Illustrated: Walcott, Smithson. Misc. Coll., vol. 57, 1911, p. 21, pl. 2, fig. 1 (not figs. 2, 3); pls. 3-5; pl. 6, fig. 3; pl. 7, fig. 1.
Illustrated: Walcott, Smithson. Misc. Coll., vol. 57, 1911, p. 21, pl. 2, fig. 1 (not figs. 2, 3); pls. 3-5; pl. 6, fig. 3; pl. 7, fig. 1.
The body of this animal is elongate, somewhat eurypterid-like, but with a broad telson supplied with lateral swimmerets. The cephalon is short, with lateral compound eyes. The trunk consists of eleven segments, the anterior nine of which are conspicuously wider than the two behind them, and the telson consists of a single elongate plate.
On the ventral side of the head there is a large hypostoma and five, pairs of appendages. The first pair are multisegmented antennules. The second pair have not been adequately described. The third are large, complex claws, and the fourth and fifth suggest broad, stocky endopodites. Broad gnathobases are attached to the coxopodites of the third to fifth pairs of appendages and form very strong jaws.
The first nine segments of the thorax have one pair each of broad filiform branchial appendages, suggestive of the exopodites of trilobites, but no endopodites have been seen. The tenth and eleventh segments seem to lack appendages entirely.
Emeraldella brockiWalcott.
Illustrated:Sidneyia inexpectansWalcottpartim, Smithson. Misc. Coll., vol. 57, 1911, pl. 2, figs. 2, 3 (not fig. 1);—Ibid., 1912, p. 206, text fig. 10.Emeraldella brockiWalcott, Ibid., 1912, p. 203, pl. 30, fig. 2; text fig. 8;—Ibid., vol. 67, 1918, p. 118 (correction).
Illustrated:Sidneyia inexpectansWalcottpartim, Smithson. Misc. Coll., vol. 57, 1911, pl. 2, figs. 2, 3 (not fig. 1);—Ibid., 1912, p. 206, text fig. 10.
Emeraldella brockiWalcott, Ibid., 1912, p. 203, pl. 30, fig. 2; text fig. 8;—Ibid., vol. 67, 1918, p. 118 (correction).
Emeraldellahas much the same shape asSidneyiaand the same number of segments, but instead of a broad flat telson, it has a longLimulus-like spine. The cephalon is about as wide as long, and eyes have not yet been seen. The body consists of eleven segments and a telson (Walcott says twelve and a telson but shows only eleven in the figures). Nine of the segments, as inSidneyia, are broad, the next two narrow.
The ventral side of the cephalon has a long hypostoma, and five pairs of appendages. The first pair are very long multi segmented antennules and the next four pairs seem to be rather slender, spiniferous, jointed endopodites. Whether or not gnathobases were present is not shown by the figures, but owing to the long hypostoma the appendages are grouped about the mouth. All the segments of the body, unless it were the telson, seem to have borne appendages. On the anterior end, they were clearly biramous (1912, p. 206, text fig. 10), and that they were present along the body is shown by figure 2, plate 30, 1912.
The present state of knowledge of both these peculiar animals leaves much to be desired. The indications are that the cephalic appendages are not biramous, and that only one pair of antennæ, the first, are developed as tactile organs. The thoracic appendages ofEmeraldellaare biramous, and also possibly those ofSidneyia. In the latter, the last two abdominal segments seem to have been without appendages, while inEmeraldellaat least one branch of each appendage, and possibly both, is retained.
These animals, which may be looked upon as the last survivors of an order of pre-Cambrian arthropods, have the appearance of an eurypterid, but their dominant characteristics are crustacean. The features which suggest the Eurypterida are: elongate, obovate, non-trilobate, tapering body; telson-like posterior segment; marginal, compound, sessile eyes; claw-like third cephalic appendages; and, more particularly, the general resemblance of the test to that of an eurypterid likeStrabops. In form,Sidneyiaagrees with the theoretical prototype of the Eurypterida reconstructed by Clarke and Ruedemann (Mem. 14, N. Y. State Mus., vol. 1, 1912, p. 124) in its short wide head with marginal eyes, and its undifferentiated body. There is, moreover, no differentiation of the postcephalic appendages.
The crustacean characteristics are seen in the presence of five, instead of six, pairs of appendages on the head, the first of which are multisegmented antennules, and in the biramous appendages on the body ofEmeraldella. It should be noted that these latter are typically trilobitic, each consisting of an endopodite with six segments and a setiferous exopodite.
Clarke and Ruedemann (1912, p. 406) have discussedSidneyiabriefly, and conclude:
It seems to us probable that the Limulava [SidneyiaandAmiella] as described are not eurypterids but constitute a primitive order, though exhibiting some remarkable adaptive features. This order possibly belongs to the Merostomata, but is distinctly allied to the crustaceans in such important characters as the structure of the legs and telson, and is therefore much generalized.
It seems to us probable that the Limulava [SidneyiaandAmiella] as described are not eurypterids but constitute a primitive order, though exhibiting some remarkable adaptive features. This order possibly belongs to the Merostomata, but is distinctly allied to the crustaceans in such important characters as the structure of the legs and telson, and is therefore much generalized.
The specialization ofSidneyiaconsists in the remarkable development of a highly complex claw on each of the third cephalic appendages, and in the compound tail-fin, built up of the last segment and one or more pairs of swimmerets. These two characteristics seem to preclude the possibility of deriving the eurypterids fromSidneyiaitself, but it seems entirely within reason that they may have been derived from another slightly less specialized member of the same order.
ThatSidneyiais descended from any known trilobite seems highly improbable, but that it was descended from the same ancestral stock as the trilobites is, I believe, indicated by the presence of five pairs of appendages on the cephalon and trilobitic legs on the abdomen.
MolariaandHabelia.
Other so called Merostomata found by Walcott in the Middle Cambrian are the generaMolariaandHabelia, both referred to the Cambrian family Aglaspidæ. These genera seem to conform withAglaspisof the Upper Cambrian in having a trilobite-like cephalon withoutfacial sutures, a trilobite-like thorax of a small but variable (7-12) number of segments, and aLimulus-like telson. Neither of them has yet been fully described or figured, but (Walcott 1912 A, p. 202)Habeliaappears to have five pairs of cephalic appendages, the first two pairs of which are multisegmented antennæ. The thoracic appendages are likewise none too well known, but they appear to have been biramous. The endopodites are better preserved than the exopodites, but in at least one specimen ofMolariathe exopodites are conspicuous.
If these genera are properly described and figured, their appendages are typically crustacean, and fundamentally in agreement with those ofMarrella. The relation to the Trilobita is evidently close, the principal differences being the absence of facial sutures and the presence of true antennæ. I am therefore transferring the Aglaspidæ from the Merostomata to a new subclass under the Crustacea.
ARANEÆ.
The spiders have the head and thorax fused, the abdomen unsegmented except in the most primitive suborder, and so appear even less trilobite-like than the insects. The appendages likewise are highly specialized. The cephalothorax bears six pairs of appendages, the first of which are the pre-oral cheliceræ, while behind the mouth are the pedipalpi and four pairs of ambulatory legs. The posterior pairs of walking legs belong to the thorax, but the anterior ones are to be homologized with the maxillæ of Crustacea, so that the spiders are like the trilobites in having functional walking legs on the head.
The chief likenesses are, however, seen in the very young. On the germ band there appear a pair of buds in front of the rudiments of the cheliceræ which later unite to form the rostrum of the adult. At the time these buds appear, the cheliceræ are post-oral, but afterward move forward so that both rostrum and cheliceræ are in front of the mouth. The rostrum is therefore the product of the union of the antennules, and the cheliceræ are to be homologized with the antennæ. There seems to be some doubt about the homology of the pedipalps with the mandibles, as at least one investigator claims to have found rudiments of a segment between the one bearing the cheliceræ and that with the pedipalps.
Jaworowski (Zool. Anzeiger, 1891, p. 173, fig. 4) has figured the pedipalp from the germ band ofTrochosa singoriensis, and called attention to the fact that it consists of a coxopodite and two segmented branches which may be interpreted as exopodite and endopodite. He designated as exopodite the longer branch which persists in the adult, but since the ambulatory legs of Crustacea are endopodites, that would seem a more likely interpretation. As the figure is drawn, the so called endopodite would appear to spring from the proximal segment of the "exopodite." If the two terms were interchanged, the homology with the limb of the trilobite or other crustacean would be quite perfect.
In the young, the abdomen is segmented and the anterior segments develop limb-buds, the first pair of which become the lung books and the last two pairs the spinnerets of the adult. There seems to be some question about the number of segments. Montgomery (Jour. Morphology, vol. 20, 1909, p. 337). reviewing the literature, finds that from eight to twelve have been seen in front of the anal segment. The number seem to vary with the species studied. This of course suggests connection with the anomomeristic trilobites.
The oldest true spiders are found in the Pennsylvanian, and several genera are now known. The head and thorax are fused completely, but the abdomen is distinctly segmented.Some of the Anthracomarti resemble the trilobites more closely than do the Araneæ, as they lack the constriction between the cephalothorax and abdomen. The spiders of the Pennsylvanian have this constriction less perfectly developed than do modern Araneæ, and occupy an intermediate position in this respect. In the Anthracomarti, the pedipalpi are simple, pediform, and all the appendages have very much the appearance of the coxopodites and endopodites of trilobites. Cheliceræ are not known, and pleural lobes are well developed in this group. Anthracomarti have not yet been found in strata older than the Pennsylvanian, but they seem to be to a certain extent intermediate between true spiders and the marine arachnid.
Handlirsch (in several papers, most of which are collected in "Die Fossilen Insekten," 1908) has attempted to show that all the Arthropoda can be derived from the Trilobita, and has advocated the view that the Insecta sprang directly from that group, without the intervention of other tracheate stock. At first sight, this transformation seems almost an impossibility, and the view does not seem to have gained any great headway among entomologists in the fourteen years since it was first promulgated. If an adult trilobite be compared with an adult modern insect, few likenesses will be seen, but when the trilobite is stripped of its specializations and compared with the germ-band of a primitive insect, the theory begins to seem more possible.
Handlirsch really presented very little specific evidence in favor of his theory. In fact, one gets the impression that he has insisted on only two points. Firstly, that the most ancient known insects, the Palæodictyoptera, were amphibious, and their larvæ, which lived in water, were very like the adult. Secondly, that the wings of the Palæodictyoptera probably worked vertically only, and the two main wings were homologous with rudimentary wing-like outgrowths on each segment of the body. These outgrowths have the appearance of, and might have been derived from, the pleural lobes of trilobites.
He figured (1908, p. 1305, fig. 7) a reconstructed larva of a palæodictyopterid as having biramous limbs on each segment, but so far as I can find, this figure is purely schematic, for there seems to be no illustration or description of any such larva in the body of his work.
That the insects arose directly from aquatic animals is of course possible, and Handlirsch's first argument has considerable force. It may, however, be purely a chance that the oldest insects now known to us happen to be an amphibious tribe. The Palæodictyoptera are not yet known to antedate the Pennsylvanian, but there can be no doubt that, insects existed long before that time, and the fact that their remains have not been found is good evidence that the pre-Pennsylvanian insects were not aquatic. Comstock, who has recently investigated the matter, does not believe that the Palæodictyoptera were amphibious (The Wings of Insects, Ithaca, N. Y., 1918, p. 91).
The second argument, that wings arose from the pleural lobes of trilobites, is exceedingly weak. Where most fully set forth (1907, p. 157), he suggests that trilobites may occasionally have left the water, climbed a steep bank or a plant, and then glided back into their native element, taking advantage of the broad flat shape to make a comfortable and gentle descent! This sport apparently became so engaging that the animal tried experiments with flexible wing tips, eventually got the whole of the pleural lobes in a flexible condition, and selected those of the second and third thoracic segments for preservation, while discarding the remainder. The pleural lobes of trilobites are not only too firmly joined to the axial portionof the test to be easily transformed into movable organs, but they are structurally too unlike the veined wings of insects to make the suggestion of this derivation even worthy of consideration.
Tothill (1916) has recently reinvestigated the possible connection between insects, chilopods, and trilobites, and, from the early appearance of the spiracles in the young, came to the conclusion that the insects were derived from terrestrial animals. He suggested that they may have come through the chilopods from the trilobites. The hypothetical ancestor of the insects, as restored by Tothill from the evidence of embryology and comparative anatomy, is an animal more easily derived from the Chilopoda than from the Trilobita. Five pairs of appendages are present on the head, and the trunk is made up of fourteen similar segments, each with a pair of walking limbs and a pair of spiracles.
Only the maxillæ and maxillulæ are represented as biramous. If the ancestor of the Insecta was, as seems possible, tracheate, this fact alone would rule out the trilobites. Among tracheates, the Chilopoda are certainly more closely allied to the Insecta than are any other wingless forms. If the ancestors of the insects were not actually chilopods, they may have been chilopod-like, and there can be little doubt that both groups trace to the same stock.
As to the ancestry of the Chilopoda, it is probable that they had the same origin as the other Arthropoda. Tothill has pointed out that in the embryo of some chilopods there are rudiments of two pairs of antennæ and that the two pairs of maxillæ and the maxillipeds are biramous. This would point rather to the Haplopoda than directly to the trilobites as possible ancestors, and may explain why the former vanish so suddenly from the geological record after their brief appearance in the Middle Cambrian. They may have gone on to the land.
There seem to be no insuperable obstacles to prevent the derivation, indirectly, of the insects from some trilobite with numerous free segments, and small pygidium. The antennules and pleural lobes must be lost, the antennas and trunk limbs modified by loss of exopodites. Wings and tracheæ must be acquired.
Handlirsch places the date of origin of the Insecta rather late, just at the end of the Devonian and during the "Carboniferous." By that time most families of trilobites had died out, so that the possibilities of origin of new stocks were much diminished. If the haplopod-chilopod-insect line is a better approximation to the truth, then the divergence began in the Cambrian.
The adult chilopod lacks the antennules, and all of the other appendages, with the exception of the maxillulæ, are uniramous. The walking legs are similar to the endopodites of trilobites, and usually have six or seven segments. The appendages are therefore such as could be derived by modification of those of trilobites by the almost complete loss of the exopodites and shortening of the endopodites of the head. The position of the post-oral appendages, the posterior ones outside those closest the mouth, is perhaps foreshadowed in the arrangement of those of Triarthrus.
The Chilopoda differ from the Hexapoda in developing the antennæ instead of the antennules as tactile organs, but this can not be used with any great effect as an argument that the latter did not arise from the ancestors of the former, since it is entirely possible that in early Palæozoic times the pre-Chilopoda possessed two pairs of antennæ. The first pair are still recognizable in the embryo of certain species.
The oldest chilopods are species described by Scudder (Mem. Boston Soc. Nat. Hist., vol. 4, 1890, p. 417, pl. 38) from the Pennsylvanian at Mazon Creek, Grundy County, Illinois. Only one of these,Latzelia primordialisScudder (pl. 38 fig. 3), is at all well preserved. This little animal, less than an inch long, had a depressed body, with a median carina, exceedingly long slender legs, and about nineteen segments. The head is very nearly obliterated.
The diplopods, especially the polydesmids with their lateral outgrowths, often have a general appearance somewhat like that of a trilobite, but on closer examination few likenesses are seen. The most striking single feature of the group, the possession by each segment of two pairs of appendages, is not in any way foreshadowed in the trilobites, none of which shows any tendency toward a fusion of pairs of adjacent segments. The antennules are short, antennæ absent, mandibles and maxillulæ much modified, the latter possibly biramous, and the maxillæ absent. The trunk appendages are very similar to those of chilopods, and could readily be derived from the endopodites of trilobites.
The oldest diplopods are found in the Silurian (Ludlow) and Devonian (Lower Old Red) of Scotland, and three species belonging to two genera are known. The oldest isArchidesmus loganensisPeach (1889, p. 123, pl. 4, fig. 4), and the Devonian species areArchidesmus macnicoliPeach andKampecaris forfarensisPage (Peach 1882, p. 182, pl. 2, fig. 2, 2a, and p. 179, pl. 2, figs. 1-1g). All of these species show lateral expansions like the recent Polydesmidæ, and these of course suggest the pleural lobes of trilobites. All three of the species are simpler than any modern diplopod, for there is only a single pair of appendages on each segment. Noforamina repugnatoriawere observed, and the eyes ofKampecaris forfarensisas described are singularly like those of a phacopid.
Peach says: "The eye itself is made up of numerous facets which are arranged in oblique rows, the posterior end of each row being inclined downwards and outwards, the facets being so numerous and so close together that the eye simulates a compound one." There is also a protecting ridge which somewhat resembles a palpebral lobe (1882, pl. 7, fig. la). Peach comments on the strength of the test, and from his description it appears that it must have been preserved in the same manner as the test of trilobites. It was punctate, and granules and spines were also present. The presence of the lateral outgrowths in these ancient specimens would seem to indicate that they are primitive features, and may have been inherited. While possibly not homologous with the pleural extensions of trilobites, they may be vestiges of these structures.
The limbs are made up of seven segments which are circular in section and expand at the distal end. The distal one bears one or two minute spines. They are most readily compared with the endopodites ofIsotelus. The resemblance is, in fact, rather close. The sternal plates are wider and the limbs of opposite sides further apart than in modern diplopods. Except for one pair of antennæ, no cephalic appendages are preserved.
While these specimens do not serve to connect the Diplopoda with the Trilobita, they do show that most of the specializations of the former originated since Lower Devonian times, and lead one to suspect that the derivation from marine ancestors took place very early, perhaps in the Cambrian. If no very close connection with the trilobites is indicated, there is also nothing to show that the diplopods could not have been derived from that group.
TRILOBITES THE MOST PRIMITIVE ARTHROPODS.
The Arthropoda, to make the simplest possible definition, are invertebrate animals with segmented body and appendages. The most primitive arthropod would appear to be one composed of exactly similar segments bearing exactly similar appendages, the segments of the appendages themselves all similar to one another. It is highly improbable that this most primitive arthropod imaginable will ever be found, but after a survey of the whole phylum, it appears that the simpler trilobites approximate it most closely.
That the trilobites are primitive is evidenced by the facts that they have been placed at the bottom of the Crustacea by all authors and claimed as the ancestors of that group by some; that Lankester derived the Arachnida from them; and that Handlirsch has considered them the progenitors of the whole arthropodan phylum.
Specializations among the Arthropoda, even among the free-living forms, are so numerous that it would be difficult to make a complete list of them. In discussing the principal groups, I have tried to show that the essential structures can be explained as inherited from the Trilobita, changed in form by explainable modifications, and that new structures, not' present in the Trilobita, are of such a nature that they might be acquired independently in even unrelated groups.
The chief objections to the derivation of the remainder of the Crustacea from the trilobites have been: first, that the trilobites had broad pleural extensions; second, that they had a large pygidium; and lastly, that they had only one pair of tactile antennæ.
It has now been pointed out that many modern Crustacea have pleural extensions, but that they usually bend down at the sides of the body, and also that in the trilobites and more especially inMarrella, there was a tendency toward the degeneration of the pleural lobes. A glance at the Mesonacidæ or Paradoxidæ should be convincing proof that in some trilobites the pygidium is reduced to a very small plate.
In regard to the second antennæ standard text-books contain statements which are actually surprising. A compilation shows that the antennæ are entirely uniramous in but a very few suborders, chiefly among the Malacostraca; that they are biramous with both exopodite and endopodite well developed in most Copepoda, Ostracoda, and Branchiopoda; and that the exopodite, although reduced in size, still has a function in some suborders of the Malacostraca. The Crustacea could not possibly be derived from an ancestor with two pairs of uniramous antennæ.
Although I have defended the trilobites, perhaps with some warmth, from the imputation that they were Arachnida, my argument does not apply in the opposite direction, and I believe Lankester was right in deriving the Arachnida from them. If the number of appendages in front of the mouth is fundamental, then the trilobites were generalized, primitive, and capable of giving rise to both' Crustacea and Arachnida. As shown on a previous page (p. 119), the "connecting links" so far found tend to disprove rather than to prove the thesis, but the present finds should be looked upon as only the harbingers of the greater ones which are sure to come.
LIMBS OF TRILOBITES PRIMITIVE.
The general presence, in an adult or larva, of some sort of biramous limbs throughout the whole class Crustacea has led most zoologists to expect such a limb in the mostprimitive crustaceans, and apparently the appendage of the trilobite satisfies the expectation. It is well, perhaps, as a test, to consider whether by modification this limb could produce the various types of limbs seen in other members of the class. In the first place, it is necessary to have clearly in mind the peculiarities of the appendage to be discussed.
It should first of all be remembered that the limb is articulated with the dorsal skeleton in a manner which is very peculiar for a crustacean. The coxopodite swings on a sort of ball-and-socket joint, and at the outer end both the exopodite and the basipodite articulate with it. Since the exopodite articulates with the basipodite as well as with the coxopodite, the two branches are closely connected with one another and there is little individual freedom of movement. This is, of course, a necessary consequence of their articulation with a segment which is itself too freely movable to provide a solid base for attachment of muscles. The relation of the appendifer, coxopodite, and two rami is here shown diagrammatically (fig. 33), the exopodite branching off from the proximal end of the basipodite at the junction with the coxopodite.
In all trilobites the endopodite consists of six segments, and the coxopodite of a single segment the inner end of which is prolonged as an endobase. There does not seem to be any variation from this plan in the subclass, although individual segments are variously modified. The exopodites are more variable, but all consist of a flattened shaft with setæ on one margin. No other organs such as accessory gills, swimming plates, or brood pouches have yet been found attached to the appendages, the evidence for the existence of the various epipodites and exites described by Walcott being unsatisfactory (see p. 23).
Fig. 33.—Diagrammatic representation of an appendage of the anterior end of the thorax ofTriarthrus beckiGreen, to show relation of exopodite and endopodite to each other and to the coxopodite. Much enlarged.
Fig. 33.—Diagrammatic representation of an appendage of the anterior end of the thorax ofTriarthrus beckiGreen, to show relation of exopodite and endopodite to each other and to the coxopodite. Much enlarged.
In the Ostracoda the appendages are highly variable, but it is easily seen that they are modifications of a limb which is fundamentally biramous. In most species, both exopodite and endopodite suffer reduction. The exopodite springs from the basipodite and that segment is closely joined to the coxopodite, producing a protopodite. In some cases the original segments of the endopodites fuse to form a stiff rod. While highly diversified, these appendages are very trilobite-like, and some Ostracoda even have biramous antennæ.
The non-parasitic Copepoda have limbs exceedingly like those of trilobites. Many of them are biramous, the endopodites sometimes retaining the primitive six segments. Coxopodite and basipodite are generally united, and endopodite and exopodite variously modified. Like some of the Ostracoda, the more primitive Copepoda have biramous antennæ.
As would be expected, the appendages of the Cirripedia are much modified, although those of the nauplius are typical. The thoracic appendages of many are biramous, but both branches are multisegmented.
In the modern Malacostraca the ground plan of the appendages is biramous, but in most orders they are much modified. In many, however, the appendages of some part of the body are biramous, and in many the endopodites show the typical six segments. From the coxopodites arise epipodites, some of which assist in swimming, and some in respiration.Because of the many instances in which such extra growths arise, and because of the form of the appendages of the Branchiopoda, it has been suggested that the primitive crustacean leg must have been more complex than that of the trilobite. In looking over the Malacostraca, however, one is struck by the fact that epipodites generally arise where the exopodites have become aborted or are poorly developed, and seem largely to replace them. The coxopodite and basipodite are usually fused to form a protopodite, and a third segment is sometimes present in the proximal part of the appendage.
In the Branchiopoda are found the most complex crustacean limbs, and the ones most difficult to homologize with those of trilobites. In recent years, Lankester's homologies of the parts of the limbs ofApuswith those of the Malacostraca have been quite generally accepted, and the appendages of the former considered primitive. Now that it is known that the Branchiopoda of the Middle Cambrian (Burgessiaet at.) had simple trilobite-like appendages, it becomes necessary to exactly reverse the opinion in this matter. The same homologies stand, but the thoracic limbs ofApusmust be looked upon as highly specialized instead of primitive.
Fig. 34.—One of the appendages of the anterior part of the trunk ofApus, showing the endites (beneath) and exites (above). The proximal endite forms a gnathobase which is not homologous with the gnathobase (or endobase) of the trilobite. Copied from Lankester. Much enlarged.
Fig. 34.—One of the appendages of the anterior part of the trunk ofApus, showing the endites (beneath) and exites (above). The proximal endite forms a gnathobase which is not homologous with the gnathobase (or endobase) of the trilobite. Copied from Lankester. Much enlarged.
Lankester (Jour. Micros. Sci., vol. 21, 1881) pointed out that the axial part of the thoracic limb ofApus(fig. 34) is homologous with the protopodite in the higher Crustacea, that the two terminal endites corresponded to the exopodite and endopodite, and that the other endites and exites were outgrowths from the protopodite analogous to the epipodites of Malacostraca. There seems to be no objection to retaining this interpretation, but with the meaning that both endopodite and exopodite are much reduced, and their functions transferred to numerous outgrowths of the protopodite. One of the endites grows inward to form an endobase, the whole limb showing an attempt to return to the ancestral condition of the trilobite. The limbs of some other branchiopods are not so easy to understand, but students of the Crustacea seem to have worked out a fairly satisfactory comparison between them andApus.
The discovery that the ancestral Branchiopoda had simple biramous appendages instead of the rather complex phyllopodan type is another case in which the theory of "recapitulation" has proved to hold. It had already been observed that in ontogeny the biramous limb preceded the phyllopodan, but so strong has been the belief in the primitive character of the Apodidæ that the obvious suggestion has been ignored. Even in such highly specialized Malacostraca as the hermit crabs the development of certain of the limbs illustrates the change from the schizopodal to the phyllopodan type, and Thompson (Proc. Boston Soc. Nat. Hist., vol. 31, 1903, pl. 5, fig. 12) has published an especially good series of drawingsshowing the first maxilliped. In the first to fourth zoeæ the limb is biramous but in the glaucothoe a pair of broad processes grow out from the protopodite, while the exopodite and particularly the endopodite become greatly reduced. In the adult the endopodite is a mere vestige, while the flat outgrowths from the protopodite have become very large and bear setæ.
Summary.
The limbs of most Crustacea are readily explained as modifications of a simple biramous type. These modifications usually take the form of reduction by the loss or fusion of segments and quite generally either the entire endopodite or exopodite is lacking. Modification by addition frequently occurs in the growth of epipodites, "endites," and "exites" from the coxopodite, basipodite, or both. A protopodite is generally formed by the fusion of coxopodite and basipodite, accompanied by a transference of the proximal end of the exopodite to the distal end of the basipodite. A new segment, not known in the trilobites (precoxal), is sometimes added at the inner end.
Among modern Crustacea, the anterior cephalic appendages and thoracic appendages of the Copepoda and the thoracic appendages of certain Malacostraca, Syncarida especially, are most nearly like those of the trilobite. The exact homology, segment for segment, between the walking legs of the trilobite and those of many of the Malacostraca, even the Decapoda, is a striking instance of retention of primitive characteristics in a specialized group, comparable to the retention of primitive appendages in man.
NUMBER OF SEGMENTS IN THE TRUNK.
Various attempts have been made to show that despite the great variability, trilobites do show a tendency toward a definite number of segments in the body.
Emmrich (1839), noting that those trilobites which had a long thorax usually had a short pygidium, and that the reverse also held true, formulated the law that the number of segments in the trunk was constant (20 + 1) Very numerous exceptions to this law were, however, soon discovered, and while the condition of those with less than twenty-one segments was easily explained, the increasing number of those with more than twenty-one soon brought the idea into total disrepute.
Quenstedt (1837) had considered the number of segments of at least specific importance, and both he and Burmeister (1843) considered that the number of segments in the thorax must be the same for all members of a genus. As first shown by Barrande (1852. p. 191 et seq.), there are very many genera in which there is considerable variation in the number of thoracic segments, and a few examples can be cited in which there is variation within a species, or at least in very closely related species.
Carpenter (1903, p. 333) has tabulated the number of trunk segments of such trilobites as were listed by Zittel in 1887 and finds a steady increase throughout the Palæozoic. His table, which follows, is, however, based upon very few genera.
Due chiefly to the efforts of Walcott, an increasingly large number of Cambrian genera are now represented by entire specimens, and since these most ancient genera are of greatest importance, a few comments on them may be offered.
The total number of segments can be fairly accurately determined in at least nineteen genera of trilobites from the Lower Cambrian. These include eight genera of the Mesonacidæ (Olenelluswas excluded) andEodiscus,Goniodiscus,Protypus,Bathynotus,Atops,Olenopsis,Crepicephalus,Vanuxemella,Corynexochus,Bathyuriscus, andPoliella. The extremes of range in total segments of the trunk is seen inEodiscus(9) andPædeumias(45+), and these same genera show the extremes in the number of thoracic segments, there being 3 in the one and 44+ in the other.Pædeumiasprobably shows the greatest variation of any one genus of trilobites, various species showing from 19 to 44+ thoracic segments. The average for the nineteen genera is 13.9 segments in the thorax, 3.7 segments in the pygidium, or a total average of 17.6 segments in the trunk.Crepicephaluswith 12-14 segments in the thorax and 4-6 in the pygidium, andProtypus, with 13 in the thorax and 4-6 in the pygidium, are the only genera which approach the average. All of the Mesonacidæ, except one,Olenelloides, have far more thoracic and fewer pygidial segments than the average, while the reverse is true of the Eodiscidæ,Vanuxemella,Corynexochus,Bathyuriscus, and Poliella.
The eight genera of the Mesonacidæ,Nevadia,Mesonacis,Elliptocephala,Callavia,Holmia,Wanneria,Pædeumias, andOlenelloides, have an average of 20.25 segments in the thorax and 1.5 in the pygidium, a total of 21.75. If, however, the curious littleOlenelloidesbe omitted, the average for the thorax rises to 22.14 and the total to 23.84.Olenelloidesis, in fact, very probably the young of anOlenellus. Specimens are only 4.5 to 11 mm. long, and occur in the same strata withOlenellus(see Beecher 1897 A, p. 191).
Thirty-three genera from the Middle Cambrian afford data as to the number of segments, the Agnostidæ being excluded. The extreme of variation there is smaller than in the Lower Cambrian. The number of thoracic segments varies from 2 in Pagetia to 25 inAcrocephalites, and these same genera show the greatest range in total number of trunk segments, 8 and 29 respectively.
The average of thoracic segments for the entire thirty-three genera is 10.5, of pygidial segments 5.9, a total average of 16.4. It will be noted that the thorax shows on the average less and the pygidium more segments than in the Lower Cambrian. If the Agnostidæ could be included, this result would doubtless be still more striking. Of the genera considered,Asaphiscuswith 7-11 thoracic and 5-8 pygidial segments,Blainiawith 9 thoracic and 6-11 pygidial,Zacanthoideswith 9 thoracic and 5 pygidial, andAnomocarewith 11 thoracic and 7-8 pygidial segments came nearest to the average. Only a few departed widely from it. The genera tabulated wereAcrocephalites,Alokistocare,Crepicephalus,Karlia,Hamburgia,Corynexochus,Bathyuriscus, Poliella,Agraulos,Dolichometopus,Ogygopsis,Orria,Asaphiscus,Neolenus,Burlingia,Blainia,Blountia,Marjumia,Pagetia,Eodiscus,Goniodiscus,Albertella,Oryctocara,Zacanthoides,Anomocare,Anomocarella,Coosia,Conocoryphe,Ctenocephalus,Paradoxides,Ptychoparia,Sao, andEllipsocephalus.
Enough genera of Upper Cambrian trilobites are not known from entire specimens to furnish satisfactory data. Excluding from the list the Proparia recently described by Walcott, the average total trunk segments in ten genera is 18, but as most of the genera are Olenidæ or olenid-like, not much weight can be attached to these figures.
For the Cambrian as a whole, the average for sixty-two genera is between 17 and 18 trunk segments, which is surprisingly like the result obtained by Carpenter from only twelvegenera, and tends to indicate that it must be somewhere near the real average. If the 5 or 6 segments of the head be added, it appears that the "average" number of segments is very close to the malacostracan number 21. Genera with 16 to 18 trunk segments are Callavia,Protypus,Bathynotus,Crepicephalus,Bathyuriscus,Ogygopsis,Burlingia,Orria,Asaphiscus,Blainia,Zacanthoides,Neolenus,Anomocare,Conocoryphe,Saukia,Olenus, andEurycare.
The order Proparia originated in the Cambrian, and Walcott has described four genera, one from the Middle, and three from the Upper. The number of segments in these genera is of interest.Burlingia, the oldest, has 14 segments in the thorax and 1 in the pygidium. Of the three genera in the Upper Cambrian,Norwoodiahas 8-9 segments in the thorax and 3-4 in the pygidium;Millardia23 in thorax and 3-4 in pygidium; andMenomonia42 in thorax and 3-4 in pygidium. It is of considerable interest and importance to note that the very elongate ones are not from the Middle but from the Upper Cambrian.
Forty genera of Ordovician trilobites known from entire specimens were tabulated, and it was found that the range in the number of segments in the thorax and pygidium was surprisingly large.Agnostus, which was not included in the table, has the fewest, andEoharpes, with 29, the most. While the range in number of segments in the thorax is 2 to 29, the range of the number in the pygidium, 2 to 26, is almost as great. A species ofDionidehas 26 in the pygidium, whileRemopleuridesandGlaphurushave evidence of only 2. The average number of segments in the thorax for the forty genera was 10.15, in the pygidium 8.81, and the average number for the trunk 19.
Genera with just 19 segments in the trunk appear to be rare in the Ordovician, a species ofAmpyxbeing the only one I have happened to notice.Calymene,Tretaspis,Triarthrus,Asaphus,Ogygites, andGoldiuscome with the range of 18 to 20.Goldius, with 10 segments in the thorax and (apparently) 8 in the pygidium, comes nearest to the averages for these two parts of the trunk.Goldius,Amphilichas,Bumastus,Acidaspis,Actinopeltis, andSphærexochusare among the genera having 10 segments in the thorax, and there are many genera which have only one or two segments more or less than 10.
In most Ordovician genera, thirty-five out of the forty tabulated, the number of segments in the thorax is fixed, and the variation is in any case small. In four of the five genera where it was not fixed, there was a variation of only one segment, and the greatest variation was inPliomerops, where the number is from 15 to 19. This of course indicates that the number of segments in the thorax tends to become fixed in Ordovician time. The variation in the number of segments in the pygidium is, however, considerable. It is difficult in many cases to tell how many segments are actually present in this shield, as it is more or less smooth in a considerable number of genera. Extreme cases of variation within a genus are found inEncrinurus, species of which have from 7 to 22 segments in the pygidium,Cybeloideswith 10 to 20, andDionidewith 10 to 26. As the number in the thorax became settled, the number in the pygidium became more unstable, so that not even in the Ordovician can the total number of segments in the trunk be said to show any tendency to become fixed.
The genera used in this tabulation were:Eoharpes,Cryptolithus,Tretaspis,Trinucleus,Dionide,Raphiophorus,Ampyx,Endymionia,Anisonotus,Triarthrus,Remopleurides,Bathyurus,Bathyurellus,Ogygiocaris,Asaphus,Ogygites,Isotelus,Goldius,Cyclopyge,Amphilichas,Odontopleura,Acidaspis,Glaphurus,Encrinurus,Cybele,Cybeloides,Ectenonotus,Calymene,Ceraurus,Pliomera,Pliomerops,Pterygometopus,Chasmops,Eccoptochile,Actinopeltis,Sphærexochus,Placoparia,Pilekia,Selenopeltis, andCalocalymene.
Only sixteen genera of Devonian trilobites were available for tabulation, and it is not always possible to ascertain the exact number of segments in the pygidium, although genera with smooth caudal shields had nearly all disappeared. The number of segments in the thorax had become pretty well fixed by the beginning of the Devonian,Cyphaspiswith a range of from 10 to 17 furnishing the only notable exception. The range for the sixteen genera is from 8 to 17, the average 11, the number exhibited by the Phacopidæ which form so large a part of the trilobites of the Devonian. The greater part of the species have large pygidia, and while the range is from 3 to 23, the average is 11.2.Probolium, with 11 in the thorax and 11-13 in the pygidium, andPhacops, with 11 in the thorax and 9-12 in the pygidium, approach very closely to the "average" trilobite, and various species of other genera of the Phacopidæ have the same number of segments as the norm. In every genus, however, the number of segments in the pygidium is variable, the greatest variation being inDalmanites, with a range of from 9 to 23. The number of segments in the pygidium was therefore not fixed and was on the average higher than in earlier periods.
The genera used in the tabulation were:Calymene,Dipleura,Goldius,Proëtus,Cyphaspis,Acidaspis,Phacops,Hausmania,Coronura,Odontochile,Pleuracanthus,Calmonia,Pennaia,Dalmanites,Probolium, andCordania.
The trilobites of the late Palæozoic (Mississippian to Permian) belong, with two possible exceptions, to the Pröetidæ, and only three genera,Proëtus,Phillipsia, andGriffithides, appear to be known from all the parts. I am, however, assuming that bothBrachymetopusandAnisopygehave 9 segments in the thorax, and so have tabulated five genera. The range in the number of segments in the pygidium is large, from 10 in some species ofProëtusto 30 inAnisopyge, and the average, 17.3, is high, as is the average for total number in the trunk, 26.3.Anisopyge, a late Permian trilobite described by Girty from Texas, is perhaps the last survivor of the group. It seems to have had 39 segments in the trunk, making it, next to the CambrianPædeumiasandMenomonia, the most numerously segmented of all the trilobites.
The above data may be summarized in the following table:
This table confirms that made up by Carpenter, and shows even more strikingly the progressive increase in the average number of segments in the trunk throughout the Palæozoic.
While the two trilobites with the greatest number of segments are Cambrian, yet on the average, the last of the trilobites had the more numerously segmented bodies. The multisegmented trilobites are:
Anisopyge, the last of the trilobites, stands third on the list of those having great numbers of segments, and in each period there are a few which have considerably more than the average number. It may be of some significance that of these nine genera onlyPædeumiasandAnisopygebelong to the Opisthoparia, the great central group, and that five are members of the Proparia, the latest and most specialized order.
FORM OF THE SIMPLEST PROTASPIS.
It would naturally be expected that the young of the Cambrian trilobites should be more primitive than the young of species from later formations, and Beecher (1895 C) has shown that this is the case. He had reference, however, chiefly to the eyes, free cheeks, and spines, and by comparison of ontogeny and phylogeny, demonstrated the greater simplicity of the protaspis which lacked these organs. It remains to inquire which among the other characteristics are most fundamental.
Among the trilobites of the Lower Cambrian, no very young have been seen except of Mesonacidæ. Of these, the ontogeny ofElliptocephala asaphoidesEmmons is best known, thanks to Ford, Walcott, and Beecher, but, as the last-named has pointed out, the actual protaspis or earliest shield has not yet been found. The youngest specimen is the one roughly figured by Beecher (1895 C, p. 175, fig. 6). It lacks the pygidium, but if completed by a line which is the counterpart of the outline of the cephalon, it would have been 0.766 mm. long. The pygidium would have been 0.183 mm. long, or 23 per cent of the whole length. The axial lobe was narrow, of uniform width along the cephalon, showed a neck-ring and four indistinct annulations, but did not reach quite to the anterior end, there being a margin in front of the glabella about 0.1 mm. wide. The greatest width of the cephalon was 0.66 mm., and of the glabella 0.233 mm., or practically 35 per cent of the total width. Other youngElliptocephalaup to a length of 1 mm., and youngPædeumias,Mesonacis, andHolmia(see Kiær, Videnskaps, Skrifter, 1 Mat.-Naturv. Klasse, 1917, No. 10) show about the same characteristics, but all these have large compound eyes on the dorsal surface and specimens in still younger stages are expected. It may be pointed out, however, that in these specimens the pygidium is proportionately larger than in the adult. Walcott cites one adult 126 mm. long in which the pygidium is 6 mm. long, or between 4 and 5 per cent of the total length, while in the incomplete specimen described above, it was apparently 23 percent. In a specimen 1 mm. long figured by Walcott, the pygidium is 0.15 mm. long, or 15 per cent of the whole length.
The development of several species of trilobites from the Middle Cambrian is known. Barrande (1852) described the protaspis ofSao hirsuta,Peronopsis integer,Phalacroma bibullatum,P. nudum, andCondylopyge rex. Broegger figured that of aLiostracus(Geol. For. Förhandl., 1875, pl. 25, figs. 1-3) and Lindstroem (1901, p. 21) has reproduced the same. Matthew (Trans. Roy. Soc. Canada, vol. 5, 1888, pl. 4, pls. 1, 2) has described the protaspis of aLiostracus,Ptychoparia linnarssoniBroegger, andSolenopleura robbiHartt. Beecher (1895 C, pl. 8) has figured the protaspis ofPtychoparia kingiMeek, and the writer that of a Paradoxides (Bull. Mus. Comp. Zool., vol. 58, No. 4, 1914, pl. i).
Sao,Liostracus,Ptychoparia, andSolenopleuraall have the same sort of protaspis. In all, the axial lobe reaches the anterior margin and is somewhat expanded at that end; in all, the glabella shows but slight trace of segmentation; and in all, the pygidium occupies from one fifth to one fourth the total length. There is considerable variation in the width of the axial lobe. It is narrowest inPtychoparia, where in the middle it is only 14 per cent of the whole width, and widest inSolenopleura, where it is 28 per cent. InPtychopariathe pygidium of the protaspis occupies from 18 to 22 per cent of the whole length. In the adult it occupies 10 to 12 per cent. InSolenopleurait makes up about 26 per cent of the protaspis, and in the adult about 8 per cent.
In the youngest stages of all these trilobites, the pygidium is incompletely separated from the cephalon. The first sign of segmentation is a transverse crack which begins to separate the cephalon and pygidium, and by the time this has extended across the full width the neck segment has become rather well defined. In this stage the animal is prepared to swim by means of the pygidium, and first becomes active. The coincident development of the free pygidium and the neck-ring strongly suggests that the dorsal longitudinal muscles are attached beneath the neck-fur row.
The single protaspis ofParadoxidesnow known, while only 1 mm. long, is not in the youngest stage of development. It is like the protaspis ofOlenellusin having large eyes on the dorsal surface and a narrow brim in front of the glabella. The glabella is narrower than in the adult.
The initial test of no agnostid has probably as yet been seen, as all the young now known show the cephalon and pygidium distinctly separated.Phalacroma bibullatumandP. nudumare both practically smooth and isopygous when 1.5 mm. long.P. bibullatumshows no axial lobe at this stage, but a wide glabella and median tubercle develop later, and when the glabella first appears, it extends to the anterior margin. InPeronopsis integerandCondylopyge rex, the axial lobe is outlined on each of the equal shields in specimens about 1 mm. long, but is without furrows and reaches neither anterior nor posterior margin.
From the foregoing brief description it appears that the pygidium of the protaspis varies in different groups from as little as 15 per cent of the total length in the Mesonacidæ to as much as 50 per cent in the Agnostidæ; that the axial lobe varies from as little as 14 per cent of the total width in onePtychopariato as much as 50 per cent inPhalacroma nudum; that the glabella reaches the anterior margin in the Olenidæ, Solenopleuridæ, andPhalacroma bibullatum, while there is a brim in front of it in the Olenellidæ, Paradoxidæ, and three of the species of the Agnostidæ. The decision as to which of these conditions are primitive may be settled quite satisfactorily by study of the ontogeny of the various species.
ORIGIN OF THE PYGIDIUM.
Taking first the pygidium, it has already been pointed out that in each case the pygidium of the adult is proportionally considerably smaller than the pygidium of the protaspis. The stages in the growth of the pygidium are better known in Sao hirsuta than in any other trilobite, and a review of Barrande's description will be advantageous.
Barrande recognized twenty stages in the development of this species, but there was evidently a still simpler protaspis in his hands than the smallest he figured, for he says, after describing the specimen in the first stage: "We possess one specimen on which the head extends from one border to the other of the disk, but as this individual is unique we have not thought it sufficient to establish a separate stage." This specimen is important as indicating a stage in which there was not even a suggestion of division between cephalon and pygidium.
In the first stage described by Barrande, the form is circular, the length is about 0.66 mm., and the glabella is narrow with parallel sides and no indications of lateral furrows. The neck segment is indicated by a slight prominence on the axial lobe, and back of it a constriction divides the axial lobe of the pygidium into two nodes, but does not cross the pleural lobes. The position of the nuchal segment permits a measurement of the part which is to form the pygidium, and shows that that shield made up 30 per cent of the entire length.
In the second stage, when the test is 0.75 mm. long, the cephalon and pygidium become distinctly separated, and the latter shield shows three annulations on the axial and two pairs of ribs on the pleural lobes. It now occupies 33-1/3 per cent of the total length.
In the third stage, when the total length is about 1 mm., the pygidium has continued to grow. It now shows five annulations on the axial lobe, and is 46 per cent of the total length.
In the fourth stage, two segments of the axial lobe have been set free from the front of the pygidium. The length is now 1.5 mm. and the pygidium makes up 32 per cent of the whole. From this time the pygidium continues to decrease in size in proportion to the total length, as shown in the following table.