Chapter 5

Fig. 18.

Fig. 18.

Fig. 19.

Fig. 19.

4 4 is the platform upon which the parts of the instrument are fastened. 3 3 is the vertical wooden back, or support, for the keys and brass standard, 17. 2 is the barrel of the clock work contained within the frames, 5 5. With the clock work, a fly is connected for regulating its motion, and a stop, a, for holding the fly, when the instrument is not in use; 6 is a very fine tooth wheel, on the end of the letter cylinder; 7 is also a fine tooth wheel, on a shaft driven by the clock train. In the front view is seen, at 9, another fine tooth wheel, suspended upon a lever, the end of which lever is seen at 8,figure 18, A′. 18 is a stop, in the standard, 17, to limit the return motion of the cylinder, which also has a pin at 18, at right angles with the former. 16 is a small weight, attached to a cord, and at its other end, is fastened to the cylinder atb. The relative position of the three fine tooth wheels, and the lever, 8, are better seen in a section of the instrument,figure 19. The same figures represent the same wheels as in the other views, A′ and B′. 7 is the wheel driven by the weightand train. 6 the wheel, on the end of the cylinder, to which motion is to be communicated, and 9 is the wheel, suspended upon the end of the lever, 8, of which 10 is its centre. 1 1, is the brass lettered cylinder. 11 and 13 the buttons of the two keys, one a little in advance of the other. 14 is the spring and the two friction rollers of the key, may be seen directly under the buttons. 15 is the stop pin. 16 the small weight and cord attached to the cylinder, to bring it back after each operation. 4 4 is the end view of the mahogany platform. The arrows show the direction which the wheels take, when the lever is pressed with the thumb of the left hand at 8, so as to bring wheel 9, up against 7 and 6, connecting the two, as shown by the dotted lines. Wheel, 7, communicating its motion to 9, and 9 to 6, which causes the metallic letters to pass under the rollers in the direction of the arrow. Now, in order to use the instrument, let it be supposed a letter is to be sent. The stop,a,figure 18, A′, is removed from the fly, and the clock work is set in motion by the large weight. Then the thumb of the left hand presses upon thelever, 8, at the same time,key,R, is pressed down by the finger of the right hand, so that the small roller comes in contact with the cylinder. At the instant the roller touches the cylinder, the letter begins to move under the small roller, making and breaking the circuit with mechanical accuracy. When the letter has passed under the small roller, the thumb is taken off the lever, 8, and the finger from the key, R. The cylinder is then detached from its gear wheel, 9, and the weight, 16, instantly carries it back to its former position, in readiness for the next letter. Then thelever, 8, and thekey,E, are pressed down at the same instant for the next letter, and it is carried under the small roller in the same manner as the first, which, when finished, the wheel, 9, is suffered to fall, and the cylinder returns to its natural position again. The same manipulation is repeated for the remaining letters of the word.

In the following figure,20, is represented the flat correspondent. It somewhat resembles the keyed correspondent, but without keys or clock work. A represents the arrangement of the letters, presenting a flat surface. Those portions in the figure, marked by black lines and dots, represent the letters which are made of brass. That portion which is blank, represents ivory or some hard insulating substance, surrounding the metal of the letters. As in the keyed correspondent, each letter and parts of each letter extend below the ivory and are soldered to a brass plate, the size of the whole figure, A. A sectional view of this is seen at 1 1, which is ivory, and 2 2, the brass plate below. The whole is fastened to a table, B. 5′ and 5′ is a brass plate, called the guide plate, with long openings, represented by the blanks, so that when the guide plate, 5′ 5′, is put over the form, A, each opening isdirectly over its appropriate letter, and is a little longer than the length of the letter. 4′ and 4′ is the wooden frame, to which the guide plate is secured. The ends of this frame are seen in the sectionalfigureat 4 4, and the guide plate at 5 5. The dark portions of which, represent the partitions, and the blanks the openings. It will be observed here that the plate, 5 5, resting upon the wooden frame 4 4, is completely insulated from the brass letter plate 1 1, and 2 2. The blank space between them showing the separation. It is, however, necessary that the guide plate should be connected with one pole of the battery, and the letter plate with the other pole. For this purpose a brass screw, F, passes up through the table, B, and through 4, into the guide plate 5 5. The head of the screw has a small hole through it, for passing in the end of the copper wire, G, from the battery, and a tightening screw below, by which a perfect connection is made. At D, is another screw, passing through the table, and into the letter plate, 2 2. To the head of this screw is also connected another copper wire, E, extending to one of the poles of the battery.

Fig. 20.

Fig. 20.

This instrument, when used, occupies the place of the key or correspondent, in the description heretofore given of the register. The circuit is now supposed to be complete, except, between the guide plate, 5 5, and the letter plate, 2 2. Now, if a metallic rod, or pencil, C, be taken, and the small end passed through one of the openings in the shield, above the letter, its point will rest upon the ivory; and if it be gently pressed laterally against the side of the opening of the guide plate, at the same time a gentle pressure is given to it upon the ivory, and then drawn in the direction of the arrow, 4′, it is obvious, that when the metallic point reaches, for instance, the short line of letter B, the circuit will be closed; and the fluid will pass from the battery along the wire to the screw, F, then to the guide plate, along the plate, to the rod, thence to the metallic short line of letter B, thence to the letter plate below, thence to the screw, from the screw to the wire, and thence to the battery. When the point has passed over the short metallic line, it reaches the ivory, and the circuit is broken, then, when it comes upon the first metallic dot, it is again completed, and in the same manner the circuit will be completed and broken, until the point has passed over the whole of the letter. The use of this instrument requires great uniformity of time or speed in drawing the point over the letter form. The steel point of a common ever-pointed pencil is frequently used in place of the pointed rod, C.

The seventh plan is that heretofore explained as being now in use, of which there are several varieties. This mode of writing requires that the operator should be perfectly familiar with the alphabet, as he is obliged to spell the word, and measure the time, required by the various parts of each character making the letter. It might seem difficult, yet experience has proved it to be superior to every other method yet devised. By this method, intelligence is transmitted faster than it can be written down by reporters; and after a little practice, with so perfect a formation of the characters, that mechanical accuracy can alone be compared to it. As this is the simplest in its construction, it will doubtless supercede all the others. We will now give its simplest form.


Back to IndexNext