Fig. 28.Side view of a specimen ofIsotelus gigasDekay, from which the test of the pleural lobes has been broken to show the position of the Panderian organs. Natural size. Specimen in the Museum of Comparative Zoology.
Fig. 28.Side view of a specimen ofIsotelus gigasDekay, from which the test of the pleural lobes has been broken to show the position of the Panderian organs. Natural size. Specimen in the Museum of Comparative Zoology.
The explanation of the Panderian organs as openings of poison glands is less radical than the one just set forth, and so possibly lies nearer the truth. One would expect poison glands to lie at the bases of fangs, and so they do in specialized animals like chilopods and scorpions, but the trilobites may have had the less effective method of pouring out the poison from numerous glands. The purpose may have been merely to paralyze the brachiopod or pelecypod which was incautious enough to open its shell in proximity to the asaphid.
MUSCULATURE.
This is a field which is rather one for investigation than for exposition. Very little has been done, though probably much could be. The chief obstacle to a clearer understanding of the muscular system lies in the difficulty of getting at the inner surface of the test without obscuring the faint impressions in the process.
There exist in the literature a number of references to scars of attachment of muscles, and any study of the subject should of course begin by the collection of such data. I shall at this time refer to only a few observations on the subject.
The structure and known habits of trilobites make it obvious that strong flexor and extensor muscles must have been present, and some trace of them and of their points of attachment should be found. It is likely that their proximal ends were tough tendons. The muscles holding up the heart and alimentary canal would be less likely to reveal their presenceby scars, but there must have been at least one pair of strong muscles extending from the under side of the head across to the hypostoma. Judging from the method of attachment, the muscles moving the limbs were short ones, chiefly within the segments of the legs themselves.
Flexor Muscles.
Since the majority of trilobites had the power of enrollment, and seem also to have used the pygidia in swimming, the flexors must have been important muscles. Beecher (1902, p. 170) appears to have been the only writer to point out any tangible evidence of their former presence. Walcott (1881, p. 199) had shown that the ventral membrane was reinforced in each segment by a slightly thickened transverse arch. Beecher showed that on this thickened arch inTriarthrus,Isotelus,Ptychoparia, andCalymene, there are low longitudinal internal ridges or folds. One of these is central, and there is a pair of diagonal ridges on either side. Beecher interpreted these ridges as separating the strands of the flexor muscles, and believed that a line of median ridges divided a pair of longitudinal muscles, while the outer ridges showed the place of attachment of the pair of strands which was set off to each segment. He did not discuss the question as to where the anterior and posterior ends were attached. In trilobites with short pygidia, the attachment would probably have been near the posterior end, and it is possible that the two scars beneath the doublure and back of the last appendifers inCeraurusmay indicate the point of attachment in that genus.
There is as yet no satisfactory evidence as to where the anterior ends of the flexors were attached. InApusthese muscles unite in an entosternal sinewy mass above the mouth, but no evidence of any similar mass has been found in the trilobites and it is likely that the muscles were anchored somewhere on the test of the head.
Extensor Muscles.
The exact position of these muscles has not been previously discussed. The interior of the dorsal test shows no such apodemes as are found on the mesosternites, but, as I have shown in the discussion of the alimentary canal ofCalymeneandCeraurus, there is an opening on either side of the axial lobe between the dorsal test and the abdominal sheath, and it is entirely probable that an extensor muscle passed through each of these. The abdominal sheath extends only along the posterior region of the glabella and the anterior part of the thorax, and probably served to protect the soft organs from the strain of the heavy muscles. The extensors (see fig. 29) probably lay along the top of the axial lobe on either side of the median line of the thorax to the pygidium, where they appear to have been attached chiefly on the under side of the anterior ring of the axial lobe, although strands probably continued further back. This is above and slightly in front of the fulcral points on the pleura, and meets the mechanical requirements.Ceraurus(Walcott, 1875, and 1881, p. 222, pl. 4, fig. 5) shows a pair of very distinct scars on the under side of the first ring of the pygidium, and in many other trilobites (Illænus,Goldius, etc.) distinct traces of muscular attachment can be seen in this region, even from the exterior. The anterior ends were probably attached by numerous small strands to the top of the glabella, and, principally, to the neck-ring.
On enrolling, the sternites of all segments are pulled forward and the tergites backward. In straightening out, the reverse process takes place. The areas available for muscular attachmentare so disposed as to indicate longitudinal flexor and extensor muscles rather than short muscles extending from segment to segment. Indeed, the tenuity of the ventral membrane is such as to preclude the possibility of enrollment by the use of muscles of that sort, while powerful longitudinal flexors could have been anchored to cephalon and pygidium. The strongly marked character of the neck-ring of trilobites is probably to be explained as due to the attachment of the extensor muscles, rather than to its recent incorporation in the cephalon. The same is true of the anterior ring on the pygidium.
Fig. 29.Restoration of a part of the internal organs ofCeraurus pleurexanthemusas seen from above. At the sides are the extensor muscles, and in the middle, the heart overlying the alimentary canal. Drawn by Doctor Elvira Wood, under the supervision of the author.
Fig. 29.Restoration of a part of the internal organs ofCeraurus pleurexanthemusas seen from above. At the sides are the extensor muscles, and in the middle, the heart overlying the alimentary canal. Drawn by Doctor Elvira Wood, under the supervision of the author.
Possible preservations of extensors and flexors in Ceraurus.—Among Doctor Walcott's sections are four slices which I should not like to use in proving the presence of longitudinal muscles, but which may be admitted as corroborative evidence. Two of these transverse sections (Nos. 114 and 199) show a dorsal and a ventral pair of dark spots in positions which suggest that they represent the location of the dorsal and ventral muscles, while two others (Nos. 131 and 140) show only the upper pair of spots. The chief objection to thisinterpretation is that it is difficult to imagine how the muscles could be so replaced that they happen to show in the section. Both the sections showing all four spots are evidently from the anterior part of the thorax, as they show traces of the abdominal sheath, which seems to be squeezed against the inside of the axial lobe, with the muscles (?) forced out to the sides. The ventral pair lie just inside the appendifers, but even if they are sections of muscles, all four are probably somewhat out of place.
Hypostomial Muscles.
The hypostoma fits tightly against the epistoma, or the doublure when the epistoma is absent, but in no trilobite has it ever been seen ankylosed to the dorsal test, and its rather frail connection therewith is evidenced by the relative rarity of specimens found with it in position. That the hypostoma was movable seems very probable, and that it was held in place by muscles, certain. The maculæ were always believed to be muscle scars until Lindstroem (1901, p. 8) announced the discovery by Liljevall of small granules on those ofGoldius polyactin(Angelin). These were interpreted as lenses of eyes by Lindstroem, who tried to show that the maculæ of all trilobites were functional or degenerate eyes. Most palæontologists have not accepted this explanation, and since the so called eyes cover only a part of the surface of the maculæ, it is still possible to consider the latter as chiefly muscle-scars.
In Lindstroem's summary (1901, pp. 71, 72) it is admitted that the globular lenses are found only inBronteus(Goldius) (three Swedish species only) andCheirurus spinulosusNieszkowski, while the prismatic structure supposed to represent degenerate eyes was found in eleven genera (Asaphidæ, Illænidæ, Lichadidæ). All of these are forms with well developed eyes, and Lindstroem himself points out that the appearance of actual lenses in the hypostoma was a late development, long after the necessity for them would appear to have passed.
The use of the hypostoma has been discussed by Bernard (1892, p. 240) and extracts from his remarks are quoted:
The earliest crustacean-annelids possessed large labra or prostomia projecting backward, still retained in the Apodidæ and trilobites. This labrum almost necessitated a very deliberate manner of browsing. The animal would creep along, and would have to run some way over its food before it could get it into its mouth, the whole process, it seems to us, necessitating a number of small movements backwards and forwards. Small living prey would very often escape, owing to the fact that the animal's mouth and jaws were not ready in position for them when first perceived. The labrum necessitates the animal passing forwards over its prey, then darting backward to follow it with its jaws. We here see how useful the gnathobases ofApusmust be in catching and holding prey which had been thus passed over. Indeed the whole arrangement of the limbs ofApuswith the sensory endites forms an excellent trap to catch prey over which the labrum has passed.
In alcoholic specimens ofApusthe labrum is not in a horizontal plane, as it is in most well preserved trilobites, but is tipped down at an angle of from 30 to 45, and the big mandibles lie under it. It has considerable freedom of motion and is held in place by muscles which run forward and join the under side of the head near its posterior margin. It seems entirely possible that the hypostoma of the trilobite had as much mobility as the labrum ofApus, and that by opening downward it brought the mouth lower and nearer the food. It will be recalled that the hypostomata of practically all trilobites are pointed at the posterior margin, there being either a central point or a pair of prongs. By dropping down the hypostoma until the point or prongs rested on or in the substratum, and sending food forwardto the mouth by means of the appendages, a trilobite could make of itself a most excellent trap, and if the animal could dart backward as well as forward, the hypostoma would be still more useful. There is no reason to suppose that they could not move backward, and the "pygidial antennæ" ofNeolenusindicate that animals of that genus at least did so. This habit of dropping down the hypostoma would also permit the use of those anterior gnathobases which seem too far ahead of the mouth in the trilobites with a long hypostoma.
For actual evidence on this point, it is necessary to have recourse once more to Doctor Walcott's exceedingly valuable slices. From such sections ofCeraurusas his Nos. 100, 106, 108, 170, and 173, it is evident that the hypostoma of that form could be dropped considerably without disrupting the ventral membrane (fig. 30). Sections ofCalymenealready published (Walcott 1881, pl. 5, figs. 1, 2) show the hypostoma turned somewhat downward, and the slices themselves show sections of the anterior pair of gnathobases beneath the hypostoma. When the hypostoma was horizontal, these gnathobases were crowded out at the sides.
Fig. 30.—Longitudinal section of cephalon ofCeraurus pleurexanthemus, to show position of the mouth and folds of the ventral membrane between the glabella and the hypostoma. The test is in solid black and the part within the ventral membrane dotted. From a photographic enlargement. Specimen 169. × 3.9.
Fig. 31.—A copy of Doctor Moberg's figure ofNileus armadillo, showing the position of the muscle scars.
If the hypostoma were used in the manner indicated, the muscles must have been more efficient than those of the labrum ofApus, and it is probable that they crossed to the dorsal test. Just where they were attached is an unsolved problem. Barrande (1852, pl. 1, fig. 1) has indicated an anterior pair of scars and a single median one on the frontal lobe ofDalmanitesthat may be considered in this connection, and also three pairs of scars on the last two lobes of the glabella ofProëtus(1852, pl. 1, fig. 7). Moberg (1902, p. 295, pl. 3, figs. 2, 3, text fig. 1) has described in some detail the muscle-scars of a rather remarkable specimen ofNileus armadilloDalman. While, as I shall point out, I do not agree wholly with Professor Moberg's interpretation, I give here a translation (made for Professor Beecher) of his description, with a copy of his text figure:
The well preserved surface of the shell permits one to note not only the tubercle (t) but a number of symmetrically arranged glabellar impressions. And because of their resemblance to the muscular insertions of recent crustaceans, I must interpret them as such. They appear partly as rounded hollows (k and i), also as elongate straight or curved areas (a, b, c, e, g, h) made up of shallow impressions or furrows about 1 mm. long, sub-parallel, and standing at an angle to the trend of the areas. Impression e is especially wellmarked, inasmuch as the perpendicular furrows are arranged in a shallow crescentic depression; and impression d shows besides the obscure furrows a number of irregularly rounded depressions. Larger similar ones occur at f, and in part extend over toward g.The meaning of these impressions, or their myologic significance, could be discussed, although such discussion might rather be termed guessing.Inner organs, such as the heart and stomach, might have been attached to the shell along impressions a and b. Also along or behind c and h, which both continue into the free cheeks, ligaments or muscular fibers may have been inserted. From d, e, f, and g, muscles have very likely gone out to the cephalic appendages. Against this it may be urged that impression d is too far forward to have belonged to the first pair of feet. Again, the impression h may in reality represent two confluent muscular insertions, from the first of which, in that case, arose the muscles of the fourth pair of cephalic feet. Were this the case, the muscles of the first pair of cheek feet should be attached at e. And d in turn may be explained as the attachment of the muscles of the antennæ, k those of the hypostoma, and from i possibly those of the epistoma. That k is here named as the starting point of the hypostomial muscles and not those of the antennæ, depends partly on the analogous position of i and partly on the fact that the hypostoma ofNileus armadillo(text figure, in which the outline of the hypostoma is dotted), by reason of it? wing-like border, could not have permitted the antennæ to reach forward, but rather only outward or backward.
The well preserved surface of the shell permits one to note not only the tubercle (t) but a number of symmetrically arranged glabellar impressions. And because of their resemblance to the muscular insertions of recent crustaceans, I must interpret them as such. They appear partly as rounded hollows (k and i), also as elongate straight or curved areas (a, b, c, e, g, h) made up of shallow impressions or furrows about 1 mm. long, sub-parallel, and standing at an angle to the trend of the areas. Impression e is especially wellmarked, inasmuch as the perpendicular furrows are arranged in a shallow crescentic depression; and impression d shows besides the obscure furrows a number of irregularly rounded depressions. Larger similar ones occur at f, and in part extend over toward g.
The meaning of these impressions, or their myologic significance, could be discussed, although such discussion might rather be termed guessing.
Inner organs, such as the heart and stomach, might have been attached to the shell along impressions a and b. Also along or behind c and h, which both continue into the free cheeks, ligaments or muscular fibers may have been inserted. From d, e, f, and g, muscles have very likely gone out to the cephalic appendages. Against this it may be urged that impression d is too far forward to have belonged to the first pair of feet. Again, the impression h may in reality represent two confluent muscular insertions, from the first of which, in that case, arose the muscles of the fourth pair of cephalic feet. Were this the case, the muscles of the first pair of cheek feet should be attached at e. And d in turn may be explained as the attachment of the muscles of the antennæ, k those of the hypostoma, and from i possibly those of the epistoma. That k is here named as the starting point of the hypostomial muscles and not those of the antennæ, depends partly on the analogous position of i and partly on the fact that the hypostoma ofNileus armadillo(text figure, in which the outline of the hypostoma is dotted), by reason of it? wing-like border, could not have permitted the antennæ to reach forward, but rather only outward or backward.
My own explanation would be that impressions e, f, and g correspond to the glabellar furrows, h the neck furrow, and all four show the places of attachment of the appendifers. Those at d may possibly be connected with the antennæ, although I should expect those organs to be attached under the dorsal furrows at the sides of the hypostoma. It will be noted that either b, k, or i correspond well with the maculæ of the hypostoma and some or all of them may be the points of attachment of hypostomial muscles. They correspond also with the anterior scars ofDalmanites.
EYES.
While I have nothing to add to what has been written about the eyes of trilobites, this sketch of the anatomy would be incomplete without some reference to the little which has been done on the structure of these organs.
Quenstedt (1837, p. 339) appears to have been the first to compare the eyes of trilobites with those of other Crustacea. Johannes Müller had pointed out in 1829 (Meckel's Archiv) that two kinds of eyes were found in the latter group, compound eyes with a smooth cornea, and compound eyes with a facetted coat. Quenstedt citedTrilobites esmarkiiSchlotheim (=Illænus crassicaudaDalman) as an example of the first group, andCalymene macrophthalmaBrongniart (=Phacops latifronsBronn) for the second. Misreading the somewhat careless style of Quenstedt, Barrande (1852, p. 133) reverses these, one of the few slips to be found in the voluminous writings of that remarkable savant.
Burmeister (1843; 1846, p. 19) considered the two kinds of eyes as essentially the same, and accounted for the conspicuous lenses of Phacops on the supposition that the cornea was thinner in that genus than in the trilobites with smooth eyes.
Barrande (1852, p. 135) recognized three types of eyes in trilobites, adding to Quenstedt's smooth and facetted compound eyes the groups of simple eyes found in Harpes. In his sections of 1852, pl. 3, figs. 15-25, which are evidently diagrammatic, he shows separated biconvex lenses in both types of compound eyes,PhacopsandDalmaniteson one hand, andAsaphus,Goldius,Acidaspis, andCyclopygeon the other. Clarke ( 1888), Exner ( 1891 ) and especially Lindstroem (1901) have since published much more accurate figures and descriptions. The first person to study the eye in thin section seems to have been Packard (1880), who published some very sketchy figures of specimens loaned him by Walcott. Hestudied the eyes ofIsotelus gigas,Bathyurus longispinus,Calymene, andPhacops, and decided that the two types of eyes were fundamentally the same. He also compared them with the eyes ofLimulus.
Clarke (1888), in a careful study of the eye ofPhacops rana, found that the lenses were unequally biconvex, the curvature greater on the inner surface. The lens had a circular opening on the inner side, leading into a small pear-shaped cavity. The individual lenses were quite distinct from one another, and separated by a continuation of the test of the cheek.
Exner (1891, p. 34), in a comparison of the eyes of Phacops andLimulus, came to the opinion that they were very unlike, and that the former were really aggregates of simple eyes.
Lindstroem (1901, pp. 27-31) came to the conclusion that besides the blind trilobites there were trilobites with two kinds of compound eyes, trilobites with aggregate eyes, and trilobites with stemmata and ocelli. His views may be briefly summarized.
I. Compound eyes.1. Eyes with prismatic, plano-convex lenses."A pellucid, smooth and glossy integument, a direct continuation of the common test of the body, covers the corneal lenses, quite as is the case in so many of the recent Crustacea. The lenses are closely packed, minute, usually hexagonal in outline, flat on the outer and convex on the inner surface. Such eyes are best developed inAsaphus,Illænus,Nileus,Bumastus,Proëtus, etc."2. Eyes with biconvex lenses.The surface of the eye is a mass of contiguous lenses, covered by a thin membrane which is frequently absent from the specimens, due to poor preservation. The lenses are biconvex, and being in contact with one another, are usually hexagonal, although in some cases they nearly retain their globular shape. Such eyes are found in Bury care,Peltura,Sphæropthalmus,Ctenopyge,Goldius,Cheirurus, and probably others.II. Aggregate eyes.The individual lenses are comparatively large, distinct from one another, each lying in its own socket. There is, however, a thin membrane, which covers all those in any one aggregate, and is a continuation of the general integument of the body. This membrane is continued as a thickened infolding which forms the sockets of the lenses.Such eyes are known in the Phacopidæ only.III. Stemmata and ocelli.The stemmata are present only inHarpes, where there may be on the summit of the cheek two or three ocelli lying near one another. Each, viewed from above, is nearly circular in outline, almost hemispheric, glossy and shining. In section they prove to be convex above and flat or slightly concave beneath. The test covers and separates them, as in the case of the aggregate eyes.The ocelli of the Trinucleidæ andEoharpesare smaller, and the detailed structure not yet investigated.Lindstroem concludes that so far as its facets or lenses are concerned, the eye of the trilobite shows the greatest analogy with the Isopoda, and the least withLimulus.
I. Compound eyes.
1. Eyes with prismatic, plano-convex lenses.
"A pellucid, smooth and glossy integument, a direct continuation of the common test of the body, covers the corneal lenses, quite as is the case in so many of the recent Crustacea. The lenses are closely packed, minute, usually hexagonal in outline, flat on the outer and convex on the inner surface. Such eyes are best developed inAsaphus,Illænus,Nileus,Bumastus,Proëtus, etc."
2. Eyes with biconvex lenses.
The surface of the eye is a mass of contiguous lenses, covered by a thin membrane which is frequently absent from the specimens, due to poor preservation. The lenses are biconvex, and being in contact with one another, are usually hexagonal, although in some cases they nearly retain their globular shape. Such eyes are found in Bury care,Peltura,Sphæropthalmus,Ctenopyge,Goldius,Cheirurus, and probably others.
II. Aggregate eyes.
The individual lenses are comparatively large, distinct from one another, each lying in its own socket. There is, however, a thin membrane, which covers all those in any one aggregate, and is a continuation of the general integument of the body. This membrane is continued as a thickened infolding which forms the sockets of the lenses.
Such eyes are known in the Phacopidæ only.
III. Stemmata and ocelli.
The stemmata are present only inHarpes, where there may be on the summit of the cheek two or three ocelli lying near one another. Each, viewed from above, is nearly circular in outline, almost hemispheric, glossy and shining. In section they prove to be convex above and flat or slightly concave beneath. The test covers and separates them, as in the case of the aggregate eyes.
The ocelli of the Trinucleidæ andEoharpesare smaller, and the detailed structure not yet investigated.
Lindstroem concludes that so far as its facets or lenses are concerned, the eye of the trilobite shows the greatest analogy with the Isopoda, and the least withLimulus.
SUMMARY.
The simplest eyes found among the Trilobita are the ocelli. These consist of a Simple thickening of the test to form a convex surface capable of concentrating light. The similarity in position of the paired ocelli of trilobites and the simple eyes of copepods has perhaps a significance.
The schizochroal eyes may well be compared with the aggregate eyes of the chilopods and scorpions. The mere presence of a common external covering is not sufficient to prove this a true compound eye, especially as the covering is merely a continuation of the general test.
The holochroal eyes are of two kinds, one with plano-convex and one with biconvex lenses. The latter would seem to be mechanically the more perfect of the two, and it is worthy of note that the trilobites possessing the biconvex lenses have, in general, much smaller eyes than those with the other type.
If, as some investigators claim, the parietal eye of Crustacea originates by the fusion of two lateral ocelli, trilobites show a primitive condition in lacking this eye, which may have originated through the migration toward the median line of ocelli like those of the Trinucleidæ.
SEX.
That the sexes were separate in the Trilobita there can be very little doubt, but the study of the appendages has as yet revealed nothing in the way of sexual differences. One of the most important points still to be determined is the location of the genital openings.
In many modern Crustacea, the antennæ or antennules are modified as claspers, and it is barely possible that the curious double curvature of the antennules of Triarthrus indicates a function of this sort. The antennules of many specimens have the rather formal double curvature, turning inward at the outer ends, and retain this position of the frontal appendages, no matter what may be the condition of those on the body. Other specimens have the antennules variously displaced, indicating that they are quite flexible. It is conceivable that the individuals with rigid antennules are males, the others females.
It is interesting to note that the antennules ofPtychoparia permultaWalcott (1918, pl. 21, fig. 1) have the same recurved form. All the specimens of Neolenus, however, show very flexible antennas.
Barrande and Salter laid great stress upon the "forme longue" and "forme large" as indicating male and female. This was based upon the supposition that the female of any animal would probably have a broader test than the male, a hypothesis which seems to be very little supported by fact. In practical application it was found that the apparent difference was so often due to the state of preservation or the confusion of two or more species, that for many years little reference has been made to this supposed sex difference.
EGGS.
In his classic work on the trilobites of Bohemia, Barrande described three kinds of spherical and one of capsule-shaped bodies which he considered to be the eggs of trilobites. After a review of the literature and a study of specimens in the collections of the Museum of Comparative Zoology, it can be said that none of these fossils has proved to be a trilobite egg, but that they may be plants. A full account of them will be published elsewhere.
Walcott (1881) and Billings (1870) have described similar bodies within the tests ofCalymeneandCeraurus, but without showing positive evidence as to their nature.
Methods of Life.
This is a subject upon which much can be inferred, but little proved. Without trying to cover all possibilities, it may be profitable to see what can be deduced from what is known of the structure of the external test, the internal anatomy, and the appendages. This can, to a certain extent, be controlled by what is inferred from the strata in which the specimens are found, the state of preservation, and the associated animals. (For other details, see the discussion of "Function of the Appendages" in Part I.)
HABITS OF LOCOMOTION.
The methods of locomotion may be deduced with some safety from a study of the appendages, and, as has repeatedly been pointed out, all trilobites could probably swim by their use. This swimming was evidently done with the head directed forward, and could probably be accomplished indifferently well with either the dorsal (gastronectic, Dollo) or the ventral (notonectic) side up. If food were sought on the bottom by means of sight, the animal would probably swim dorsal side up, for by canting from side to side it could see the bottom just as easily as though it were ventral side up, and at the same time it would be in position to drop quickly on the prey. In collecting food at the surface, it might swim ventral side up.
All trilobites could probably crawl by the use of the appendages, and, as has already been pointed out, there are great differences in the adjustment of the appendages to different methods of crawling. Some crawled on their "toes," some by means of the entire endopodites, and some apparently used the coxopodites to push themselves along. That the normal direction of crawling was forward is indicated by the position of the eyes and sensory antennules. There is no evidence that their mechanism was irreversible, however, and the position of the mouth and the shape of the hypostoma indicate that they usually backed into feeding position. The caudal rami of Neolenus were evidently sensory, and the animal was prepared to go in either direction.
The use of the pygidium as a swimming organ, suggested by Spencer (1903, p. 492) on theoretical grounds, developed by Staff and Reck (1911, p. 141) from a mechanical standpoint, and elaborated in the present paper by evidence from the ontogeny, phylogeny, and musculature, provided the animal with a swifter means of locomotion. By a sudden flap of this large fin, a backward darting motion could be obtained, which would be invaluable as a means of escape from enemies. Staff and Reck seem to think that in this movement the two shields were clapped together, and that the animal was projected along with the hinge-like thorax forward. This might be a very plausible explanation in the case of the bivalve-like Agnostidæ, and it is one I had suggested tentatively for that family before I read Staff and Reck's paper. In the case of the large trilobites with more segments, however, it would be more natural to think of a mode of progression in which there was an undulatory movement of the body and the pygidium, up-and-down strokes being produced by alternately contracting the dorsal and ventral muscles. Bending the pygidium down would tend to pull the animal backward, while bringing it back into position would push it forward. It follows, therefore, that one of these movements must have been accomplished very quickly, the other slowly. If the muscle scars have been interpreted properly, the ventral muscles were probably the more powerful, an indication that the animal swam backward, using the cephalon and antennules as rudders.
The chief objection to the theory of swimming by clapping the valves together is that where the thorax consists of several segments it no longer acts like the hinge of a bivalve, and a sudden downward flap of the pygidium would impart a rotary motion to the animal. Take, for example, such nearly spherical animals as the Illænidæ, and it will readily be seen that there is nothing to give direction to the motion if the pygidium be brought suddenly against the lower surface of the cephalon. A lobster, it is true, progresses very well by this method, but it depends upon its great claws and long antennæ to direct its motions. The whole shape of the trilobite is of course awkward for a rapidly swimming animal. It could keep afloat with the minimum of effort and paddle itself about with ease, but it was not built on the correct lines for speed.
Dollo (1910, p. 406), and quickly following his lead, Staff and Reck (1911, p. 130), have published extremely suggestive papers, showing that by the use of the principle of correlation of parts, much can be inferred about the mode of life of the trilobites merely from the structure of the test.
Dollo studied the connection between the shape of the pygidium and the position and character of the eyes. As applied by him, and later by Clarke and Ruedemann, to the eurypterids, this method seems most satisfactory. He pointed out that in Eurypterida likeStylonurusandEurypterus, where there is a long spine-like telson, the eyes are back from the margin, so that aLimulus-like habit of pushing the head into the sand by means of the limbs and telson was possible.ErettopterusandPterygotus, on the other hand, have the eyes on the margin, so that the head could not be pushed into the mud without damage, and have a fin-like telson, suggesting a swimming mode of life.
In carrying this principle over to the trilobites, Dollo was quite successful, but Staff and Reck have pointed out some modifications of his results. The conclusions reached in both these papers are suggestive rather than final, for not all possible factors have been considered. The following are given as examples of interesting speculations along this line.
Homalonotus delphinocephalus, according to Dollo, was a crawling animal adapted to benthonic life in the euphotic region, and an occasional burrower in mud. This is shown by well developed eyes in the middle of the cephalon, a pointed pygidium, and the plow-like profile of the head. This was as far as Dollo went. From the very broad axial lobe ofHomalonotusit is fair to infer that, likeIsotelus, it had very long, strong coxopodites which it probably vised in locomotion, and also very well-developed longitudinal muscles, to be used in swimming. From the phylogeny of the group, it is known that the oldest homalonotids had broad unpointed pygidia of the swimming type, and that the later species of the genus (Devonian) are almost all found in sandstone and shale, and all have wider axial lobes than the Ordovician forms. It is also known that the epistoma is narrower and more firmly fused into the doublure in later than in earlier species. These lines of evidence tend to confirm Dollo's conclusion, but also indicate that the animals retained the ability to swim well.
On the same grounds,Olenellus thompsoniandDalmanites limuluruswere assigned the same habitat and habits. Both were considered to have used the terminal spine as doesLimulus.
Olenellus thompsoniis generally considered to be unique among trilobites in having aLimulus-like telson in place of a pygidium. This "telson" has exactly the position and characteristics of the spine on the fifteenth segment ofMesonacis, and so long ago as 1896, Marr (Brit. Assoc. Adv. Sci., Rept. 66th Meeting, page 764) wrote:
The posterior segments of the remarkable trilobiteMesonacis vermontanaare of a much more delicate character than the anterior ones, and the resemblance of the spine on the fifteenth "body segment" of this species to the terminal spine ofOlenellusproper, suggests that in the latter subgenus posterior segments of a purely membranous character may have existed devoid of hard parts.
The posterior segments of the remarkable trilobiteMesonacis vermontanaare of a much more delicate character than the anterior ones, and the resemblance of the spine on the fifteenth "body segment" of this species to the terminal spine ofOlenellusproper, suggests that in the latter subgenus posterior segments of a purely membranous character may have existed devoid of hard parts.
This prophecy was fulfilled by the discovery of the specimens which Walcott described asPædeumias transitans, a species which is said by its author to be a "form otherwise identical withO. thompsoni, [but] has rudimentary thoracic segments and aHolmia-like pygidium posterior to the fifteenth spine-bearing segment of the thorax." A good specimen of this form was found at Georgia, Vermont, associated with the ordinary specimens ofOlenellus thompsoni, and I believe that it is merely a complete specimen of that species.Olenellus gilberti, which was formerly supposed to have a limuloid telson, has now been shown by Walcott (Smithson. Misc. Coll., vol. 64, 1916, p. 406, pl. 45, fig. 3) to be aMesonacisand to have seven or eight thoracic segments and a small plate-like pygidium back of the spine-bearing fifteenth segment. All indications are that the spine was not in any sense a pygidium. Walcott states thatOlenellusresulted from the resorption of the rudimentary segments of forms such asMesonacisandPædeumias, leaving the spine to function as a pygidium. This would mean the cutting off of the anus and the posterior part of the alimentary canal, and developing a new anal opening on the spine of one of the thoracic segments!
If the spine of the fifteenth segment is not a pygidium, could it be used, as Dollo postulates, as a pushing organ? Presumably not, for though in entire specimens ofOlenellus(Pædeumias) it extends back beyond the pygidium, it probably was borne erect, like the similar spines inElliptocephala, and not in the horizontal plane in which it is found in crushed specimens.
While this removes some of the force of Dollo's argument, his conclusion thatOlenelluswas a crawling, burrowing animal living in well lighted shallow waters was very likely correct. The long, annelid-like body indicates numerous crawling legs, there is no swimming pygidium, and the fusion of the cheeks in the head makes a stiff cephalon well adapted for burrowing.
Staff and Reck have pointed out thatDalmanites limuluruswas not entirely a crawler, but, as shown by the large pygidium, a swimmer as well. This kind of trilobite probably represents the normal development of the group in Ordovician and later times. The Phacopidæ, Proëtidæ, Calymenidæ, and other trilobites of their structure could probably crawl or swim equally well, and could escape enemies by darting away or by "digging themselves in."
Cryptolithus tessellatus(Trinucleus concentricus) is cited by Dollo as an example of an adaptation to life in the aphotic benthos, permanently buried in the mud. In this case he appealed to Beecher's interpretation of the appendages, and pointed out that while the adult is blind, the young have simple eyes and probably passed part of their life in the lighted zone. It needs only a glance at the very young to convince one that the embryos had swimming habits, so that in this form one sees the adaptation of the individual during its history to all modes of life open to a trilobite. The habits of the Harpedidæ may have been similar to those of the Trinucleidæ, but the members of this family are supplied with broad flat genal spines. It has been suggested that these served like pontoons, runners, or snow-shoes, to enable the animal to progress over soft mud without sinking into it. Some such explanation might also be applied to the similar development in the wholly unrelated Bathyuridæ. The absence of compound eyes and the poor development of ocelli in the Harpedidæ suggest that they were burrowers, and from these two families, Trinucleidæ and Harpedidæ, it becomes evident that a pygidial point or spine is not a necessary part of the equipment of a burrowing trilobite. In fact, from the habits ofLimulusit is known that the appendages are relied upon for digging, and that the telson is a useful but not indispensable pushing organ.
Deiphonis an interesting trilobite from many points of view. Its pleural lobes are reduced to a series of spines on either side of the body, and its pygidium is a mere spinose vestige. Dollo considered this animal a swimmer in the euphotic zone, because its eyes are on the anterior margin, its body depressed, its glabella globose, and its pygidium flatand spinose. That such a method of life was secondary in a cheirurid was indicated to him by the fact that the more primitive members of the family seemed adapted for crawling. Staff and Reck have gone further and shown that the pygidium is only the vestige of a swimming pygidium, and that the great development of spines suggests a floating rather than a swimming mode of life. They therefore argue for a planktonic habitat. A similar explanation is suggested forAcidaspisand other highly spinose species.
The Aeglinidæ, or Cyclopygidæ as they are more properly called, present the most remarkable development of eyes among the trilobites. In this, Dollo saw, as indeed earlier writers have, an adaptation to a region of scanty light. The cephalon is not at all adapted to burrowing, but the pygidium is a good swimming organ, and one is apt to agree that this animal was normally an inhabitant of the ill lighted dysphotic region, but also a nocturnal prowler, making trips to the surface at night. Similar habits and habitat are certainly indicated forTelephusand the Remopleuridæ, but whetherNileusand the large-eyedBumastusare capable of the same explanation is doubtful.
Finch (1904, p. 181) makes the suggestion that "Nileus" (Vogdesia)vigilans, an abundant trilobite in the calcareous shale of the Maquoketa, was in the habit of burying itself, posterior end first. He found a slab containing fifteen entire specimens, all of which had the cephalon extended horizontally near the surface of the stratum, and the thorax and pygidium projecting downward. The rock showed no evidence that they were in burrows, and the fact that all were in the same position indicates that the attitude was voluntarily assumed. They appear to have entrenched themselves by the use of the pygidia, which are incurved plates readily adapted for such use, and, buried up to the eyes, awaited the coming of prey, but were, apparently, smothered by a sudden influx of mud. The form of the eye inVogdesia vigilansbears out this supposition of Finch's. Not only are the eyes unusually tall, but the palpebral lobe is much reduced, so that many of the lenses look upward and inward, as well as outward, forward and backward. The particular food required byV. vigilansmust have been very plentiful in the Maquoketa seas of Illinois and Iowa, for the species was very abundant, but that its habits were self-destructive is also shown by the great number of complete enrolled specimens of all ages now found there. The soft mud was apparently fatal to the species before the end of the Maquoketa, for specimens are seen but very rarely in the higher beds.
Vogdesia vigilansis shaped much likeBumastus,Illænus,Asaphus,Onchometopus, andBrachyaspis, and it may be that these trilobites with incurved pygidia had all adopted the habit of digging in backward. As noted above, their pygidia are not very well adapted for swimming, and most of them have large or tall eyes.
Dollo's comparison of the Cyclopygidæ to the huge-eyed modern amphipodCystosomais instructive. This latter crustacean, which has the greater part of the dorsal surface of the carapace transformed into eyes, is said to live in the dysphotic zone, at depths of from 40 to 100 fathoms, and to come to the surface at night. It swims ventral side down.
The kinds of sediments in which trilobites are entombed have so far afforded little evidence as to their habitat. Frech (Lethæa palæozoica, 1897-1902, p. 67et seq.) who has collected such evidence as is available on this subject, places as deeper water Ordovician deposits the "Trinucleus-Schiefer" of the upper Ordovician of northern Europe and Bohemia, the "Triarthrus-Schiefer" of America, the "Asaphus-Schiefer" of Scandinavia, Bohemia, Portugal, and France, and the Dalmania quartzite of Bohemia. .
CryptolithusandTriarthrus, although not confined to such deposits, are apt to occurchiefly in very fine-grained shales, in company with graptolites. These latter are distributed by currents over great distances within short periods. It is somewhat curious that the nearly blind burrowing Trinucleidæ, the dysphotic, large-eyed Remopleuridæ and Telephus, the blind nektonic Agnostidæ and Dionide, and the planktonic graptolites should go together and make up almost the entire fauna of certain formations. Yet, when the life history of each type is studied, a logical explanation is readily at hand, for all have free-swimming larvæ.
A list of the methods of life noted above is given by way of summary, with examples.
FOOD AND FEEDING METHODS.
This subject has been less discussed than the methods of locomotion. The study of the appendages has shown that while the mouth parts were not especially powerful, they were at least numerous, and sufficiently armed with spines to shred up such animal and vegetable substances as they were liable to encounter. It having been ascertained that the shape of the glabella and axial lobe furnishes an indication of the degree of development of the alimentary canal it is possible to infer something of the kind of food used by various trilobites.
The narrow glabellæ and axial lobes of the oldest trilobites would seem to indicate a carnivorous habit, while the swollen glabellæ and wider lobes of later ones probably denote an adaptation to a mixed or even a vegetable diet. This can not be relied upon too strictly, of course, for the swollen glabellæ of such genera as Deiphon or Sphærexochus may be due merely to the shortening up of the cephalon.
Walcott (1918, p. 125) suggests that the trilobites lived largely upon worms and conceives of them as working down into the mud and prowling around in it in search of such prey. While there can be no doubt that many trilobites had the power of burying themselves in loose sand or mud, a common habit with modern crustaceans, most of them were of a very awkward shape for habitual burrowers, and how an annelid could be successfully pursued through such a medium by an animal of this sort is difficult to understand. In fact, the presence of the large hypostoma and the position of the mouth were the great handicaps of the trilobite as a procurer of live animal food, and coupled with the relatively slow means of locomotion, almost compel the conclusion that errant animals of any size were fairly safe from it. This restricts the range of animal food to small inactive creatures and the remains of such larger forms as died from natural causes. The modern Crustacea are effective scavengers, and it is probable that their early Palæozoic ancestors were equally so. It is a common saying that in the present stressful stage of the world's history, very few wild animals die a natural death. In Cambrian times, competition foranimal food was less keen, and with the exception of a few cephalopods, a few large annelids, and a few Crustacea likeSidneyia, there seem to have been no aggressive carnivores. In consequence, millions of animals must have daily died a natural death, and had there been no way of disposing of their remains, the sea bottom would soon have become so foul that no life could have existed. For the work of removal of this decaying matter, the carnivorous annelids and the Crustacea, mostly trilobites, were the only organisms, and it is probable that the latter did their full share. After prowling about and locating a carcass, the trilobite established himself over it, the cephalon and hypostoma on one end and the pygidium on the other enclosing and protecting the prey, which was shredded off and passed to the mouth at leisure by means of the spinose endobases.
Even in Middle Cambrian times some trilobites (e. g.,Paradoxides) seem to have enlarged the capacity of the stomach and taken vegetable matter, but later, in the Upper Cambrian and Ordovician, when the development of cephalopods and fishes caused great competition for all animal food, dead or alive, most trilobites seem to have become omnivorous. This is of course shown by the swollen glabella, with reduced lateral furrows, and, in the case of a few species (Calymene,Ceraurus), the known enlargement of the stomach.
Cryptolithusis the only trilobite which has furnished any actual evidence as to its food. From the fact that the alimentary tract is found stuffed from end to end with fine mud, and because it is known to have been a burrower, it has been suggested by several that it was a mud feeder, passing the mud through the digestive tract for the sake of what organic matter it contained. Spencer (1903, p. 491) has suggested a modification of this view: