PART I.

There is good proof that the feet of trilobites must have been soft membranous organs, for the absence of the slightest remains of these organs in the numerous specimens observed is of itself evidence of the fact, and it can indeed scarcely be supposed that hard horny extremities should be affixed to a soft membranous abdominal surface; since they would not have possessed that firm basis, which all solid organs of locomotion require, in order that they may be properly available.

There is good proof that the feet of trilobites must have been soft membranous organs, for the absence of the slightest remains of these organs in the numerous specimens observed is of itself evidence of the fact, and it can indeed scarcely be supposed that hard horny extremities should be affixed to a soft membranous abdominal surface; since they would not have possessed that firm basis, which all solid organs of locomotion require, in order that they may be properly available.

Very well reasoned, and were it not for the discovery of new material in American localities, Burmeister's views would probably never have been proved incorrect. One can not escape the suspicion that some of the accepted hypotheses of today, founded on similar "proof," may yield in time to the weight of bits of positive evidence.

The history of the study of appendages of trilobites may be divided into two periods. The first, in which there was a general belief that the appendages were soft organs, but during which numerous "finds" of limbs were reported, extended from the time of Linné to the year (1876) in which Walcott demonstrated the fact that the animals possessed jointed ambulatory and breathing organs.

The second, much more fruitful period, began with Walcott's publication of 1881, descriptive of the appendages ofCeraurusandCalymene, and for the purposes of this memoir, closes with his great contribution on the anatomy ofNeolenus(1918). Beecher's brilliant productions came in the middle of the second period.

In the first period, there were at least two authentic discoveries of appendages, those of Eichwald (1825) and Billings (1870), but since neither of these men convinced his confreres of the value of his finds, the work of neither can be considered as having marked an especial epoch in the history.

As all the authentic finds will be treated in detail on later pages, only a brief résumé of the first period will be given here. This has already been done by Burmeister (1843, 1846) and Barrande (1852, 1872), whose works have been my primary sources of information, but I have looked up the original papers, copies of nearly all of which are to be seen in the libraries in Cambridge and Boston. Brig.-Gen. A. W. Vogdes, U. S. A. (retired), has very kindly placed at my disposal a number of references and notes.

Linné (1759) was the first to report the discovery of appendages of trilobites. Törnquist (1896) has pressed for a recognition of the contribution of the great Swedish naturalist to this problem, but Beecher (1896 B) doubted the validity of the find. Linné figured a specimen ofParabolina spinulosa(Wahlenberg), with what he interpreted as a pair of antennæ attached. He states (translation quoted from Törnquist): "Most remarkable in this specimen are the antennæ in the front, which I never saw in any other sample, and which clearly prove this fossil to belong to the insects." Beecher has shown as conclusively as can be shown without access to the original specimen that the supposed antennæ were really only portions of the thickened anterior border, the appearance being due to imperfect preservation. Brünnich as early as 1781 called attention to the imperfection of this specimen,and it is also referred to by Wahlenberg (1821, p. 39), Brongniart (1822, p. 42), Dalman (1828, p. 73), and Angelin (1854, p. 46).

Audouin (1821) seems to have been the first naturalist with sufficient knowledge of the Arthropoda to be competent to undertake the study of the trilobites. He concluded that the absence of ventral appendages was probably a necessary consequence of the skeletal conformation, and thought if any were discovered, they would prove to be of a branchial nature.

Wahlenberg (1821) in the same year expressed his belief that the trilobites were nearly allied toLimulusand in particular tried to show that the trilobites could have had masticatory appendages attached about the mouth as in that modern "insect" (p. 20). Wahlenberg was also the first to describe an hypostoma of a trilobite (p. 37, pl. 1, fig. 6), but did not understand the nature of his specimen, which he described as a distinct species.

Brongniart (1822, p. 40) devoted five pages of his monograph to a discussion of the affinities of trilobites, concluding that it was very probable that the animals lacked antennæ and feet, unless it might be that they had short soft feet which would allow them to creep about and fix themselves to other bodies.

Schlotheim (1823) thought that the spines onAgnostus pisiformiswere segmented and compared them with the antennæ ofAcarus.

Stokes (1823) was the first who, with understanding, published an illustration of the ventral side of a trilobite, having figured the hypostoma of anIsotelus. He was followed in the next year (1824) by Dekay, who also figured the hypostoma of anIsotelus, and added some observations on the structure of trilobites. The researches of Barrande, Novak, Broegger, Lindstroem, and others have dealt so fully with the hypostoma that further references to that organ need not be included here.

Dalman (1826, 1828) reviewed the opinions of his predecessors, and thought it not impossible that organs of mastication may have been present under the head shield of the trilobite as inLimulus(1828, p. 18). In this he of course followed Wahlenberg.

Goldfuss (1828) figured sections ofDalmanites hausmanni,Phacops macrophthalma, andCalymene tristani, which remind one of some of Doctor Walcott's translucent slices. So far as one can judge from the illustrations, it is probable that what he took for limbs were really fragments of other trilobites. Such is certainly the case in his figures 9 and 10, where a number of more or less broken thoracic segments are present. The section ofEncrinurus punctatusshown in figure 7 may possibly exhibit the position and folds of the ventral membrane beneath the axial lobe, and also, perhaps, the appendages. His figures 4, 5 and 8 show the hypostoma in section.

Pander (1830) described the hypostoma in greater detail than had been done by previous authors, but otherwise added nothing to the subject.

Sternberg (1830) thought he had individuals showing appendages, but judging from his poor figures, he was deceived by fragmentary specimens.

Green (1839 A, B, C) described specimens ofPhacopsfrom Berkeley Springs, West Virginia, which had the hypostoma in position, and appear to have had a tubular opening under the axial lobe. While appendages were not actually present, these specimens suggested fairly correct ideas about the swimming and breathing organs of trilobites. They were similar to the ones which Castelnau obtained, and all were perhaps from the same locality.

It is not worth while to do more than enumerate the other authors of this period: Hisinger 1837, Emmrich 1839, Milne-Edwards 1841, for they all shared the same views, and added nothing to what was already known.

Castelnau (1843) described and figured aPhacopssaid to come from Cacapon Springs, West Virginia, which he thought possessed remains of appendages. There is nothing in the description or figures to indicate exactly what was present, but it is very unlikely that any limbs were preserved. The broad thin "appendage" figured may have been a fragment of a thoracic segment. This specimen was evidently described by Castelnau before 1843, as is inferred from a reference in the Neues Jahrbuch, 1843, P. 504, but I have not seen the earlier publication.

Burmeister (1843-1846), in his "Organization of the Trilobites," reviewed inextensothe history of the search for appendages, and concluded that they must have been so soft as to preclude the possibility of their being preserved as fossils. "Their very absence in fossils most distinctly proves their former real structure" (p. 10). In figures 7 and 8 on plate 6 he gave a restoration of the ventral surface of anAsaphus, the first restoration of the ventral anatomy to be attempted. Since he chose modern branchiopods as his model, he did not go so far wrong as he might have done. Still, there is little in the figure that would now be accepted as correct. The following quotation will serve to give the opinion of this zoologist, who from his knowledge of the Crustacea, was the most competent of the men of his time to undertake a restoration of the appendages of the trilobites:

… in giving a certain form to the feet in the restored figure, I have done so rather intending to indicate what they might have resembled, than with any idea of assuming their actual form. I merely assert that these organs were soft, membranous, and fringed, adapted for locomotion in water, placed on the abdominal portion of the body, and extending sidewise beneath the lateral lobes of the rings, as shown in the ideal transverse section. These feet were also indented, and thus divided into several lobes at the open lower side, and each separate lobe was furnished at the margin with small bristles serving as fins. The last and external lobe was probably longer, smaller, and more movable, and reached to the termination of the projecting shell lobe, bearing a bladder-shaped gill on the inner side (1846, p. 45).

McCoy (1846) observed in several trilobites a pair of pores situated in the dorsal furrows near the anterior end of the glabella. He showed that the pits occupy precisely the position of the antennæ of insects and suggested that they indicated the former presence of antennæ in these trilobites (chieflyAnipyxand "Trinucleus"). The evidence fromCryptolithus, set forth on a later page, indicates the correctness of McCoy's view.

Richter (1848, p. 20, pl. 2, fig. 32) described and figured what he took to be a phyllopod-like appendage found in a section through aPhacops. Without the specimen it is impossible to say just what the structure really was. The outline figure is so obviously modeled on an appendage ofApusthat one is inclined to think it somewhat diagrammatic. In calling attention to this neglected "find," Clarke (1888, p. 254, fig.) interprets the appendage as similar to the spiral branchiæ ofCalymene senaria, and adds that he himself has seen evidence of spiral branchiæ in the American Phacops rana.

Beyrich (1846) described a cast of the intestine of "Trinucleus," and Barrande (1852) further elaborated on this discovery.

Corda (1847) made a number of claims for appendages, but all were shown by Barrande (1852) to be erroneous.

Barrande (1852, 1872) gave a somewhat incomplete summary of the various attempts to describe the appendages of trilobites, concluding that none showed any evidence of other than soft appendages, until Billings' discovery of 1870.

Volborth (1863) described a long chambered tubular organ inIllænuswhich he believed to represent a cast of the heart of a trilobite, but which has since been likened by writers to the intestinal tract in "Trinucleus."

THE APPENDAGES OF TRILOBITES.

Terminology.

The terminology employed in the succeeding pages is essentially the same as that used by Beecher, with two new terms added. Beecher assigned to the various segments of the limbs the names suggested by Huxley, but sometimes used the name protopodite instead of coxopodite for the proximal one. It is obvious that he did not use protopodite in the correct sense, as indicating a segment formed by the fusion of the coxopodite and basipodite. The usage employed here is shown infigure 1.

Fig. 1.—Triarthrus beckiGreen. Diagram of one of the limbs of the thorax, viewed from above, with the endopodite in advance of the exopodite. 1, coxopodite, the inner extension being the endobase (gnathobase on cephalon); 2, basipodite, springing from the coxopodite, and supporting the exopodite, which also rests upon the coxopodite; 3, ischiopodite; 4, meropodite; 5, carpopodite; 6, propodite; 7, dactylopodite, with terminal spines.

Fig. 1.—Triarthrus beckiGreen. Diagram of one of the limbs of the thorax, viewed from above, with the endopodite in advance of the exopodite. 1, coxopodite, the inner extension being the endobase (gnathobase on cephalon); 2, basipodite, springing from the coxopodite, and supporting the exopodite, which also rests upon the coxopodite; 3, ischiopodite; 4, meropodite; 5, carpopodite; 6, propodite; 7, dactylopodite, with terminal spines.

The investigation ofCeraurusshowed that the appendages were supported by processes extending downward from the dorsal test, and on comparison with other trilobites it appeared that the same was true inCalymene,Cryptolithus,Neolenus, and other genera. Thin sections showed that these processes were formed by invagination of the test beneath the dorsal and glabellar furrows. While these processes are entirely homologous with the entopophyses ofLimulus, I have chosen to apply the nameappendiferto them in the trilobites.

The only other new term employed is the substitution ofendobasefor gnathobase in speaking of the inner prolongation of a coxopodite of the trunk region. The term gnathobase implies a function which can not in all cases be proved.

The individual portions of which the limbs are made up are calledsegments, and the articulations between them,joints. Such a procedure is unusual, but promotes clearness.

The Appendages of Neolenus.

HISTORICAL.

The first mention ofNeolenuswith appendages preserved was in Doctor Walcott's paper of 1911, in which two figures were given to show the form of the exopodites in comparison with the branchiæ of the eurypterid-likeSidneyia. In 1912, two more figures were presented, showing the antennules, exopodites, and cerci. The specimens were found in the Burgess shale (Middle Cambrian) near Field, in British Columbia. This shale is exceedingly fine-grained, and has yielded a very large fauna of beautifully preserved fossils, either unknown or extraordinarily rare elsewhere. It was stated in this paper (1912 A) that trilobites, with the exception ofAgnostusandMicrodiscus, were not abundant in the shale.

In discussing the origin of the tracks known asProtichnites, Walcott presented four figures ofNeolenuswith appendages, and described the three claw-like spines at the tip of each endopodite.

Three new figures of the appendages were also contributed to the second edition of the Eastman-Zittel "Text-book of Paleontology" (1913, p. 701). Later (1916, pl. 9) there was published a photograph of a wonderful slab, bearing on its surface numerous Middle Cambrian Crustacea. Several of the specimens ofNeolenusshowed appendages.

Finally, in 1918, appeared the "Appendages of Trilobites," in which the limbs ofNeolenuswere fully described and figured (p. 126), and a restoration presented. Organs previously unknown in trilobites, epipodites and exites, attached to the coxopodites, were found.

Neolenus serratus(Rominger).

(Text figs.2-8.)

Illustrated: Walcott, Smithson. Misc. Coll., vol. 57, 1911, p. 20, pl. 6, figs. 1, 2 (exopodites of thorax and cephalon);—Ibid., vol. 57, 1912, p. 191, pl. 24, figs., 1, la (antennules, caudal rami, and endopodites of thorax);—Ibid., vol. 57, 1912, p. 277, pl. 45, figs. 1-4 (antennules, endopodites of cephalon and thorax, caudal rami);—Text-book of Paleontology, edited by C. R. Eastman, 2d ed., vol. 1. 1913, p. 701, fig. 1343 (exopodites), p. 716, fig. 1376 (abdominal appendages), fig. 1377 (appendages of thorax and pygidium);—Ann. Rept. Smithson. Inst. for 1915, 1916, pl. 9;—Smithson. Misc. Coll., vol. 67, 1918, pp. 126-131 et al., pl. 14, fig. 1; pls. 15-20; pl. 21, fig. 6; pls. 22, 23; pl. 31 (restoration); pl. 34, fig. 3 (restored section); pl. 35, fig. 4; pl. 36, fig. 3 (hypostoma).

Illustrated: Walcott, Smithson. Misc. Coll., vol. 57, 1911, p. 20, pl. 6, figs. 1, 2 (exopodites of thorax and cephalon);—Ibid., vol. 57, 1912, p. 191, pl. 24, figs., 1, la (antennules, caudal rami, and endopodites of thorax);—Ibid., vol. 57, 1912, p. 277, pl. 45, figs. 1-4 (antennules, endopodites of cephalon and thorax, caudal rami);—Text-book of Paleontology, edited by C. R. Eastman, 2d ed., vol. 1. 1913, p. 701, fig. 1343 (exopodites), p. 716, fig. 1376 (abdominal appendages), fig. 1377 (appendages of thorax and pygidium);—Ann. Rept. Smithson. Inst. for 1915, 1916, pl. 9;—Smithson. Misc. Coll., vol. 67, 1918, pp. 126-131 et al., pl. 14, fig. 1; pls. 15-20; pl. 21, fig. 6; pls. 22, 23; pl. 31 (restoration); pl. 34, fig. 3 (restored section); pl. 35, fig. 4; pl. 36, fig. 3 (hypostoma).

The following description of the appendages ofNeolenusis summarized from Walcott's paper of 1918, and from a study of the eight specimens mentioned below.

Cephalon.

The antennules are long, slender, and flexible, and lack the formal double curvature so characteristic of those ofTriarthrus. There are short fine spines on the distal rims of the segments of the proximal half of each, thus giving great sensitiveness to these organs. In the proximal portion of each, the individual segments are short and wider than long, and in the distal region they are narrow and longer than wide.

There are four pairs of biramous cephalic appendages, which differ only very slightly from the appendages of the thorax. All are of course excessively flattened, and they are here described as they appear.

The coxopodites, shown for the first time in Walcott's paper of 1918, are broad, longer than wide, and truncated on the inner ends, where they bear short, stout, unequal spinessimilar to those along the anterior margin. The gnathobases are but slightly modified to serve as mouth parts, much less so than inTriarthrus, but the coxopodites of the cephalon are shorter and wider than those of the thorax.

At the distal end of the coxopodite arise the endopodite and exopodite. The endopodite consists of six segments, the distal ones, propodite and dactylopodite, more slender than the others, the last bearing three terminal spines. The first endopodite is shorter than the others and slightly more slender (pl. 16, fig. 1)[1]and the anterior appendages turn forward more or less parallel to the sides of the hypostoma (pl. 22). The basipodite, ischiopodite, meropodite, and carpopodite are, in their flattened condition, roughly rectangular, only a little longer than wide, taper gradually distally, each bears small spines on the outer rim, and some of the proximal ones usually have a row along the margin.

[1]Nota bene!All references in this section are to the plates of Doctor Walcott's paper in 1918.

[1]Nota bene!All references in this section are to the plates of Doctor Walcott's paper in 1918.

The exopodites of the cephalon, as of the body of Neolenus, are very different from those of any other trilobite whose appendages were previously known. As shown in the photographs (pl. 20, fig. 2; pl. 22), each exopodite consists of a single long, broad, leaf-like blade, not with many segments as inTriarthrus, but consisting of a large basal and small terminal lobe. It bears on its outer margin numerous relatively short, slender, flat setæ. The long axes of the exopodites point forward, and the setæ are directed forward and outward. They stand more nearly at right angles to the shaft on the cephalic exopodites than on those of the thorax. This same type of broad-bladed exopodite is also found on the thorax and pygidium.

The number of functional gnathobases on the cephalon is unknown. That four endopodites were present on one side is shown pretty clearly by specimen 58591 (pl. 16, fig. 3) and while no more than two well preserved exopodites have been seen on a side, there probably were four. Specimen 65513 (pl. 16, fig. 1) shows gnathobases on the second and third appendages of that individual as preserved, but there is no positive evidence that these are really the second and third appendages, for they are obviously displaced. The hypostoma of Neolenus is narrow but long, several specimens showing that it extended back to the horizon of the outer ends of the last pair of glabellar furrows. It is not as wide as the axial lobe, so that, while gnathobases attached beneath the first pair of furrows would probably not reach back to the posterior end of the hypostoma, they might lie parallel to it and not extend beneath. It seems possible, then, that there were four pairs of endobases but that the second rather than the first pair served as mandibles, as seems to be the case in Ceraurus.

Thorax.

The thorax ofNeolenusconsists of seven segments, and the appendages are well shown (pl. 17, fig. 1; pl. 18, figs. 1, 2; pl. 20, fig. 1.), The endopodites of successive segments vary but little, all are slender but compact, and consist of a long coxopodite with six short, rather broad segments beyond it. In the figures, the endopodites extend some distance in a horizontal direction beyond the edges of the dorsal test, as many as four segments being in some cases visible, but measurements show that the appendages tended to fall outward on decay of the animal. The dactylopodites are provided with terminal spines as inTriarthrus. The coxopodites are long, straight, and slender. They are well shown on only one specimen (pl. 18), where they are seen to be as wide as the basipodite, and the endobases are set with spines on the posterior and inner margins. They are so long that those on oppositesides must have almost met on the median line. The segments of the endopodites are mostly but little, if any, longer than broad, and at the distal end each shows two or more spines. The propodite and dactylopodite are notably more slender than the others. The exopodites of the thorax are broad and flat, and each shaft has two distinct parts with different kinds of setæ. The posterior edge of the proximal lobe is fringed with a slender, flat, overlapping hairs which are a little longer than the width of the lobe, and stand at an angle of about 60 degrees with the direction of the axis of the appendage. The outer lobe is at an angle with the main one, and has short, very fine setæ oh the margin. One or two specimens show some evidence of a joint between the inner and outer lobes, but in the great majority of cases they seem to be continuous; if originally in two segments, they have become firmly united. The exopodites of the thorax, like those of the cephalon, are directed diagonally forward and outward. (pl. 21, fig. 6; pl. 22.)

Pygidium.

The pygidium ofNeolenus serratusis large, and usually shows five rings on the axial lobe and four pairs of ribs on the sides. There are five pairs of biramous appendages belonging to this shield, and behind these a pair of jointed cerci. That the number of abdominal appendages should correspond to the number of divisions of the axial lobe rather than to the number of ribs on the pleural lobes is of interest, and in accord with other trilobites, as first shown by Beecher.

The endopodites of the pygidium have the same form as those of the thorax, are long, and very much less modified than those of any other trilobite whose appendages are known. On some specimens, they extend out far beyond the dorsal test, so that nearly all the segments are visible (pl. 17, fig. 3; pl. 18; pl. 19; pl. 20, fig. 1), but in these cases are probably displaced. The segments are short and wide, the whole endopodite tapering gradually outward. The dactylopodite bears terminal spines, and the individual segments also have outward-directed spines.

The cerci appear to have been long, slender, very spinose organs much like the antennules, but stiff rather than flexible. They are a little longer than the pygidium (pl. 17, figs. 1, 2), and seem to be attached to a plate on the under surface of the posterior end and in front of the very narrow doublure. The precise form of this attachment can not be determined from the published figures. They bear numerous fine spines (pl. 17, fig. 3).

Epipodites and Exiles.

Doctor Walcott has found on several specimens ofNeolenusremains of organs which he interprets as epipodites and exites attached to the coxopodites. A study of the specimens has, however, convinced me that both the large and small epipodites are really exopodites, and that the exites are badly preserved and displaced coxopodites. Detailed explanation of this interpretation is given below in the description of the several specimens involved.

Description of Individual Specimens.

Doctor Walcott was kind enough to send me eight of the more important specimens ofNeolenusfigured by him, and since my interpretation of them does not agree in all respects with his, I have thought it fairer to the reader to present here rather full notes explaining the position I have taken. I understand that since I communicated my interpretation of the epipodites and exites to him, Doctor Walcott has submitted the specimens toseveral palæontologists, who consider that epipodites are really present. Since I am not able to convince myself that their conclusion is based upon sound evidence, I give here my own interpretation. There is of course, no a priori reason why trilobites should not have had epipodites.

Specimen No. 58589.

Illustrated: Walcott, Smithson. Misc. Coll., vol. 57, 1912, pl. 45, fig. 2;—Zittel-Eastman Text-book of Paleontology, vol. 1, 1913, fig. 1377;—Smithson. Misc. Coll., vol. 67, 1918, pl. 18, fig. 1; pl. 20, fig. 1.

Illustrated: Walcott, Smithson. Misc. Coll., vol. 57, 1912, pl. 45, fig. 2;—Zittel-Eastman Text-book of Paleontology, vol. 1, 1913, fig. 1377;—Smithson. Misc. Coll., vol. 67, 1918, pl. 18, fig. 1; pl. 20, fig. 1.

This is one of the most important of the specimens, as it shows the coxopodites of three thoracic limbs and the well preserved endopodites of six thoracic and five pairs of pygidial appendages.

The appendages are all shifted to the left till the articular socket of the coxopodite is. about 8 mm. outside of its proper position. The endopodites extend a corresponding amount beyond the edge of the dorsal test and are there so flattened that they are revealed as a mere impression. The coxopodites, which are beneath the test, seem to have been somewhat protected by it, and while hopelessly crushed, are not flattened, but rather conformed to the ridges and grooves of the thorax.

Fig. 2.Neolenus serratus(Rominger). A sketch of the coxopodites and endopodites of two thoracic segments. Note notch for the reception of the lower end of the appendifer. × 3.

Fig. 2.Neolenus serratus(Rominger). A sketch of the coxopodites and endopodites of two thoracic segments. Note notch for the reception of the lower end of the appendifer. × 3.

The coxopodite of the appendage of the last thoracic segment is best preserved. It is rectangular, about one third as wide as long, with a slight notch in the posterior margin near the outer end. The inner end is obliquely truncated and shows about ten sharp spines which do not appear to be articulated to the segment, but rather to be direct outgrowths from it. There are similar spines along the posterior margin, but only two or three of what was probably once a continuous series are now preserved. On the opposite margin of the coxopodite from the slight depression mentioned above, there is a slight convexity in the outline, which is better shown and explained by the coxopodite just in front of this. That basal segment has the same form as the one just described, but as its posterior margin is for the greater part of its length pushed under the one behind it, the spines are not shown. On the posterior margin, two-thirds of the length from the proximal end, there is a shallow notch, and corresponding to it, a bulge on the anterior side. From analogy with Ceraurus andCalymeneit becomes plain that the notch and bulge represent the position of the socket where the coxopodite articulated with the appendifer. Since these structures have not been shown in previous illustrations, a drawing giving my interpretation of them is here inserted(fig. 2). It is evident from the position of the notch that the row of spines was on the dorsal (inner) side of the coxopodite and that the truncation was obliquely downward and outward.

The endopodite of the last thoracic appendage is well preserved and may be described as typical of such a leg in this part. The basipodite is as wide as the coxopodite, and it and the three succeeding segments, ischiopodite, meropodite, and carpopodite, are all parallel-sided, not expanded at the joints, and decrease regularly in width. The propodite and dactylopodite are also parallel-sided, but more slender than the inner segments, and on the end of the dactylopodite there are four little spines, three of them—one large and two small—articulated at the distal end, and the fourth projecting from the posterior outer angle. Each segment has one or more spines on the outer articular end, and the ischiopodite has several directed obliquely outward on the posterior margin. All of the four proximal segments show a low ridge parallel to and near the anterior margin, and several endopodites of the pygidium have a similar ridge and a row of spines along the posterior margin of some of the segments. These features indicate that the segments in question were not cylindrical in life, but compressed. From the almost universal location of the spines on the posterior side of the limbs as preserved, it seems probable that in the natural position the segments were held in a plane at a high angle with the horizontal, the ridge was dorsal and anterior and the row of spines ventral and posterior. Because the spines on the endobases are dorsal it does not follow that those on the endopodites were, for the position of the coxopodite in a crushed specimen does not indicate the position of the endopodite of even the same appendage.

The endopodites of the pygidium are similar to the one just described, except that some of them have spines on the posterior margin of the segments, and a few on the right side have extremely fine, faintly visible spines on the anterior side. The specimen shows fragments of a few exopodites, but nothing worth describing. In the middle of the right pleural lobe there is a small organ which Walcott has interpreted as a small epipodite. It is oval in form, broken at the end toward the axial lobe, and has exceedingly minute short setæ on the posterior margin. From analogy with other specimens, it appears to me to be the outer end of an exopodite.

Measurements:The entire specimen is about 64 mm. long and 52 mm. wide at the genal angles. The thorax is about 41 mm. wide (disregarding the spines) at the seventh segment, and the axial lobe about 13 mm. wide at the same horizon. The measurements of the individual segments of the seventh left thoracic limb are:

The five distal segments of the last pygidial endopodite are together 10.5 mm. long. The whole six segments of the endopodite of the third thoracic segments are together 21 mm. long. The distance from the appendifer of the third segment to the outer end of the spine is 17 mm. From the center of the notch in the coxopodite to the outer end is 1.5 mm.,which, added to the length of the endopodite, 21 mm., makes a distance of 22.5 mm. from the appendifer to the tip of the dactylopodite, showing that if projected straight outward, the endopodites of the thorax would project 5.5 mm. beyond the test, including spines.

The distance across the axial lobe from appendifer to appendifer on the seventh thoracic segment is 12.5 mm. Measured along the top of the coxopodite, it is 6 mm. from the middle of the notch to the inner end, and measured along the bottom it is 8 mm. From the truncated form of the ends it is evident that the coxopodites extended inward and downward from the appendifers, and with the dimensions given above, the inner toothed ends would practically meet on the median line.

Measurements on the appendages of the pygidia show that on this specimen they extend back about twice as far beyond the edge of the pygidium as they should, all being displaced.

Specimen No. 65514.

Illustrated: Walcott, Smithson. Misc. Coll., vol. 67, 1918, pl. 19, figs. 1-3.

Illustrated: Walcott, Smithson. Misc. Coll., vol. 67, 1918, pl. 19, figs. 1-3.

This specimen is so twisted apart that it is not possible to determine to what segments the appendages belong, but it exhibits the best preserved exopodites I have seen. The best one is just in front of the pygidium on the matrix, and shows a form more easily seen than described (our fig. 3). There is a broad, flat, leaf-like shaft, the anterior side of which follows a smooth curve, while in the curve on the posterior side, which is convex backward, there is a re-entrant, setting off a small outer lobe whose length is about one third the length of the whole. This lobe seems to be a continuation of the shaft, and the test of the whole is wrinkled and evidently very thin. The main and distal lobes of the shaft both bear numerous delicate setæ, but those of the outer lobe are much shorter and finer than those on the main portion. The latter are flattened and blade-like.

Fig. 3.Exopodite ofNeolenus serratus(Rominger), to show form of the lobes of the shaft, and the setæ. × 4.

Fig. 4.Neolenus serratus(Rominger). One of the so-called epipodites of specimen 65515, showing that it has the same outline as an exopodite (comparefigure 3) and fragments of setæ on the margin. × 3.

The anterior edge of the shaft shows a narrow stiffening ridge and the setæ are but little longer than its greatest width. The second segment of the pygidium has another exopodite like this one, but shows faintly the line between the two lobes, as though there were two segments.

This specimen also shows some very well preserved endopodites, but they differ in no way from those described from specimen No. 58589. Walcott mentions two large epipodites projecting from beneath the exopodites. I judge that he has reference to the distal lobes of the exopodites, but as these are continuous with the main shaft, there can be no other interpretation of them than that which I have given above.

Measurements:The pygidium is 19 mm. long (without the spines) and about 34 mm. wide at the front. The exopodites show faintly beneath the pygidial shield, but their proximal ends are too indistinct to allow accurate measurement. Apparently they were just about long enough to reach to the margin of the shield. The best preserved one, that of the second segment in the pygidium, is about 11 mm. long, 2.5 mm. wide at the widest; the distal lobe is 2.5 mm. long, and the longest setæ of the main lobe 3.5 mm. long. The pleural lobe of the pygidium is just 11 mm. wide at this point.

The endopodites project from 8 to 12 mm. beyond the pygidium, showing about four segments.

The thoracic exopodite described above is 11 mm. long and 2.75 mm. wide at the widest part. The distal lobe is 3.5 mm. long and 2.25 mm. wide, and the longest setæ on the main lobe 3 mm. long.

Specimen No. 65519.

Illustrated: Walcott, Zittel-Eastman Text-book of Paleontology, vol. 1, 1913, fig. 1343;—Smithson. Misc. Coll., vol. 67, 1918, pl. 21, fig. 6.

Illustrated: Walcott, Zittel-Eastman Text-book of Paleontology, vol. 1, 1913, fig. 1343;—Smithson. Misc. Coll., vol. 67, 1918, pl. 21, fig. 6.

This specimen is somewhat difficult to study but is very valuable as showing the natural position of the exopodites of the anterior part of the thorax. Walcott's figures are excellent and show the broad leaf-like shafts, the distal lobes with the re-entrant angles in the posterior margin, and the long fine setæ of the main lobes. None of the distal lobes retains its setæ. All extend back to the dorsal furrows, but the proximal ends are not actually shown.

The specimen is especially important because it shows the same distal lobes as specimen No. 65514, and demonstrates that they are a part of the exopodite and not of any other structure.

Measurements:The exopodite belonging to the fourth thoracic segment is 23 mm. long and 4 mm. wide at the widest part. The longest setæ are 7 mm. in length.

Specimen No. 65520.

Illustrated: Walcott, Smithson. Misc. Coll., vol. 67, 1918, pl. 20, fig. 2; pl. 22, fig. 1.

Illustrated: Walcott, Smithson. Misc. Coll., vol. 67, 1918, pl. 20, fig. 2; pl. 22, fig. 1.

This is a practically entire specimen, on two blocks, one showing the interior of the shell, and the other the one figured by Walcott, a cast of the interior. The first shows the low rounded appendifers at the anterior angle of each axial tergite. They are almost entirely beneath the dorsal furrows and do not project so far into the axial lobe as those of Ceraurus andCalymene. In fact, only those at the anterior end of the thorax project inward at all. As expected, there are five pairs on the pygidium. The cephalon is unfortunately so exfoliated that the appendifers there are not preserved. The doublure of the pygidium is extremely narrow.

The cast of the interior shows, rather faintly, the exopodites of the right side of the thorax and of the left side of the cephalon, and, still more faintly, the caudal rami and a few pygidial endopodites. The exopodites on the right side are in what seems to be the customary position, directed obliquely forward and outward, and the tips of their distal lobes project slightly beyond the edge of the test. These lobes were interpreted by Walcott as epipodites, but after comparing them with the terminal lobes of the exopodites of specimens No. 65519 and 65514 I think there can be no doubt that they represent the same structure. The pleura of the individual thoracic segments on this side of the specimen have an unusual appearance, for they are bluntly rounded or obtusely pointed, instead of being spinose.

The interpretation of the appendages of the cephalon is somewhat difficult. At the left of the glabella there are two large exopodites, the anterior of which lies over and partially conceals the other. These show by their position that they belong to the fourth and fifth cephalic appendages. In front of these lie two appendages which may be either endopodites or exopodites, but which I am inclined to refer to the latter. Both are narrow and shaped like endopodites, but bear on their outer edges close-set fine setæ. They also show what might be considered as faint traces of segmentation. If the first of these ran under the end of the exopodite behind it, as shown in Walcott's figure (pl. 22), then it would be necessary to interpret it as an endopodite, but it really continues down between the exopodite and the glabella, and seems to be attached opposite the middle of the eye. The specimen does not indicate clearly whether this appendage is above or below the exopodite behind it, but one's impression is that it is above, in which case it also must be an exopodite. The appendage in front, being similar, is similarly interpreted. If this be correct, then the exopodites of the second and third cephalic appendages are much shorter and narrower than those of the fourth and fifth. All of these appendages are obviously out of position, for the cheek has been pushed forward away from the thorax, though still pivoting on its inner angle at the neck-ring, till the eye has been brought up to the dorsal furrow. In this way the anterior exopodites have been thrust under the glabella and all the appendages have been moved to the right of their original position. The anterior exopodite is very poorly shown, but seems to be articulated in front of the eye. The posterior exopodites are very similar to those on the thorax. The distal lobe is shown only by the second from the last. It has the same form as the distal lobes on the thoracic exopodites, and like them has much finer setæ than the main lobe, but it does not stand at so great an angle with the axis of the main lobe, nor yet is it so straight as shown in Walcott's figure.

Measurements:The specimen is about 72 mm. long and 54 mm. wide at the genal angles. The pygidium is 22 mm. long and 37 mm. wide. The doublure is 1.5 mm. wide. The exopodite of the third thoracic segment is 19.5 mm. long. The pleural lobe at this point is 13 mm. wide without the spines and 18.5 mm. wide with them. The third exopodite of the cephalon was apparently about 15 mm. long when complete.

Specimen No. 65515.

Illustrated: Walcott, Smithson. Misc. Coll., vol. 67, 1918, pl. 20, figs. 3, 4.

Illustrated: Walcott, Smithson. Misc. Coll., vol. 67, 1918, pl. 20, figs. 3, 4.

This is a small piece of the axial portion of a badly crushed Neolenus, showing appendages on the left side as viewed from above. On the posterior half there are three large appendages which have the exact form of the exopodites of other specimens. There is a broad, oval, proximal lobe and a distal one at an angle with it. The proximal part of the shaft has fine setæ or the bases of them, and the distal lobe faint traces of much finer ones. The form, and the setæ so far as they are preserved, are exactly like those of the exopodites on the specimens previously described. (Seefig. 4, page 26.) Beneath them there are slender, poorly preserved endopodites.

In front of the exopodites and endopodites lie a series of structures which Walcott has called exites, but for which I can see another explanation. Walcott has shown them as four broad rounded lobes, but his figure must be looked upon as a drawing and not as a photograph, for it has been very much retouched.

For convenience of discussion, these lobes may be called Nos. 1, 2, 3, and 4, the last being the posterior one (fig. 5). This lobe is best shown on the matrix, where the anterior end is seen to be margined by stout spines, while the posterior end lies over the endopodite and under the exopodite behind it. No. 3 is sunk below the level of the others, and only a part of it has been uncovered. Its margin bears strong spines of different sizes. Its full shape can not be made out, but it has neither the shape nor the form of spines shown in figure 3, plate 20 (1918). Lobes 2 and 1 and another lobe in front of 1 seem to form a continuous series and to be part of a single appendage. They are all in one plane, arc so continuous that the joints between them can be made out with difficulty and if they do belong together, can easily be explained.

Fig. 5.—A sketch of the so-called exites ofNeolenus serratus(Rominger), to show the form and the character of the spines. × 2.

Fig. 6.—Endopodite of a cephalic appendage ofNeolenus serratus(Rominger), showing the very broad coxopodite. × 2.

Before calling these structures new organs not previously seen on trilobites, it is of course necessary to inquire if they can be interpreted as representing any known structures. That they can not be exopodites is obvious, since they are bordered by short stout spines instead of setæ. The same stout spines that negate the above possible explanation at once suggest that they are coxopodites (comparefig 6). At first sight, the so-called exites seem too wide and too rounded to be so interpreted, but if reference be had to the specimens rather than the figures, it will be noted that the only well preserved structure (No. 2) is longer than wide, has spines only on one side and one end, and does not differ greatly from the coxopodite of specimen No. 58589 (pl. 18, 1918). If structures 2, 1, and the segment ahead of 1 are really parts of one appendage, it can only be an endopodite, of which No. 2 is the coxopodite, No. 1 the basipodite, and the next segment the ischiopodite. If one looks carefully, there are no traces of spines on either end of No. 1, but only on the margin. The extreme width of No. 2 is against this interpretation as a coxopodite (see, however,fig. 6), but it may be rolled out very flat, as this is an unusuallycrushed specimen. No. 2 is 10 mm. long and 6 mm. wide at the widest point. No. 1 is 5 mm. long and 3.5 mm. wide.

The crucial point in this determination is whether 2 and 1 are parts of the same appendage. I believe they are, but others may differ.

Specimen No. 65513.


Back to IndexNext