Martin, M. Histoire de la géographie. Paris, 1875. p. 423. This last-named author says: “La Mappemonde de Guillaume Delisle et ses cartes particulières des quarte partiée du monde, publiées en 1700, remenèrent enfin pour la première fois à leurs véritables places et à leurs dimensions réelles les parties orientales de l’ancien continent. Quelle que fussent les améliorations de détail que dût recevoir par la suit la carte du monde,—et ces améliorations etaient immens,—l’honneur d’en avoir apéré la réforme radical suffit pour éterniser le nom Guillaume Delisle.”
121Sandler, op. cit. This was an error having its origin in Ptolemy’s geography, as set down in the Ptolemy maps. The two most significant errors in the Ptolemaic cartography were (a) the representation of the Indian Ocean as an enclosed sea; (b) the too great extension in longitude given to the Mediterranean Sea. A correction of the first of these errors followed quickly after the discovery of the sea route to the Indies of the East. As a result incident to the second error the Asiatic regions were extended much172too far eastward, the maps as late as the seventeenth century showing the coast of China to lie at least twenty-five degrees too far in that direction. The invention of the telescope in the first decade of the seventeenth century and of the pendulum clock about the middle of the century made possible a more accurate determination of the location of places, and an improvement in map construction soon followed. See also Wolf, Geschichte, pp. 355-362; 369-373.
121Sandler, op. cit. This was an error having its origin in Ptolemy’s geography, as set down in the Ptolemy maps. The two most significant errors in the Ptolemaic cartography were (a) the representation of the Indian Ocean as an enclosed sea; (b) the too great extension in longitude given to the Mediterranean Sea. A correction of the first of these errors followed quickly after the discovery of the sea route to the Indies of the East. As a result incident to the second error the Asiatic regions were extended much172too far eastward, the maps as late as the seventeenth century showing the coast of China to lie at least twenty-five degrees too far in that direction. The invention of the telescope in the first decade of the seventeenth century and of the pendulum clock about the middle of the century made possible a more accurate determination of the location of places, and an improvement in map construction soon followed. See also Wolf, Geschichte, pp. 355-362; 369-373.
122Wolf, op. cit., pp. 400-403. This came to be but one of the many methods employed in the effort to determine longitude. One of the most interesting and most recent is that in which wireless telegraphy has been called into service. See Hoogewerff, Capt. J.A. Washington-Paris Longitude by radio signals by F.B. Littell and G.A. Hill. (In: Astronomical Journal. Albany, 1915.)
122Wolf, op. cit., pp. 400-403. This came to be but one of the many methods employed in the effort to determine longitude. One of the most interesting and most recent is that in which wireless telegraphy has been called into service. See Hoogewerff, Capt. J.A. Washington-Paris Longitude by radio signals by F.B. Littell and G.A. Hill. (In: Astronomical Journal. Albany, 1915.)
123See “Nolin” and “Delisle.” (In: Mémoire pour l’histoire des sciences et des beaux arts. Trévoux, 1702. p. 166.); “Nolin.” (In: Nouvelle biographie.); Lelewel. Géographie du moyen âge, II. p. 202; Sandler, op. cit., p. 15.
123See “Nolin” and “Delisle.” (In: Mémoire pour l’histoire des sciences et des beaux arts. Trévoux, 1702. p. 166.); “Nolin.” (In: Nouvelle biographie.); Lelewel. Géographie du moyen âge, II. p. 202; Sandler, op. cit., p. 15.
124Sandler, op. cit., reproduces Delisle’s world map of 1700, pl. iv.
124Sandler, op. cit., reproduces Delisle’s world map of 1700, pl. iv.
125Wolf, op. cit., pp. 449-452; Mémoires pour servir a l’histoire des sciences et a celle de l’observatoire royal de Paris. Paris, 1810. pp. 255-309; “Cassini, Jean-Dominique.” (In: Nouvelle biographie.) In this last article may be found a long list of Cassini’s publications.
125Wolf, op. cit., pp. 449-452; Mémoires pour servir a l’histoire des sciences et a celle de l’observatoire royal de Paris. Paris, 1810. pp. 255-309; “Cassini, Jean-Dominique.” (In: Nouvelle biographie.) In this last article may be found a long list of Cassini’s publications.
126“Gassendi, Pierre.” (In: Nouvelle biographie.) Gassendi achieved distinction for his works on astronomical subjects. In the year 1645 he was appointed Professor of Mathematics in the Collège Royal of Paris, a position he held with interruptions until his death.
126“Gassendi, Pierre.” (In: Nouvelle biographie.) Gassendi achieved distinction for his works on astronomical subjects. In the year 1645 he was appointed Professor of Mathematics in the Collège Royal of Paris, a position he held with interruptions until his death.
127The term “Precession of the Equinoxes,” as used in astronomy, refers to the slow retrograde motion of the equinoctial point to the west, or contrary to the order of the signs of the zodiac, this precession being estimated by Hipparchus to be one degree in one hundred years; in sixty-nine years by Ptolemy; in sixty-six years by Albategnius; in seventy years by Cassini, but it is now estimated to be one degree in about seventy and one half years. For one complete revolution of this equinoctial point through the twelve signs of the zodiac Hipparchus estimated a period of 36,000 years would be required; according to Ptolemy a period of 24,840 years; according to Albategnius 23,760 years; according to Cassini 25,200 years; whereas the period is now estimated to be a little more than 25,800 years. An important consequence of the precession of the equinoxes lies in the fact that the zodiacal constellations do not agree with the signs with which they coincided in ancient times, i.e., in the beginnings of astronomical science. The first star of Aries, which at the time of Eudoxus was at the intersection of the equator and the ecliptic, or at the equinoctial colure, has continued to increase its position in longitude. At the time of Ptolemy this was 6 degrees 40 minutes. Its longitude is now about 31 degrees, which places it entirely out of its original sign.
127The term “Precession of the Equinoxes,” as used in astronomy, refers to the slow retrograde motion of the equinoctial point to the west, or contrary to the order of the signs of the zodiac, this precession being estimated by Hipparchus to be one degree in one hundred years; in sixty-nine years by Ptolemy; in sixty-six years by Albategnius; in seventy years by Cassini, but it is now estimated to be one degree in about seventy and one half years. For one complete revolution of this equinoctial point through the twelve signs of the zodiac Hipparchus estimated a period of 36,000 years would be required; according to Ptolemy a period of 24,840 years; according to Albategnius 23,760 years; according to Cassini 25,200 years; whereas the period is now estimated to be a little more than 25,800 years. An important consequence of the precession of the equinoxes lies in the fact that the zodiacal constellations do not agree with the signs with which they coincided in ancient times, i.e., in the beginnings of astronomical science. The first star of Aries, which at the time of Eudoxus was at the intersection of the equator and the ecliptic, or at the equinoctial colure, has continued to increase its position in longitude. At the time of Ptolemy this was 6 degrees 40 minutes. Its longitude is now about 31 degrees, which places it entirely out of its original sign.
128Among the more important works of Cassini bearing upon this particular subject may be mentioned, Méthode pour trouver la différence des longitudes des lieux par les observations correspondantes des phases des éclipses de soleil 1670. (In: Histoire de l’Académie Royale des Sciences. Paris, 1733. Vol. I, p. 133.); La méthode de déterminer les longitudes des lieux de la terre par les observations des satellites de Jupiter. (In: Mémoires de l’Académie. Paris, 1743. Vol. X, p. 569.); De la méthode de déterminer173les longitudes des lieux de la terre par les observations des satellites de Jupiter. (In: Observations physiques et mathématiques. Paris, 1688. pp. 232-278.); Les hypothèses et les tables des satellites de Jupiter, réformees sur de nouvelles observations. (In: Mémoires de l’Académie, 1693. Paris, 1730. Vol. VIII, p. 363.); Méthode de déterminer les longitudes des lieux de la terre par des étoiles fixes et des planètes par la Lune. (In: Mémoires de l’Académie. Paris, 1703.)
128Among the more important works of Cassini bearing upon this particular subject may be mentioned, Méthode pour trouver la différence des longitudes des lieux par les observations correspondantes des phases des éclipses de soleil 1670. (In: Histoire de l’Académie Royale des Sciences. Paris, 1733. Vol. I, p. 133.); La méthode de déterminer les longitudes des lieux de la terre par les observations des satellites de Jupiter. (In: Mémoires de l’Académie. Paris, 1743. Vol. X, p. 569.); De la méthode de déterminer173les longitudes des lieux de la terre par les observations des satellites de Jupiter. (In: Observations physiques et mathématiques. Paris, 1688. pp. 232-278.); Les hypothèses et les tables des satellites de Jupiter, réformees sur de nouvelles observations. (In: Mémoires de l’Académie, 1693. Paris, 1730. Vol. VIII, p. 363.); Méthode de déterminer les longitudes des lieux de la terre par des étoiles fixes et des planètes par la Lune. (In: Mémoires de l’Académie. Paris, 1703.)
129See p. 349 of Bion’s work referred to below, n.138.
129See p. 349 of Bion’s work referred to below, n.138.
130Histoire de l’Académie Royale des Sciences. Paris, 1727.
130Histoire de l’Académie Royale des Sciences. Paris, 1727.
131Fiorini. Sfere terrestri e celesti. pp. 401-402.
131Fiorini. Sfere terrestri e celesti. pp. 401-402.
132Zedler, J. H. Groses universallexikon aller Wissenschaften und Kunste. Leipzig-Halle, 1745. Vol. 46, p. 153; Günther, Erd- und Himmelsgloben, p. 107, n. 1, reports that two of his Atlases, one of which is a particularly fine example of work representing astronomical geography, may be found in the K. Hof und Staatsbibliothek of München. More than one hundred and twenty-five maps of Gerhard and Leonhard Valk are listed by Phillips in his excellent work on Atlases in the Library of Congress. See index.
132Zedler, J. H. Groses universallexikon aller Wissenschaften und Kunste. Leipzig-Halle, 1745. Vol. 46, p. 153; Günther, Erd- und Himmelsgloben, p. 107, n. 1, reports that two of his Atlases, one of which is a particularly fine example of work representing astronomical geography, may be found in the K. Hof und Staatsbibliothek of München. More than one hundred and twenty-five maps of Gerhard and Leonhard Valk are listed by Phillips in his excellent work on Atlases in the Library of Congress. See index.
133Praxis astronomiae utrisque ut et geographiae exercita per usum Globi coelestis et terrestris tum et Planetolabii. Amstelodami, sumptibus Gerhardi Valk Calcographi apud quem prostant una globis et Planetolabio. n. d.
133Praxis astronomiae utrisque ut et geographiae exercita per usum Globi coelestis et terrestris tum et Planetolabii. Amstelodami, sumptibus Gerhardi Valk Calcographi apud quem prostant una globis et Planetolabio. n. d.
134There is considerable doubt as to the date assigned to the Valk globes in the Königliche Museum of Cassel, and to those in the Germanisches Nationalmuseum of Nürnberg. See reference to these above, p. 150.
134There is considerable doubt as to the date assigned to the Valk globes in the Königliche Museum of Cassel, and to those in the Germanisches Nationalmuseum of Nürnberg. See reference to these above, p. 150.
135“Senex, John,” with appended short bibliographical list. (In: Dictionary of National Biography.)
135“Senex, John,” with appended short bibliographical list. (In: Dictionary of National Biography.)
136See reference below, Chap.XIII,to Adams.
136See reference below, Chap.XIII,to Adams.
137“Bion, Nicolas,” with portrait. (In: Nouvelle biographie. Paris, 1853.)
137“Bion, Nicolas,” with portrait. (In: Nouvelle biographie. Paris, 1853.)
138Bion, Nicolas. Usage des globes célestes et terrestres, et des sphères, suivant les différents systèmes du monde. Paris, 1699. This work was reissued no less than six times before 1751, there being added to the title in the sixth edition, “Précédé d’un Traité de Cosmographie. Sixième édition, revue et corrigée par le Sieur N. Bion, ingénieur du Roi pour les instruments de Mathématique, sur le Quai de l’Orloge du Palais, au Soleil d’or, où trouvé des Sphères et des Globes de toutes façons”; same author. Traité de la construction et des principaux usages des instruments de mathématique. Paris, 1752. Bion’s work was translated into English by Edward Stone and published in London, 1723, under the title ‘Bion’s construction and principal use of mathematical instruments.’
138Bion, Nicolas. Usage des globes célestes et terrestres, et des sphères, suivant les différents systèmes du monde. Paris, 1699. This work was reissued no less than six times before 1751, there being added to the title in the sixth edition, “Précédé d’un Traité de Cosmographie. Sixième édition, revue et corrigée par le Sieur N. Bion, ingénieur du Roi pour les instruments de Mathématique, sur le Quai de l’Orloge du Palais, au Soleil d’or, où trouvé des Sphères et des Globes de toutes façons”; same author. Traité de la construction et des principaux usages des instruments de mathématique. Paris, 1752. Bion’s work was translated into English by Edward Stone and published in London, 1723, under the title ‘Bion’s construction and principal use of mathematical instruments.’
139See p.142.
139See p.142.
140Fiorini, op. cit., pp. 402-405.
140Fiorini, op. cit., pp. 402-405.
141Fiorini, op. cit., pp. 430-431.
141Fiorini, op. cit., pp. 430-431.
142“Seutter, Mattheus.” (In: Allgemeine deutsche Biographie.); Sandler, C. Mattheus Seuter und seine Landkarten. (In: Mitteilungen des Vereins für Erdkunde zu Leipzig. Leipzig, 1894. pp. 5-38.) This article contains a brief biography, a list of his several map publications, his colaborers, and a special consideration of his landkarten.
142“Seutter, Mattheus.” (In: Allgemeine deutsche Biographie.); Sandler, C. Mattheus Seuter und seine Landkarten. (In: Mitteilungen des Vereins für Erdkunde zu Leipzig. Leipzig, 1894. pp. 5-38.) This article contains a brief biography, a list of his several map publications, his colaborers, and a special consideration of his landkarten.
143See the list as given by Sandler, op. cit.
143See the list as given by Sandler, op. cit.
144“Morden, Robert.” (In: Dictionary of National Biography.)
144“Morden, Robert.” (In: Dictionary of National Biography.)
145Morden, R. An introduction to astronomy, geography, navigation, etc., made easy by the description and uses of the coelestial and terrestrial globes,174in seven parts. London, 1702. A list of his maps and principal geographical works is given in the article referred to in note 28. See also British Museum Catalogue of Printed Books and Maps.
145Morden, R. An introduction to astronomy, geography, navigation, etc., made easy by the description and uses of the coelestial and terrestrial globes,174in seven parts. London, 1702. A list of his maps and principal geographical works is given in the article referred to in note 28. See also British Museum Catalogue of Printed Books and Maps.
146l’Éloge de l’Abbé Nollet. (In: Histoire de l’Académie Royale des Sciences. Paris, 1773. p. 121.); Querard, J. M. La France Littéraire. Paris, 1826-1842. 10 vols. Vol. VI, p. 444; “Nollet, l’Abbé, Jean Antoine.” (In: Nouvelle biographie.)
146l’Éloge de l’Abbé Nollet. (In: Histoire de l’Académie Royale des Sciences. Paris, 1773. p. 121.); Querard, J. M. La France Littéraire. Paris, 1826-1842. 10 vols. Vol. VI, p. 444; “Nollet, l’Abbé, Jean Antoine.” (In: Nouvelle biographie.)
147Fiorini, op. cit., pp. 407-409.
147Fiorini, op. cit., pp. 407-409.
148“Doppelmayr, Johann Gabriel.” (In: Allgemeine deutsche Biographie.)
148“Doppelmayr, Johann Gabriel.” (In: Allgemeine deutsche Biographie.)
149Street, T. Astronomia Carolina. A new theory of the celestial motions. London, 1661.
149Street, T. Astronomia Carolina. A new theory of the celestial motions. London, 1661.
150This was a translation of Bion’s Traité de la construction et des principaux usages des instruments de mathématique, to which he gave a general title ‘Neueröfnete mathematische Werkschule.’ Leipzig, 1713. To the title of a later edition of this translation was prefixed, “Dritte Eröfnung,” Nürnberg, 1741. The reference is to a technical school of Nürnberg.
150This was a translation of Bion’s Traité de la construction et des principaux usages des instruments de mathématique, to which he gave a general title ‘Neueröfnete mathematische Werkschule.’ Leipzig, 1713. To the title of a later edition of this translation was prefixed, “Dritte Eröfnung,” Nürnberg, 1741. The reference is to a technical school of Nürnberg.
151Doppelmayr, Johann Gabriel. Historische Nachricht von nürnbergischen Mathematiscis und Künstlern. Nürnberg, 1730.
151Doppelmayr, Johann Gabriel. Historische Nachricht von nürnbergischen Mathematiscis und Künstlern. Nürnberg, 1730.
152Doppelmayr, op. cit.
152Doppelmayr, op. cit.
153Fiorini, op. cit., p. 394.
153Fiorini, op. cit., p. 394.
154Fiorini, op. cit., pp. 414-415.
154Fiorini, op. cit., pp. 414-415.
155A noted French geometrician, professor of mathematics at the Collège Royal de France, and at l’Académie d’Architecture, 1640-1718.
155A noted French geometrician, professor of mathematics at the Collège Royal de France, and at l’Académie d’Architecture, 1640-1718.
156Fiorini, op. cit., p. 415.
156Fiorini, op. cit., p. 415.
157Fiorini, op. cit., pp. 431-432.
157Fiorini, op. cit., pp. 431-432.
158Fiorini, op. cit., pp. 410-414.
158Fiorini, op. cit., pp. 410-414.
159Ferguson, James. Select mechanical exercises with a short account of the life of the author by himself. London, 1773; “Ferguson, James.” (In: A biographical dictionary of eminent Scotsmen, originally edited by Robert Chambers, revised by Rev. Thos. Thompson. London, 1856.); “Ferguson, James.” (In: Dictionary of National Biography.) The last two articles contain extensive references to Ferguson’s works, many of which are of a high order of merit.
159Ferguson, James. Select mechanical exercises with a short account of the life of the author by himself. London, 1773; “Ferguson, James.” (In: A biographical dictionary of eminent Scotsmen, originally edited by Robert Chambers, revised by Rev. Thos. Thompson. London, 1856.); “Ferguson, James.” (In: Dictionary of National Biography.) The last two articles contain extensive references to Ferguson’s works, many of which are of a high order of merit.
Ship. From Jodocus Hondius’ World map, 1611.
Few globe makers of striking distinction in this period.—An apparent decrease in scientific interest in globes, but an apparent increase in popular interest.—Gilles and Didier Robert de Vaugondy.—The work of Desnos.—Globes of Gian Francesco Costa the Venetian.—Globes of Akerman and Akrel.—The French globe makers Rigobert Bonne and Lalande.—Charles Messier and Jean Fortin.—Globes of George Adams the Elder, of George Adams the Younger, and of Dudley Adams.—Small globes of Nathaniel Hill.—The work of Innocente Alessandri and Pietro Scaltaglia.—Charles Francis Delamarche.—Manuscript globes of Vincenzo Rosa.—Geographer and globe maker Giovanni Maria Cassini.—Globes of William Cary.
Few globe makers of striking distinction in this period.—An apparent decrease in scientific interest in globes, but an apparent increase in popular interest.—Gilles and Didier Robert de Vaugondy.—The work of Desnos.—Globes of Gian Francesco Costa the Venetian.—Globes of Akerman and Akrel.—The French globe makers Rigobert Bonne and Lalande.—Charles Messier and Jean Fortin.—Globes of George Adams the Elder, of George Adams the Younger, and of Dudley Adams.—Small globes of Nathaniel Hill.—The work of Innocente Alessandri and Pietro Scaltaglia.—Charles Francis Delamarche.—Manuscript globes of Vincenzo Rosa.—Geographer and globe maker Giovanni Maria Cassini.—Globes of William Cary.
DURINGthe second half of the eighteenth century there is a continued interest in globe construction, yet the period is not one which is at all striking by reason of the good quality of the work done in this field. Since the latter part of the sixteenth century and the early part of the seventeenth, when, as has been noted, globes were so generally thought to be an essential part of a seaman’s outfit of navigating instruments, there had been a remarkable improvement in the construction of sailors’ charts resulting from carefully devised methods for the determination of geographical position and the employment of the results in map construction. The plane or sheet chartwas again regarded as a more convenient, a more handy guide in navigation than was the globe. If plane chart making had improved so had plane map making. There must, however, have been a considerable popular interest in globes, judging from the number which we know were constructed, and from the number of publications issued which were intended to point out the particular value attaching to globes in geographical and astronomical instruction, to explain their construction, and to indicate the character of the problems which, by their use, could be easily solved. The interest in such objects in this period, perhaps we may say, was rather more extensive than intensive, having more of a popular than of a scientific character.
Among the most prominent French map and globe makers of this period were Gilles Robert de Vaugondy (1688-1766) and Didier Robert de Vaugondy (1723-1786), father and son, reference usually being made to these men in geographical literature under the name “Robert” or “Vaugondy.”160Gilles, the grandson of Nicolas Sanson,161who had achieved first rank among geographers in his day for his maps and atlases, proved himself to be a worthy member of the family. He doubtless owed his earliest enthusiasm for geographical science to an inheritance of the maps, atlases, and other geographical publications of the grandfather, many of which he reissued, adding to the same his own valuable and independent work. Didier seems to have possessed talents none the less brilliant than were those exhibited by the father, and upon him, in succession, the king conferred the title Royal Geographer. In addition to his issue of maps and atlases, the father, often referred to simply as Robert de Vaugondy, became interested in the construction of globes, issuing his first pair, which must have been of small size, in the year 1751, in which work he doubtless was assisted by the son. The king, it appears, being so well pleased with these, directed the construction of others of larger dimensions, and in the same year a pair was issued, each globehaving a diameter of about 48 cm.162In the same preface163it is stated that the king gave orders for a terrestrial globe with map in manuscript, the same to have a diameter of about six feet, and the author further notes that “when this work shall have been completed and presented to His Majesty, I shall give an explanation of the work which I shall have been obliged to put upon the mechanical construction of the ball, also a description of the allegorical ornaments which will adorn the globe support, and a description of the geographical labor I shall have expended.” There appearing no later reference to this particular work, it seems hardly probable that it was ever actually undertaken. Delamarche gives us to understand that the king could not have been altogether pleased with Vaugondy’s first work, observing that while “it was done to the satisfaction of the Prince, he would have received the compensation due his talents and painstaking labor if the order of the king had been followed.”164Wherein he failed we do not know. It may have been this fact which discouraged him in his thought of undertaking the larger work.
In the construction of his globes having a diameter of 48 cm. he was assisted by the engravers, De la Haye and Gobin, the results being the production of a terrestrial and a celestial globe map of superior excellence.
While it has not been possible to obtain photographs of any of the Vaugondy globes, his map of the world dated 1751 is doubtless much the same as his globe map, presenting geographical records as he thought proper to present them, including a representation of the route of a number of the recent exploring expeditions.
Copies of his globes of the year 1751 cannot now be located, but reproductions of the same, the terrestrial dated 1773 and the celestial dated 1764, may be found in the Biblioteca Governativa of Lucca, in the Biblioteca Real of Caserta, and a copy of the celestial in the Osservatorio Patriarcale of Venice. Shortly after the first issue of theglobes in the year 1751 Vaugondy constructed other pairs, each having a diameter of 23 cm. These are dated 1754, copies of which may be found in the Biblioteca Palatina of Parma (two copies of the celestial), in the Pinacoteca Quirini of Venice, and a pair in the Palazzo of the Marquis of Spinola of Tassarolo.
L. C. (Pierre-Joseph ?) Desnos, a contemporary and an intimate friend of Didier Robert de Vaugondy, was a Danish geographer of distinction, winning for himself in early life the favor of his king and the title Geographical Engineer.165A considerable number of his maps are known, and especially worthy of note is his atlas, titled ‘Atlas Général et Élémentaire,’ dated Paris, 1778, there being other editions of the same with modifications. It has been possible to locate a few of his globes. The first, a celestial, appears to have been issued as early as the year 1750, a copy of which may be found in the Liceo of Reggio, as there may also be found in the same collection a Desnos terrestrial globe dated 1760. These have each a diameter of about 22 cm. and are reputed to be in an excellent state of preservation. On the brass meridian circle of the second, one reads, “Se fait et se vendre chez Desnos rue St. Julien le pauvre 1753,” which legend suggests an issue of the same as early as the date given, and this idea finds support in an engraved legend referring to this particular issue as being one revised and corrected. There is additional support for the belief that a pair was issued in the year 1753 in the fact that this date appears on the base of the celestial globe. The Desnos maps are all well engraved and, like others of the period, much was made of indicating the routes of many of the famous explorers, including a reference to the success of Bering as follows, “Les Moscovites ont recouvré ici en 1743 sur les terres basses.” In this we have one of the very early references to the Russian successes in this region.
Globe of L. C. Desnos, 1782.
Fig. 129a. Globe of L. C. Desnos, 1782.
In the year 1754 Desnos issued a pair of globes somewhat larger in size, giving to them a diameter of about 26 cm.Copies of these globes may be found in the private library of the Marquis Lalatta Costerbosa of Parma. In their general features they resemble the previous edition, with every evidence that the author wished to bring his records to date and to make them quite as full as his space would allow, noting in one of his inscriptions, “Nous n’avons tracé que par des points la figure des terres que l’Admiral De Fonté détaille dans se lettre que Mr. Delisle a rédu publique, en attendant l’authenticité de cette lettre, se que les relations des nouvelles découvertes rendent probable.” In the year 1772, it appears, he issued a third edition, noting that he had made use of the most recent observations of the Royal Academy of Sciences of Paris, bringing his star records down to the year 1770. Copies of this edition are in Piacenza.
Gian Francesco Costa, a Venetian engineer, architect, and engraver, gave some attention to the construction of globes.166In the year 1754 he prepared and issued, for the Venetian Academy, a terrestrial and a celestial globe, each about 24 cm. in diameter, basing the former on the work of Delisle and the latter on the observations and records of the English astronomer, John Flamsteed.167There is little of special value attaching to the globes of Costa. They give merely the well-known geographical and astronomical records of the day. Copies of his celestial globe may be found in the Biblioteca Municipale of Cagli and in the Osservatorio Astronomico of Rome. Fiorini refers to a copy of the terrestrial as belonging to the Biblioteca Universitorio of Urbino, and to one in the private library of Canon Ettore Fronzi of Senigallia.
There is said to be a fine manuscript terrestrial globe, dated 1756, in the private library of Professor Maximilian Tono, director of the Osservatorio Patriarcale di S. Maria della Salute in Venice. The ball is of wood, over which is a coating of varnish, and on this a world map has been drawn by hand. It appears to have been constructed merely for the personal use of the maker, P. Francesco Grandi.
In Andrea Akerman we find a native of Sweden interestedin the matter of globe making. Observing him to be one in possession of commendable talents, the Academy of Sciences of Stockholm, about the year 1750, granted to him a subsidy for the establishment of a workshop in Upsala. Here he undertook the construction of a terrestrial and of a celestial globe. So successful was his enterprise that, we are told, his productions found favor not only among those interested in his field within his own country, but among those similarly interested in Denmark, Germany, and Russia. Lalande makes mention of his work published through the Geographical Society of Upsala, dated 1776, noting that they had a diameter of about 22 inches.168A copy of his celestial globe may be found in the Osservatorio Astronomico of Milan, having a diameter of about 59 cm. It has an author and date legend, reading “Globus coelestis ex Catalogo Brittanico et De la Caillii observationibus ad annum 1800 cura Soc. Cosmog. Upsal. delineatus ab Andrea Akerman Reg. S. S. Apt. sculptore 1766.”
A pair of Akerman’s globes may also be found in the Geographisches Institut of Göttingen, the terrestrial dated 1759, and the celestial dated 1760 and dedicated to the President of the Academy of Sciences by the Geographical Society of Upsala. His globes, it appears, were reissued by Frederick Akrel,169an engraver who had assisted him in his work. The reissue of the Akerman globes dated 1779 contained corrections and additions which brought them to date, a fact which is noted in the following legend: “Globus terraqueus cura Societatis cosmographicae Upsalensis, editus ab Andr. Akerman Nunc emendatus.... opera Frederici Akrel 1779.” “Terrestrial globe issued under the auspices of the Cosmographical Society of Upsala, edited by Andrea Akerman, now corrected.... the work of Frederick Akrel 1779.”
The Biblioteca Universitario of Bologna possesses a very interesting manuscript terrestrial globe (Fig.128), the work of P. D. Pietro Rosini, an Olivetan monk. Word from thelibrarian with photograph kindly sent170gives us the information that this splendid globe was constructed in the year 1762, that it is a fine example of the period and is in an excellent state of preservation. It has a diameter of about 150 cm., being one of the largest constructed in Italy. The sphere is constructed of wooden plates securely braced. It has a meridian circle of heavy brass, a horizon circle of wood, having on its upper surface the usual representations referring to the constellations of the zodiac, the names of the months, and the principal directions. The circle on its inner edge is fashioned to receive the sphere, but it has an outer edge which is octagonal. Over the surface of the ball irregular pieces of paper were pasted and on this the geographical map was drawn by hand. Practically all geographical names are in the Italian language, as are the few geographical legends. The author and date legend in Latin reads, “D. Petrus Rosini de Lendinara MonusOlivusfecit ann: 1762.” “D. Petrus Rosini of Lendinara, an Olivetan monk made this in the year 1762.” Fiorini cites a reference to a letter written by Rosini wherein he is referred to as a professor, noting that other information concerning him seems to be unobtainable. From the fact of his having constructed a terrestrial globe and of his reference in his letter to an eruption of Mount Vesuvius, one would obtain the impression that he was a lover of scientific studies, and especially of geography.
Terrestrial Globe of Pietro Rosini, 1762.
Fig. 128. Terrestrial Globe of Pietro Rosini, 1762.
Rigobert Bonne (1727-1794), a distinguished French hydrographer and engineer, achieved likewise a very considerable reputation as a geographer and cartographer; indeed, the great majority of his scientific publications were within the field of geography.171With Joseph Jérôme Le Français de Lalande (1732-1807), one of the most famous of French astronomers,172he undertook the construction of a terrestrial and a celestial globe on which it was proposed to record in particular all of the most recent discoveries in both the field of geography and that of astronomy. To theseglobes they gave a diameter of about 31 cm., following, in constructing the gore maps with which each sphere was covered, the method of Bion, giving very careful consideration to the fact that the paper on which the maps were printed would expand somewhat unevenly when moistened with the paste used in the mounting. It seems probable that Bonne completed the terrestrial globe about the year 1771, and Lalande the celestial about the year 1775, and that the engraving of the maps was entrusted to Lattré, who had at this time a place of marked distinction in the profession he represented. Lalande says of the first issue of their work: “M. Lattré, Graveur ordinaire de Mgr. le Dauphin et de M. le Duc d’Orleans, publiera vers la fin de cette année 1771, deux globes d’un pied de diamètre, faites avec le plus grand soin, et sur les observations les plus récentes dessines avec une nouvelle exactitude; M. Bonne s’est chargé du globe terrestre, et je suis occupé actuellement du globe céleste. Ces globes seront en même temps réduits à 8 pouces et à six; chaque assortissement aura des sphères du même diamètre. Les prix seront annoncés dans les journaux.” A short time later these globe makers issued a publication in which they especially described their work, and Lalande noted in his ‘Bibliographie astronomique’ under the year 1775: “On trouve dans le Globe céleste toutes les étoiles alors connues, toutes les constellations nouvelles de la Caille, celle que j’avais introduite sous le nom de Messier, et toutes les découvertes géographiques obtenues depuis quelques années par plusieurs voyages autour du monde. On trouve ces globes chez Lamarche, rue du Foin.” While it has not been possible to locate a pair of the first edition of these globes, there may be found in the Osservatorio Astronomico of Palermo an undated terrestrial globe by Bonne and a celestial, clearly intended as a companion piece, dated 1779. In all probability they are but reprints of the first edition, having the same diameters, that is, about 31 cm. Each is furnished with a graduated horizon circle of wood,a graduated horizon circle of brass, and a small brass hour circle marked from I to XII, the whole being supported by three turned columns. They are reported as being well preserved. A pair has likewise been located in the Geographisches Institut of Göttingen.
The British Museum possesses a small terrestrial globe 7 cm. in diameter, signed N. Lane and dated 1776. Over a sphere of wood has been pasted the engraved gore map, which gives but little geographical information. It has not been possible to obtain a biographical reference to this globe maker, who probably was an unimportant printer of maps in London at this time.
Charles Messier (1730-1817), a French astronomer, map, and globe maker, was a native of Lorraine.173In the year 1751 he went to Paris, where he soon became associated with Delisle, first as his secretary, during which period he gave striking proof of his abilities, and later as his trusted assistant. His fame quickly extended to other lands, and he became a member of the Academy of Sciences of Berlin, also of the Academy of Sciences of St. Petersburg, each of which organizations published a considerable number of his scientific papers. It appears that his fame as an astronomer rested chiefly on his investigations of the nature and the movements of comets, becoming known as “le furet des comètes.” Messier’s contemporary and intimate associate was Jean Fortin (1750-1831), whose fame as a scientist rests primarily upon his work as a maker of mathematical instruments. Like Bonne and Lalande, who labored jointly in the construction of terrestrial and celestial globes, Messier and Fortin were active in the same field. In the year 1780 they placed on sale at the shop of Fortin in Rue de la Harpe pairs of their globes, each having a diameter of about 31 cm. Lalande refers to them as “Globes d’un pied de diamètre. Chez Fortin. Paris 1780. Le Globe céleste par Messier: Les étoiles réduites à 1800, d’après les tables que j’avais faites pour mon Globe. Le Globe terrestre par Fortin d’aprèsles nouvelles découvertes géographiques.” It has not been possible to locate a copy of Fortin’s terrestrial globe, but an example of Messier’s celestial may be found in the Osservatorio Meteorico of the University of Parma, in the Istituto di Fisica of the University of Siena, in the Biblioteca S. Scolastica e S. Benedetto in Subiaco, and in the Liceo Machiavelli of Lucca. Copies of a celestial globe by Fortin, each about 22 cm. in diameter, may be found in the Convento dei Frati della Missione of Chieri, in the Biblioteca Comunale of Correggio, and in the Liceo Andrea Doria of Novi.
The Hispanic Society of America possesses a good example of Fortin’s work (Fig.129), this being an armillary sphere, having at the common center of its system of circles a terrestrial globe about 5 cm. in diameter. It is without date, but probably was constructed about the year 1780. In the South Pacific within a cartouch is the inscription “A Paris chez le Sr. Fortin. Rue de la Harpe.” This example is 41 cm. in height, having a graduated horizon circle 31 cm. in diameter, supported on a turned wooden base by four arms or quadrants. The terrestrial globe map of twelve gores is much darkened with age but gives in good outline the several continents with a few geographical names. Its armillae are of pasteboard, consisting of a supporting meridian circle within which the several celestial circles can be revolved on the extended polar axis of the terrestrial globe. These celestial circles represent the zodiac, on the surface of which are given the names of the several zodiacal constellations and the names of the months, the meridian circles, the tropics, the equator, the two polar circles with an hour circle at the north pole, all of these being so attached as not to permit of independent motion. Attached to one of the meridian circles is a device for representing eclipses, the one of the sun and the other of the moon.
Armillary Sphere of Jean Fortin, 1780.
Fig. 129. Armillary Sphere of Jean Fortin, 1780.
George Adams, the elder (fl. 1760), maker of mathematical instruments and optician to His Majesty George III of England, won great distinction for himself as a maker ofterrestrial and celestial globes, and as a writer on geographical and astronomical subjects. With him in his work were associated his sons George (1750-1795) and Dudley, to whom, after the death of the brother, fell the management of the business. We know of Dudley’s success in his work, which he must have carried on well into the first quarter of the nineteenth century, though we know neither the date of his birth nor of his death. In the year 1766 the elder Adams issued the first edition of a very useful work on globes, including a consideration of their construction and their uses.174In the year 1810 appeared the thirtieth edition of this work, with a preface and additions by the son, Dudley. The title of the work suggests that the first issue was prepared as a description of globes which the author had just put upon the market, but globes of his bearing a date so early seem to be unknown. None have been located which appear to have been issued earlier than the year 1772, after which time we know there were repeated issues signed either “G. Adams” or “D. Adams.” A pair of the date 1782 may be found in the Museo Astronomico of Rome. These appear to be in a fair state of preservation (Fig.130). Each has a diameter of about 46 cm., being furnished with a graduated brass meridian circle within which the sphere revolves, a graduated horizon circle of wood, having pasted thereon the usual records referring to the zodiacal constellations and to the time reckoning. This horizon circle rests upon four supporting arms or quadrants, which in turn are carried by a tripod base of wood. The spheres are of pasteboard with plaster of Paris covering, on which the respective maps have been pasted, each map being composed of twenty-four gores or biangles, or of twice twenty-four, since each is cut on the line of the equator to facilitate mounting. The geographical records given on the terrestrial globe map are practically such as one could find on the best plane maps of the period, always, however, in this connection remembering that those regions which had not been visited or carefullycharted by explorers gave to the map maker considerable latitude for a play of his imagination. It is interesting, for example, here to note that Adams appears to have been very uncertain about his information relative to the western and southwestern part of the present United States. He seems to have caught from some explorer’s account that the Colorado River flows westward, emptying directly into the Pacific, and he so marks it, giving, however, to the river the name St. Bartholomew. The celestial globe revolves on the axis of the equator, the gores being made to terminate at the poles of the ecliptic. Constellations are represented so far as they have been named by astronomers to date, the several figures being artistically drawn, on which color has been somewhat sparingly employed. Each constellation is given its old name with an English translation; star names, when given, are frequently in Arabic, Latin or Chinese, and are distinguished by Greek letters. Recently discovered stars are so marked as to be easily distinguished.