Chapter 3

The matter of wonder was, what the people flocked to see, for it must soon have been known the Great Eastern was not there. The Hawk and the Caroline, as they went into Valentia, did duty successfully for the Big Ship, and the steam-yacht Alexandra, belonging to the Dublin Ballast Board, and H.M. tender Advice, created a sensation as they appeared in the offing on their way to the same rendezvous. All that related to the Cable and the laying of it possessed the utmost interest for the country people, simply because the Cable went westwards across the ocean to the home of their hopes. Many of the poor people believed that it would facilitate communications with their friends in the land to which their thoughts are for ever tending, rememberingperhaps the words of Lord Carlisle when he told them of the advantages the Telegraphic Cable would confer upon them.

The village of Knightstown witnessed an unusual influx of visitors, and those whom the hospitable roof of Glenleam could not stretch its willing eaves over, found something more than shelter in the inn and in the comfortable houses which acted as its succursales on the occasion. But there was in the midst of all the pleasurable excitement of the moment a tinge of dissatisfaction, because the people had persuaded themselves that if they were not to see the Great Eastern in the harbour, they would at least have H.M.S.S. Terrible and Sphinx, and the satellites of the Leviathan in their anchorage, and all they beheld of the men of war was their smoke and faint outlines on the distant horizon.

The Terrible and Sphinx might have coaled in Valentia, and waited there for the arrival of the Great Eastern, of which they could have heard by telegraph, instead of towing colliers to Cork and going into Berehaven, where there is no telegraph. Now, as to this harbour, let it be admitted at once that its entrance is only 180 yards broad. But the “Narrows” of Valentia Harbour is like a very short neck to a bottle, and after less than a ship’s length, the channel enlarges sufficiently to allow several vessels to sail abreast in water which is never rough enough to prevent the passage of boats to Begennis or Renard Point. Indeed, Capt. Wolfe’s report to the Hydrographer to the Admiralty expresses an opinion that the Needles’ passage is more intricate and dangerous. The Skelligs on one side and the Blasketts on the other mark the approach very distinctly. Inside, there is 600 acres, or more than a square mile, of harbour, with good holding ground, having a maximum of six furlongs and a minimum of three furlongs water.

The disappointment caused by the cautious indifference of the Terrible and Sphinx to the advantages of lying snugly inside Valentia Harbour was felt acutely. The Knight of Kerry, who has taken such an interest in the undertaking, and all the inhabitants, regarded it as a mark of distrust in the safety of the anchorage and in the facility of access to it, which was without any justification, and some ascribed it to less creditable influences and objects; but no one could believe that the officers in command of the ships kept out at sea in such weather, wearying the crews and wasting coals, without direct orders, or that they would hesitate to run in, if left to themselves, as soon as it was evident the point of rendezvous ten miles from shore was not intended as a permanent station. The harbour had been visited by H.M.S.S. Stromboli, Hecate, Leopard, Cyclops, the U.S. frigate Susquehanna, and many large merchantmen, including the Carrier Dove, a vessel of 2,400 tons.

On July 19th a channel was made down the cliff to the beach for the shoreend of the Cable, which was carried down in an outer case through a culvert of masonry, and deposited in a cut made as far into the sea as the state of the tide would admit. On the 21st an “earth” Cable, with a zinc earth, on Mr. Varley’s plan, was carried out into the bay from the station, and safely deposited outside the channel marked for the Cable. The Caroline went round from Valentia to Foilhummerum, and on July 22nd the shore end of the Cable was carried from her over a bridge formed of twenty-five yawls belonging to the district, amid great cheering, and hauled up the cliffs to the station. The safe arrival of the terminal wire in the building, in the presence of a large assemblage, took place at 12·45, Greenwich time, and as the day was fine, the scene, to which the fleet of boats in the bay gave unusual animation, was witnessed to the greatest advantage.

When the excitement caused by the landing of the Cable was abated, the Knight of Kerry was called on to speak to the people assembled outside the Instrument Room, and said:—“I feel that in the presence of so many who have taken an active and a useful part in this undertaking, it may seem almost presumptuous in me to open my mouth on this occasion; but from the very beginning I have felt an interest which I am sure the humblest person here has also felt in the success of this the greatest undertaking of modern times. I believe there never has been an undertaking in which, not to speak disparagingly of the commercial spirit and the great resources and strength of the land, that valuable spirit has been mixed up with so much that is of a higher nature, combining all the most noble sentiments of our minds, and the feelings intended for the most beneficial purpose, which are calculated to cement one great universe, I may say, with another. I do not think we should be quite silent when such an undertaking has been inaugurated. It has been discussed whether this ceremony should be opened with a prayer or not. Whether that shall be done or not, I am sure there is not a person present who does not feel the utmost thankfulness to the Giver of all Good for having enabled those who have taken an active part in it to bring this great undertaking to what I am sure will have a happy issue. I do not think anything could be fitly added to the sentiment of the first message which was conveyed, namely—‘Glory to God in the highest, on earth peace, good will toward men.’ I shall not detain you with another word, but will only ask you all to give the heartiest cheers for the success of the undertaking. I will also take the liberty of asking you, when you have done that, to give three cheers for a gentleman who has come here at great inconvenience, and has done us very great honour in doing so, and who deserves them, not only from his position and character, but also fromthe interest which he has always shown in this undertaking. I call upon you to give three hearty cheers for Sir Robert Peel.”

G. McCulloch, lith from a drawing by R. Dudley London, Day & Sons, Limited, Lith. FOILHUMMERUM BAY, VALENCIA FROM “CROMWELL FORT” THE CAROLINE AND BOATS LAYING THE EARTH WIRE JULY 21st.[larger view]G. McCulloch, lith from a drawing by R. Dudley London,Day & Sons, Limited, Lith.FOILHUMMERUM BAY, VALENCIA FROM “CROMWELL FORT” THE CAROLINE AND BOATSLAYING THE EARTH WIRE JULY 21st.

T. Picken, lith from a drawing by R. Dudley THE GREAT EASTERN UNDER WEIGH JULY 23rd. (ESCORT AND OTHER SHIPS INTRODUCED BEING THE TERRIBLE, THE SPHINX, THE HAWK & THE CAROLINE)[larger view]T. Picken, lith from a drawing by R. DudleyTHE GREAT EASTERN UNDER WEIGH JULY 23rd. (ESCORT AND OTHER SHIPSINTRODUCED BEING THE TERRIBLE, THE SPHINX, THE HAWK & THE CAROLINE)

The meeting responded very heartily to the call, and when silence was restored, Sir Robert Peel said: “Gentlemen, as the Knight of Kerry has well observed, this is one of the most important works that this country could have been engaged in, inasmuch as it tends to draw us together in a link of amity and friendship with a mighty continent on the other side of the Atlantic. I trust, as the Knight of Kerry has so justly observed, that it may tend not only to promote the peace and commerce of the world, but that it may also lead to a union of feeling and to good fellowship between those two great countries; and I trust that as it has been so happily inaugurated to-day, so it may be successful under the exertions of those who have taken part in it to-day and for some time past. Gentlemen, I think the progress of this undertaking deserves that we should pay the highest compliment to those who have been actively engaged in carrying it out to the stage at which it has arrived. We are about to lay down, at the very bottom of the mighty Atlantic, which beats against your shores with everlasting pulsations, this silver-toned zone, to join the United Kingdom and America. Along that silver-toned zone, I trust, may pass words which will tend to promote the commerce and the interest of the two countries; and I am sure we will offer up prayers for the success of an undertaking, to the accomplishment of which persevering industry and all the mechanical skill of the age have been brought to bear. Nothing has been wanting in human skill, and therefore for the future, as now, let us trust the hand of Divine Providence will be upon it; and that as the great vessel is about to steam across the Atlantic no mishaps or misfortune may occur to imperil or obstruct the success of the work which has now been so happily commenced. I ask you all to give a cheer in honour of my noble friend here, the Knight of Kerry, who has just begun the work.”

The demand was enthusiastically complied with, for the Knight is an immense favourite with all the dwellers in his little dominion.

Sir Robert Peel then said: “Now, gentlemen, probably one of the first messages that will be sent by this Cable will be a communication from the Sovereign of this great country to the great ruler of the mighty continent at the other side of the Atlantic. I will ask you to give three cheers for her Majesty the Queen.” (Cheers.) Sir Robert Peel in conclusion, said: “I give you, with hearty good will, health and happiness to the ruler of the United States, President Johnson.” (The toast was received with loud cheers.)

Mr. Glass, who was called on to acknowledge the hearty reception given to his name and the Company’s, said: “On behalf of myself and those connected withme in this undertaking, I beg to return you thanks. I am glad that our labours have been appreciated by those around us. I assure you that the work that has been so far completed has been a source of great anxiety to us all; but that anxiety has been relieved very much by the fact that we have now landed a Cable which we one and all believe to be perfect. I believe that nothing can interfere with the successful laying of the Cable but the hand of the Almighty, who rules the winds and waves. So far as human skill has gone, I believe we have produced all that can be desired. We now offer up our prayers to the Almighty that He will grant success to our undertaking.”

The Doxology was then sung, with which this part of the proceedings closed, and the electricians busied themselves with securing the shore end confided to their charge in its new home.

At 2 o’clock in the afternoon the Caroline, towed by the Hawk, and attended by the Princess Alexandra and Advice, proceeded to sea, veering out the shore end of the Cable in the channel marked by Lieutenant White, and at 10·30 p.m. buoyed the end 26 miles W.N.W. of Valentia, in 75 fathoms of water. A message was sent through the Cable to Foilhummerum, and a dispatch was forwarded to the Great Eastern, in Bantry Bay, to come round with all speed. This order was obeyed with such diligence that her appearance off the harbour of Valentia was reported in Knightstown soon after 7 o’clock next morning, July 23. H.M.S. Terrible and H.M.S. Sphinx were in company. The Hawk, which returned from the Caroline in the course of the night, got up steam and left Valentia Harbour about 10 o’clock a.m., July 23, with a party of visitors and passengers for the Great Eastern, among the former being Sir R. Peel, the Knight of Kerry, and Captain Lord John Hay. By 3 p.m. the Hawk had reached the flotilla, which lay around the buoy, preparing for the great enterprise. She was just in time; the end of the shore Cable was about to be spliced and joined with the landward end of the main Cable from the after tank of the Great Eastern, and the boats of the Great Ship and of the two men-of-war, were engaged in carrying the end of the main Cable to the Caroline. Sir R. Peel, the Knight of Kerry, Lord John Hay, Mr. Canning, and others, got on board the Great Eastern in successive trips of the Hawk’s boats; but the ladies, who had come so far and had suffered too in order to see the famous vessel, could not venture, as there was a swell on which made it difficult to embark or approach the gangway ladders. After an hour’s enjoyment of the almost terrestrial steadiness of the Great Eastern, the visitors departed, amid loud cheers, to the Hawk, and at 5·10 p.m. it was reported by the electricians that the tests of the splice between the main Cable and the shore end were complete, and that the shore end was much improved inits electrical condition by its immersion in the water. The boats were hoisted in by the men-of-war and by the Great Eastern, adieux and good wishes were exchanged, and, with hearts full of confidence, all on board set about the work before them.

The bight of the Cable was slipped from the Caroline, at 7·15 p.m., and the Great Eastern stood slowly on her course N.W.¼W. Then the Terrible and Sphinx, which had ranged up alongside, and sent their crews into the shrouds and up to the tops to give her a parting cheer, delivered their friendly broadsides with vigour, and received a similar greeting. Their colours were hauled down, and as the sun set a broad stream of golden light was thrown across the smooth billows towards their bows as if to indicate and illumine the path marked out by the hand of Heaven. The brake was eased, and as the Great Eastern moved ahead the machinery of the paying-out apparatus began to work, drums rolled, wheels whirled, and out spun the black line of the Cable, and dropped in a graceful curve into the sea over the stern wheel. The Cable came up with ease from the after tank, and was payed-out with the utmost regularity from the apparatus. The system of signals to and from the ship was at once in play between the electricians on board and those at Foilhummerum. On board there were two representative bodies—the electricians of the Telegraph Construction and Maintenance Company, under M. de Sauty, and the electricians of the Atlantic Telegraph Company, Mr. Varley, Professor Thomson, and assistants. The former were to test the electrical state of the Cable as it was being payed-out, and to keep up signals between the ship and the shore. The latter, who had no power of interference or control, were simply to report on the testing, and to certify, on their arrival in Newfoundland, whether the Cable fulfilled the conditions specified in the contract. The mechanical arrangements for paying-out the cable were in charge of Mr. Canning, engineer-in-chief to the Telegraph Construction and Maintenance Company, who might be considered as having supreme control over the shipad hoc.In the space on deck between the captain’s state-room and the entrance to the grand saloon, was the Testing-Room—a darkened chamber, into which were led conducting wires from the ends of the Cable, for the ordeal to which they were subjected by the electricians, at a table whereon were placed galvanometers and insulation and resistance-testing machines.

The instructions for signalling, determined upon by the electricians of the Telegraphic Construction and Maintenance Company, were as follows:—1. During the paying-out of the Cable, from the moment of starting until the end is landed at Newfoundland, electrical tests will be applied without intermission.2. The tests will be for insulation, for continuity, and to determine the resistance of the conductor, the whole length of Cable being joined up in one length.3. Each series of tests will commence at the hour (Greenwich time), and will last one hour.4. The insulation test will consist of 30 minutes’ electrification of the Cable, commencing at the hour, and lasting till 30 minutes past the hour. Readings of the galvanometer to be taken every minute, commencing one minute after contact with the battery, the battery to consist of 40 cells.5. At 30 minutes past the hour signals will be received from the shore for 10 minutes. Unless the ship wishes to communicate with shore by special speaking instruments, in which case, instead of receiving signals from the shore, ship will put on a C to E current to oppose deflection on shore. Galvanometer to arrest shore attention, and when joined, give the call as in paragraph 9: the ordinary signals will be 5 reversals of 2 minutes each.6. At 40 minutes, C of Cable will be taken to 10 minutes.7. At 50 minutes signals will be sent to the shore, and for the ordinary signals 5 reversals, 2 minutes each, commencing C to E.8. Then a repetition of the same tests to be made and continued without any interval.9. In case it becomes necessary to speak to shore by speaking instruments, the signal will be given at the 50 minutes, and at the 30 minutes, as in paragraph 5, by sending 8¼ minutes’ reversals, commencing Z to E, and changing over to the speaking instruments, on receiving acknowledgment of call from shore (which will be also 8¼ minutes’ reversals), communication or message to be sent, and when acknowledgment of message and reply (if any) is received, then the system of testing is to be resumed, as if no interruption had taken place.10. Every 50 nauts. of Cable payed-out will be signalled at the same time (viz., at the 50 mins.), thus, instead of 5 reversals of 2 minutes, 10 reversals of 1 minute will be made commencing Z to E.11. Every 50 nauts. distance run will be signalled to the shore; the signal will be 2 reversals (commencing Z to E), each 2 minutes’ duration—2 reversals, each 1 minute’s duration, and 2 reversals, each 2 minutes’ duration.12. Should any defect in signals be perceived, or bad time kept, notice will be given to the shore by signalling at the 50 minutes—thus, by giving 2 reversals of 5 minutes’ duration, commencing Z to E.13. In sounding, signal will be one current of 10 minutes’ duration, Z to E.14. Land-in-sight signal will be likewise one current of 10 minutes’ duration, Z to E.15. Greenwich time will be kept, but a column will be devoted in journals and sheets to ship’s time.16. After the insulation test is taken, it is to be worked out thus—The same deflection at the 15th minute’s reading will be obtained with the same battery through resistance, and a shunt to the galvanometer. The amount of resistance multiplied by multiplying power of the shunt, and galvanometer multiplied by the length of the Cable, will give the G. p. R. pr. nt.17. The copper resistance of the Cable will be taken after 5 minutes’ electrification.18. No change in the instruments, wires, or connections (other than the batteries, if necessary), to be made on any account, unless such instruments, &c., become defective—any necessary change to be made as quickly as possible.19. Should the rolling of the ship generate a magnetic current of sufficient strength to embarrass the signals, a stronger current for the signals will be put on on shore, and a shunt used with the galvanometer on board, notice to the shore to put on more power will be given by one current of 5 minutes, commencing Z to E, and 5 reversals of 1 minute’s duration.20. The iron earth of the Cable will be used both on board and on shore—other earths, however, to be in readiness for use, if necessary.21. Full particulars of every test and every occurrence in the testing-room to be entered in journal, together with the name of the electricians on duty, and the time of their coming on and going off duty.22. After the end is landed, should signals fail, the paying-out system to be resumed until signals are re-established.23. In case of a minute fault appearing, such as will partially affect the signalling, but which will not stop the communication entirely, notice will be given to shore to reduce battery power. Such notice will be given at the 50 minutes, by sending 5 reversals of 1 minute each, commencing Z to E, and 1 current of 5 minutes’ duration.24. A proper supply of lamps, glasses, oil, and wicks; instrument ink and instrument paper, in sufficient quantities; paraffin, wicks, and spare lamp-glasses for the instrument lamps; lamp-brushes, tools, sulphate of copper, stationery, &c., to be always ready for use.25. No person except those on duty, and the engineers and the officers authorised by the Atlantic Telegraph Company, to be allowed in the instrument room on any pretence.26. The batteries to be kept in an efficient state, especially those for sending reversals—their force taken periodically, and if any variety occur, they must be renewed, or brought up to the original force.27. Supplies of every material needful for such purpose to be in constant readiness.28. The actual end of the Cable to be brought to the instrument tables, and well insulated.SHIP’S SIGNALS.29. Ordinary.—5 reversals, commencing C to E, each 2 minutes.To open communication.—8 reversals, commencing Z to E, each ¼ minute.50 nauts. payed out.—10 reversals, commencing Z to E, each 1 minute.50 nauts. distance run, signal will be, 2 reversals, each 2 minutes, commencing Z to E.50 nauts. distance run, signal will be, 2 reversals, each 1 minutes, commencing Z to E.50 nauts. distance run, signal will be, 2 reversals, each 2 minutes, commencing Z to E.Defective signals.—2 reversals, commencing Z to E, each 5 minutes.In soundings.—1 current of 10 minutes, Z to E.Land in sight.—1 current of 10 minutes, Z to E.Notice to increase power.—1 current of 5 minutes, commencing Z to E, and 5 reversals of 1 minute’s duration.Notice to reduce power.—5 reversals of 1 minute, commencing Z to E, and 1 current of 5 minutes.SHORE.1. During the paying-out of the Cable, from the moment of starting until the end is landed at Newfoundland, a system of testing will be applied without intermission.2. The tests will be for insulation, for continuity, and to determine the copper resistance of the conductor.3. Each series of tests will commence at the hour (Greenwich time), and will last 1 hour. Both the insulation and C R tests will be made on board.4. The insulation test will be made on board, and to enable that to be done, the end of the Cable must be insulated on shore for 30 minutes, commencing at the hour.5. At the 30 minutes past the hour, signals will be sent to the ship for 10 minutes. Should ship at this time desire to open communication, ship will put on a current so as to oppose shore’s current on his galvanometer, to arrest shore’s attention, and will, when gained, give the call as in paragraph 10.6. The ordinary signal will be 5 reversals of 2 minutes’ duration, commencing C to E.7. At the 40 minutes, Cable to be put to earth direct, without any instrument being in circuit.8. At the 50 minutes, signals will be received from the ship. The ordinary signal will be 5 reversals, each 2 minutes’ duration.9. Then a repetition of the same series to be made and continued.10. Should ship desire to open communication by special speaking instruments, notice will be received by a signal of 8 reversals (giving a deflection the opposite to the ordinary signals) of ¼ minute’s duration.11. After returning the same signal to the ship as an acknowledgment, the speaking instruments to be put in circuit, and the message from the ship received, and when acknowledgment of message, or reply, is given, the regular system of signals to be resumed as if no interruption had occurred.12. Every 50 nauts. of the Cable payed-out will be signalled to the shore by signal (instead of the ordinary signals). This signal will be 10 reversals of 1 minute each—the first current giving a deflection the opposite side to the first current of the ordinary signals.13. Every 50 nauts. distance run will be signalled to the shore: the signal will be 2 reversals of 2 minutes’ duration, 2 reversals of 1 minute’s duration, and 2 reversals of 2 minutes’ duration—the first current giving a deflection opposite to the first deflection of the first current of the ordinary signal.14. Should ship receive weak or defective signals, or bad time kept, notice will be given by sending 2 reversals of 5 minutes each, commencing the opposite side to the ordinary signals.15. When the ship gets into soundings, notice will be given by sending one current of 10 minutes’ duration, the opposite side to the first current of the ordinary signals.16. When land is in sight, notice will be given by the same signal.17. Greenwich time to be kept, but a column to be devoted to local time in the journals and sheets.18. No change in instruments, wires, or connections (other than the batteries, if necessary), to be made on any account, unless such instruments become defective, and any necessary change to be made as quickly as possible.19. Should the rolling of the ship generate a magnetic current of sufficient strength to embarrass the signals, a stronger current for the signals must be put on by shore on receiving notice from the ship; the notice will be given by 1 current of 5 minutes’, and 5 reversals of 1 minute’s duration.20. The iron earth of the Cable to be used both on board and on shore: copper earths, however, will be in readiness for use if necessary.21. Full particulars of every occurrence in the testing-room will be entered in journals, together with the names of the electricians on duty, and the time of their coming on and going off duty.22. When the end is landed at Newfoundland, should signals fail at any time, the paying-out system to be resumed until signals pass again freely.23. On receiving a signal of 5 reversals of 1 minute’s, and a current of 5 minutes’ duration, shore must reduce the battery power used for sending reversals by one-half, and on a repetition of the same signal again reduce the power one-half, until (should notice continue to be given to that effect) the minimum of power be reached.24. Shore must not have the privilege of opening a conversation, or to use or call for the use of the special speaking instruments, under any circumstances, except to give notice of any accident that may cause an interruption of signals, or that may affect the safety of the Cable or signals.25. Should any interruption of signals from the ship occur by reason of an accident on board, shore will continue to free the Cable at the usual time, and to put to earth direct at the usual time, and in the intervals to put into circuit with the Cable a galvanometer, and watch the same for signals, and continue doing so until communication with the ship is restored, or information is received by other means from the ship.26. On re-establishment of communication, shore must not ask any questions, but take the resumption of signals as an indication of all being well again, and will continue to follow the series of tests as if nothing had happened.27. Shore will take time from the ship; should any irregularity in the reception of signals from the ship occur, such irregularity must be entered in journals, and must not form a ground for shore’s altering his time, but shore must follow blindly every change (should one take place), as if the most correct time had been kept.28. A proper supply of lamps, glasses, oil, and wicks; instrument ink and instrument paper, in sufficient quantities; paraffin, wicks, and spare lamp-glasses for the instrument lamps; lamp-brushes, tools, sulphate of copper, stationery, &c., to be always ready for use.29. No person, except those on duty, and the officers authorised by the Atlantic Telegraph Company, to be allowed in the instrument room on any pretence.30. The batteries to be kept in an efficient state, especially those for sending reversals—their force taken periodically, and if any variation occur, they must be renewed, or brought up to the original force.31. Supplies of all materials necessary for such purpose to be in constant readiness.32. The actual end of the Cable to be brought to the instrument tables, and well insulated.SHORE SIGNALS.33. Ordinary.—5 reversals, each two minutes, commencing C to E.34. To open communication on acknowledgment.—8 reversals, each ¼ minute, commencing Z to E.

The instructions for signalling, determined upon by the electricians of the Telegraphic Construction and Maintenance Company, were as follows:—

1. During the paying-out of the Cable, from the moment of starting until the end is landed at Newfoundland, electrical tests will be applied without intermission.

2. The tests will be for insulation, for continuity, and to determine the resistance of the conductor, the whole length of Cable being joined up in one length.

3. Each series of tests will commence at the hour (Greenwich time), and will last one hour.

4. The insulation test will consist of 30 minutes’ electrification of the Cable, commencing at the hour, and lasting till 30 minutes past the hour. Readings of the galvanometer to be taken every minute, commencing one minute after contact with the battery, the battery to consist of 40 cells.

5. At 30 minutes past the hour signals will be received from the shore for 10 minutes. Unless the ship wishes to communicate with shore by special speaking instruments, in which case, instead of receiving signals from the shore, ship will put on a C to E current to oppose deflection on shore. Galvanometer to arrest shore attention, and when joined, give the call as in paragraph 9: the ordinary signals will be 5 reversals of 2 minutes each.

6. At 40 minutes, C of Cable will be taken to 10 minutes.

7. At 50 minutes signals will be sent to the shore, and for the ordinary signals 5 reversals, 2 minutes each, commencing C to E.

8. Then a repetition of the same tests to be made and continued without any interval.

9. In case it becomes necessary to speak to shore by speaking instruments, the signal will be given at the 50 minutes, and at the 30 minutes, as in paragraph 5, by sending 8¼ minutes’ reversals, commencing Z to E, and changing over to the speaking instruments, on receiving acknowledgment of call from shore (which will be also 8¼ minutes’ reversals), communication or message to be sent, and when acknowledgment of message and reply (if any) is received, then the system of testing is to be resumed, as if no interruption had taken place.

10. Every 50 nauts. of Cable payed-out will be signalled at the same time (viz., at the 50 mins.), thus, instead of 5 reversals of 2 minutes, 10 reversals of 1 minute will be made commencing Z to E.

11. Every 50 nauts. distance run will be signalled to the shore; the signal will be 2 reversals (commencing Z to E), each 2 minutes’ duration—2 reversals, each 1 minute’s duration, and 2 reversals, each 2 minutes’ duration.

12. Should any defect in signals be perceived, or bad time kept, notice will be given to the shore by signalling at the 50 minutes—thus, by giving 2 reversals of 5 minutes’ duration, commencing Z to E.

13. In sounding, signal will be one current of 10 minutes’ duration, Z to E.

14. Land-in-sight signal will be likewise one current of 10 minutes’ duration, Z to E.

15. Greenwich time will be kept, but a column will be devoted in journals and sheets to ship’s time.

16. After the insulation test is taken, it is to be worked out thus—The same deflection at the 15th minute’s reading will be obtained with the same battery through resistance, and a shunt to the galvanometer. The amount of resistance multiplied by multiplying power of the shunt, and galvanometer multiplied by the length of the Cable, will give the G. p. R. pr. nt.

17. The copper resistance of the Cable will be taken after 5 minutes’ electrification.

18. No change in the instruments, wires, or connections (other than the batteries, if necessary), to be made on any account, unless such instruments, &c., become defective—any necessary change to be made as quickly as possible.

19. Should the rolling of the ship generate a magnetic current of sufficient strength to embarrass the signals, a stronger current for the signals will be put on on shore, and a shunt used with the galvanometer on board, notice to the shore to put on more power will be given by one current of 5 minutes, commencing Z to E, and 5 reversals of 1 minute’s duration.

20. The iron earth of the Cable will be used both on board and on shore—other earths, however, to be in readiness for use, if necessary.

21. Full particulars of every test and every occurrence in the testing-room to be entered in journal, together with the name of the electricians on duty, and the time of their coming on and going off duty.

22. After the end is landed, should signals fail, the paying-out system to be resumed until signals are re-established.

23. In case of a minute fault appearing, such as will partially affect the signalling, but which will not stop the communication entirely, notice will be given to shore to reduce battery power. Such notice will be given at the 50 minutes, by sending 5 reversals of 1 minute each, commencing Z to E, and 1 current of 5 minutes’ duration.

24. A proper supply of lamps, glasses, oil, and wicks; instrument ink and instrument paper, in sufficient quantities; paraffin, wicks, and spare lamp-glasses for the instrument lamps; lamp-brushes, tools, sulphate of copper, stationery, &c., to be always ready for use.

25. No person except those on duty, and the engineers and the officers authorised by the Atlantic Telegraph Company, to be allowed in the instrument room on any pretence.

26. The batteries to be kept in an efficient state, especially those for sending reversals—their force taken periodically, and if any variety occur, they must be renewed, or brought up to the original force.

27. Supplies of every material needful for such purpose to be in constant readiness.

28. The actual end of the Cable to be brought to the instrument tables, and well insulated.

SHIP’S SIGNALS.

29. Ordinary.—5 reversals, commencing C to E, each 2 minutes.

To open communication.—8 reversals, commencing Z to E, each ¼ minute.

50 nauts. payed out.—10 reversals, commencing Z to E, each 1 minute.

50 nauts. distance run, signal will be, 2 reversals, each 2 minutes, commencing Z to E.

50 nauts. distance run, signal will be, 2 reversals, each 1 minutes, commencing Z to E.

50 nauts. distance run, signal will be, 2 reversals, each 2 minutes, commencing Z to E.

Defective signals.—2 reversals, commencing Z to E, each 5 minutes.

In soundings.—1 current of 10 minutes, Z to E.

Land in sight.—1 current of 10 minutes, Z to E.

Notice to increase power.—1 current of 5 minutes, commencing Z to E, and 5 reversals of 1 minute’s duration.

Notice to reduce power.—5 reversals of 1 minute, commencing Z to E, and 1 current of 5 minutes.

SHORE.

1. During the paying-out of the Cable, from the moment of starting until the end is landed at Newfoundland, a system of testing will be applied without intermission.

2. The tests will be for insulation, for continuity, and to determine the copper resistance of the conductor.

3. Each series of tests will commence at the hour (Greenwich time), and will last 1 hour. Both the insulation and C R tests will be made on board.

4. The insulation test will be made on board, and to enable that to be done, the end of the Cable must be insulated on shore for 30 minutes, commencing at the hour.

5. At the 30 minutes past the hour, signals will be sent to the ship for 10 minutes. Should ship at this time desire to open communication, ship will put on a current so as to oppose shore’s current on his galvanometer, to arrest shore’s attention, and will, when gained, give the call as in paragraph 10.

6. The ordinary signal will be 5 reversals of 2 minutes’ duration, commencing C to E.

7. At the 40 minutes, Cable to be put to earth direct, without any instrument being in circuit.

8. At the 50 minutes, signals will be received from the ship. The ordinary signal will be 5 reversals, each 2 minutes’ duration.

9. Then a repetition of the same series to be made and continued.

10. Should ship desire to open communication by special speaking instruments, notice will be received by a signal of 8 reversals (giving a deflection the opposite to the ordinary signals) of ¼ minute’s duration.

11. After returning the same signal to the ship as an acknowledgment, the speaking instruments to be put in circuit, and the message from the ship received, and when acknowledgment of message, or reply, is given, the regular system of signals to be resumed as if no interruption had occurred.

12. Every 50 nauts. of the Cable payed-out will be signalled to the shore by signal (instead of the ordinary signals). This signal will be 10 reversals of 1 minute each—the first current giving a deflection the opposite side to the first current of the ordinary signals.

13. Every 50 nauts. distance run will be signalled to the shore: the signal will be 2 reversals of 2 minutes’ duration, 2 reversals of 1 minute’s duration, and 2 reversals of 2 minutes’ duration—the first current giving a deflection opposite to the first deflection of the first current of the ordinary signal.

14. Should ship receive weak or defective signals, or bad time kept, notice will be given by sending 2 reversals of 5 minutes each, commencing the opposite side to the ordinary signals.

15. When the ship gets into soundings, notice will be given by sending one current of 10 minutes’ duration, the opposite side to the first current of the ordinary signals.

16. When land is in sight, notice will be given by the same signal.

17. Greenwich time to be kept, but a column to be devoted to local time in the journals and sheets.

18. No change in instruments, wires, or connections (other than the batteries, if necessary), to be made on any account, unless such instruments become defective, and any necessary change to be made as quickly as possible.

19. Should the rolling of the ship generate a magnetic current of sufficient strength to embarrass the signals, a stronger current for the signals must be put on by shore on receiving notice from the ship; the notice will be given by 1 current of 5 minutes’, and 5 reversals of 1 minute’s duration.

20. The iron earth of the Cable to be used both on board and on shore: copper earths, however, will be in readiness for use if necessary.

21. Full particulars of every occurrence in the testing-room will be entered in journals, together with the names of the electricians on duty, and the time of their coming on and going off duty.

22. When the end is landed at Newfoundland, should signals fail at any time, the paying-out system to be resumed until signals pass again freely.

23. On receiving a signal of 5 reversals of 1 minute’s, and a current of 5 minutes’ duration, shore must reduce the battery power used for sending reversals by one-half, and on a repetition of the same signal again reduce the power one-half, until (should notice continue to be given to that effect) the minimum of power be reached.

24. Shore must not have the privilege of opening a conversation, or to use or call for the use of the special speaking instruments, under any circumstances, except to give notice of any accident that may cause an interruption of signals, or that may affect the safety of the Cable or signals.

25. Should any interruption of signals from the ship occur by reason of an accident on board, shore will continue to free the Cable at the usual time, and to put to earth direct at the usual time, and in the intervals to put into circuit with the Cable a galvanometer, and watch the same for signals, and continue doing so until communication with the ship is restored, or information is received by other means from the ship.

26. On re-establishment of communication, shore must not ask any questions, but take the resumption of signals as an indication of all being well again, and will continue to follow the series of tests as if nothing had happened.

27. Shore will take time from the ship; should any irregularity in the reception of signals from the ship occur, such irregularity must be entered in journals, and must not form a ground for shore’s altering his time, but shore must follow blindly every change (should one take place), as if the most correct time had been kept.

28. A proper supply of lamps, glasses, oil, and wicks; instrument ink and instrument paper, in sufficient quantities; paraffin, wicks, and spare lamp-glasses for the instrument lamps; lamp-brushes, tools, sulphate of copper, stationery, &c., to be always ready for use.

29. No person, except those on duty, and the officers authorised by the Atlantic Telegraph Company, to be allowed in the instrument room on any pretence.

30. The batteries to be kept in an efficient state, especially those for sending reversals—their force taken periodically, and if any variation occur, they must be renewed, or brought up to the original force.

31. Supplies of all materials necessary for such purpose to be in constant readiness.

32. The actual end of the Cable to be brought to the instrument tables, and well insulated.

SHORE SIGNALS.

33. Ordinary.—5 reversals, each two minutes, commencing C to E.

34. To open communication on acknowledgment.—8 reversals, each ¼ minute, commencing Z to E.

As the voyage of the Great Eastern promised to be so interesting to electricians and engineers, several young gentlemen who worked in the testing-room and in the engineer’s department received a passage, as we have mentioned, but there was no person on board who was not in some way or other engaged on the business of both companies, or connected with the management of the ship. The voyage commenced most favourably. The rate of speed was increased to 3 knots, then to 4 knots, then to 5 knots, and finally, to 6½ knots an hour, and the Cable flew from each coiled flake as if it were eager to push up through the controlling bands of the so-called crinoline, and to plunge into the sea. At 10·p.m., Greenwich time, 50 miles of Cable had been payed-out, and the process continued to midnight with equal ease and regularity. In order to make each day’s proceedings distinct, and to take the reader over the course so that he can follow the expedition readily by the aid of the accompanying chart, I propose recording events in the form of a diary.

Atlantic Telegraph Cable 1865. Chart Shewing the Track of The Steam Ship “Great Eastern” on her Voyage From Valentia to Newfoundland With The Soundings, The Daily Latitude and Longitude, The Distance Run and The Number of Miles of Cable Paid Out Day & Son (Limited)[larger view][largest view]

From a drawing by R. Dudley London. D.T & Sou. Limited. Lilh. SPLICING THE CABLE (AFTER THE FIRST ACCIDENT) ON BOARD THE GREAT EASTERN JULY 25TH.[larger view]From a drawing by R. Dudley London. D.T & Sou. Limited.Lilh.SPLICING THE CABLE (AFTER THE FIRST ACCIDENT) ON BOARD THE GREAT EASTERNJULY 25TH.

Monday, July 24th.—The morning was exceedingly fine, and the ship proceeded steadily at an average rate of 6 knots an hour, with a light favouring wind and a calm sea. Those who were up betimes had just taken a turn or two on deck, watching for the early dawn, when they observed some commotion in the neighbourhood of the Testing-Room, and soon afterwards the ship’s engines were slowed and stopped. According to Professor Thomson’s galvanometer, which is used in the system employed in testing, a ray of light reflected from a tiny mirror suspended to a magnet travels along a scale, and indicates the resistance to the passage of the current along the Cable by the deflection of the magnet, which is marked by the course of this speck of light. If the light of the mirror travels beyond the index, or out of bounds, an escape of the current is taking place in the Cable, andwhat is technically called a fault has occurred. At 3·15 a.m., when 84 miles of Cable had been paid out, the electrician on duty saw the light suddenly glide to the end of the scale, and then vanish. The whole staff were at once aroused—the news soon flew through the ship. After testing the Cable for some time by signalling to and from the shore, Mr. de Sauty satisfied himself that the fault which had occurred was of a serious character, and measures were taken accordingly to rig up the picking-up apparatus at the bow, to take in the Cable till the defective portion was reached and cut out. Such an early interruption to our progress caused a little chagrin, but the veterans of submarine telegraphy thought nothing of it. Whilst the electricians were testing, to obtain data respecting the locality of the fault, the fires were got up in the boilers of two small engines on deck to work the picking-up machinery. At 4 a.m. a gun was fired by the Great Eastern to call the attention of the Terrible and Sphinx to our proceedings, and they were also informed by signal of the injury. Notwithstanding the skill and experience of the scientific gentlemen on board, there was a great vagueness of opinion among them respecting the place where the fault lay. Some believed the defective part was near the shore, and probably at the splice of the shore end with the main Cable; others thought it was eastward or westward of the same place; and calculations, varied by uncertain indications given by the currents showing that the fault itself was of a variable character, and permitted the currents of electricity to escape irregularly, were made by the scientific staff, which fixed it at points from 22 to 42 miles—one at 60 miles—from the ship. But repeated observations gave closer results. Mr. Varley came to the conclusion that the fault was not very far from the ship; and Mr. Sanders, a gentleman who had much experience in fault-finding, arrived at the conviction that it was not more than 9 or 10 miles astern.

The best test taken by Mr. Saunders, 1·30 a.m., Greenwich time, July 25, after the Cable had been cut down to 78·5 miles, gave—

Letaandbbe the lengths of Cable-conductor, having resistances equal to the first and second of these numbers;lthe length of Cable, and D the distance of the fault. The ordinary formula gives

D=b-√(a-b)(l-b)

Hence,lbeing 78·5, andaandbbeing calculated from the observed copper-resistance of the conductor in the after-tank, and various assumed temperatures of the sea, we should have, were the measurements perfect, results as follows:—

This would give 22 miles for the most probable distance of the fault, as 40° is the most probable mean temperature of the first submerged length of 75 miles. The true distance proved to be very nearly 3 miles. The discrepance is owing partly of course to want of absolute accuracy in the measurements, but probably more to the variation of the resistance of the fault during the interval between the two measurements.

Iron chains were lashed firmly to the Cable at the stern, and secured to the wire rope carried round outside the ship to the picking-up apparatus at the bows. As the paying-out stopped, a strain came on the Cable, which was down in 400 fathoms of water, and it needed nice management to keep the ship steady, as she had no steerage way. The Cable, having been shackled and secured, was severed at 8·50 a.m., and flew with its shackling into the sea, plump astern. The stoppers which held the wire rope were released, and the rope was payed-out rapidly as the Cable sunk, in order that the ship’s head might be brought round, if possible, so as to take the Cable in over the bows in a straight line with its course.

The Great Eastern dropped to leeward when her engines stopped. When the end of the Cable was got in over the bows, and the picking-up engine was set to work, it was discovered that the locomotive boiler intended to keep up a head of steam for the machinery, was defective. Steam was then supplied by one of the boilers of the ship: the drums and wheels of the picking-up machinery began to revolve, slowly dragging in the Cable over the bows, with a strain which at times rose from 10 cwt. to 30 cwt., leaving a very large margin before the breaking point was reached. The ship’s bows were kept up to the line of the Cable with great cleverness, and Mr. Canning and his assistants were perfectly satisfied with their progress. It would be too much to expect that all on board should be so easily contented; for in fact the process of picking-up is of the slowest—a mile an hour was considered to be a fair rate of speed, and a mile and a-quarter was something to be very thankful for. Still, the prospect of returning to Ireland and getting back to the shore end, at the highest of these retrogressive celerities, did not prove attractive. Our position, by observation at noon, was Lat. 52° 2´ 30´´, Long. 12° 17´ 30´´. As the Cable was in fair working order, Mr. Canning transmitted a message to Mr. Glass at Knightstown,to send out the Hawk, in order that he might return in her, and ascertain if the shore end of the Cable were defective. If that were not the case, he proposed to sacrifice the portion of Cable already laid, to return and make a new splice of the main line with the shore end, and to start afresh. In the course of the evening a message was received from Mr. Glass, informing Mr. Canning that the Hawk should be sent out as soon as she had coaled the Caroline. The Terrible sent her First Lieutenant, Mr. Prowse, on board, to see if she could render us any assistance. The Sphinx was busied in taking soundings all round the ship, which showed depths varying from 400 to 480 fathoms. The operation of picking up proceeded all day and all night—the weather being fine but cloudy.

Tuesday, July 25th.—The Hawk was observed soon after daybreak coming towards the Great Eastern. The wind was still light and the sea moderate. All during the night the process of picking up was carefully carried on, the Big Ship behaving beautifully, and hanging lightly over the Cable, as if fearful of breaking the slender cord which swayed up and down in the ocean. Indeed, so delicately did she answer her helm and coil in the film of thread-like Cable over her bows, that she put one in mind of an elephant taking up a straw in its proboscis. At 7·15 a.m., Greenwich time, 9½ miles of Cable had been picked up from the sea, and the thin greyish coating of mud which dropped from it showed that the bed of the Atlantic here was of a soft ooze. The Cable had been cut twice on board, to enable the electricians to apply tests separately to the coils in the tanks. At 9 a.m., ship’s time, when somewhat more than 10¼ miles had been hauled in, to the joy of all the “fault” was discovered. The Cable came in with flagrant evidence of the mischief. The cause of so much anxiety, delay, and bitter disappointment turned out to be a piece of wire of the same kind as that used in the protecting strands of the Cable itself. It was two inches long or so—rather bent in the middle, with one end sharp and bright, as if from a sharp fracture or being cut by a pair of pliers—the other end blunt and jagged. This piece of wire had been forced through the outer covering of the Cable into the gutta percha, so as to injure the insulation, but no one could tell how it got into the tank. The general impression was, that it was a piece of Cable or other wire which had been accidently carried into the tank, and forced into the coil by the pressure of the paying-out machinery as the Cable flew between the jockey-wheels.

Measures were at once taken to make a new splice and joint, rejecting the Cable picked up, a good deal of which had been strained in the process. Signals were made to the fleet that the enemy had been detected, at 9 a.m., and the Terrible replied, “I congratulate you.” First a splice was made in the Cable whereit had been cut, for the purpose of testing between the after and fore tanks, and all admired the neatness and strength with which it was performed—the conducting wires soldered and lapped over—the gutta percha heated and moulded on the junction; and, finally, the strands carried over the core and secured. During the operation the Hawk returned to Valentia with our letters, and with the good news, which, however, must have been anticipated by the Cable itself. The splice and joint of the end of Cable towards the shore and the end from the after tank was next made. Then these splices were carefully tested and found perfect, and the stream of electricity was once more sent direct to Valentia. After a detention of some twelve hours, the paying-out machinery was again put in action, and the Cable glided out rapidly astern. All seemed to go well. About half a mile of wire had been paid out, when suddenly all communication between the shore and ship ceased altogether! From great contentment there was sudden blank despair! The operators were in consternation. The news spread from end to end of the ship, which again lay in restless quiet on the waters. The faces of the most cheerful became overcast—gloomy forebodings filled men’s minds all at once. Why had the Hawk been sent back? Why were not more tests made before she left? Away worked the electricians in their room, connecting and disconnecting, putting in and taking out stops—intensifying and reducing currents. Not a sign! Not a shadow of a sign! Mr. de Sauty suggested they had got hold of the wrong wires, and professors opined that the operators had done wrong in spending time over the splice between the two tanks at the critical moment when they should have been watching the signals from the shore. Anxious groups gathered round the Testing-Room, and the bolder popped in their heads, as if they could learn anything from the dumb mute wires and the clicking of the chronometers, or from the silent operators who bent over the instruments. At 3·15 p.m. the Cable between the two tanks was again cut, and examination was made to make sure no error had been made in the communications. Again the wearisome energy of the picking-up apparatus was to be called into play—once more the Cable was to be shackled and thrown overboard, and hauled up to the bows and pulled out of the water. Such a Penelope’s web in 24 hours, all out of this single thread, was surely disheartening. The Cable in the fore and the main tanks answered to the tests most perfectly. But that Cable which went seaward was sullen, and broke not its sulky silence. Even the gentle equanimity and confidence of Mr. Field were shaken in that supreme hour, and in his heart he may for a moment have sheltered, though he did not nurture, the thought that the dream of his life was indeed but a chimæra. Who could bear up against a life of picking-up? And our paying-out seemed to have such an undue share of thereverse process attached to it! But there was a change in the fortunes of the ship and of its freight. The index light suddenly reappeared on its path in the Testing-Room, and the wearied watchers were gladdened by the lighting of the beacon of hope once more. Again there was one of those mutations to which the flesh of submarine telegraph layers is born heir, and after a few moments of breathless solicitude, it was announced that the signals between the ship and the shore had been restored, and that every instant developed their strength. Mr. de Sauty came out of the Testing-Room to inform Professor Thomson of the fact, and Mr. Canning’s operations at the bows of the ship for picking up were most gratefully suspended by the intelligence that the machinery would not be required. At 4·15 p.m. the ship steamed on ahead again, and the Terrible and Sphinx were signalled to come on, 37 hours and 10 minutes having been lost by the fault, and consequent detentions. Our position, at noon was found to be, Lat. 51° 58´, Long. 12° 11´; total distance from Valentia, 66½ miles; total Cable payed-out 74 miles (per centage of slack being 14 miles), distance from Heart’s Content, 1,596 miles. The communication with shore continued to improve, and was, in the language of telegraphers, O. K. The alternations of hope and fear to which we had been exposed were now pleasantly terminated for the evening, and the saloon became the scene of joyous and animated conversation, and of a good deal of scientific discussion, till the approach of midnight.

The cause of the detention was argued fully, but it was not easy to determine how it came to pass the signalling had been interrupted; it was generally accounted for by the supposition that the order of the tests had become deranged whilst the splices were being made on board, and some of the electricians were inclined to think that the system was defective, because the intervals were so long that the fault might be overboard some time before it could be detected.

As the sea and wind rose a little, the speed of the ship was diminished from 6½ knots to 5 knots, at which rate the Cable ran out beautifully throughout the night.

July 26th.—The course of the Cable ran smoothly all throughout the night. At 8 a.m. the Great Eastern was 150 miles from Valentia, and 161½ miles of Cable, including the shore end, had been laid—the loss by slack being only 7·63 per cent. The morning was hazy, and a strong wind from the north-west brought up rather a heavy sea, but the Great Eastern was as steady as a Thames steamer; indeed the stability of the vessel was a never-ending theme of admiration. Our consorts were not so indifferent to the roll of the Atlantic. The Terrible thumped through the heavy sea, and buried her bows in foam with dogged determination.The Sphinx gave very unmistakable indications of having a harder enigma than she bargained for, as she engaged in her task of taking soundings, which now had become important. We were getting into deep water, having passed the bank on which there is only 200 fathoms, and had come suddenly to the slope beginning with 700 fathoms, and running in one degree to 1,750 fathoms. This slope is not, however, severer than that of Holborn-hill, though it looks very severe upon the map. Towards noon the sea and wind increased. The Sphinx, which first sent down topgallant masts, finally sent down topmasts, but was unable to make head in the sea way, and dropped further and further astern. At noon our course was W.N.W. ¾ W., the wind being strong on the port bow, and the weather thick all round, with drizzling mist. Our position was made out to be Lat 52° 18´ 42´´, Long. 15° 10´´, distance run 111½ miles, Cable paid out 125 miles, total distance from Valentia 178 miles. At 1·45 p.m. the Terrible signalled that the Sphinx was unable to keep up with us, but the Cable was running so easily it was resolved not to diminish our speed. Later in the afternoon, the Terrible sent down topgallant masts; later again, she signalled that we were going too fast for the Sphinx; but as the Great Eastern was not exceeding 6½ knots an hour, at which rate the Cable rolled off easily from the drums, the engineers did not think it advisable to reduce her speed, and so the Sphinx was left further astern, till at length she was hull down on the grey horizon. Each hour it became more important to know what depth of water we were in; and the inconvenience of parting with the Sphinx was felt, as well, perhaps, as the defective nature of the arrangements with the Admiralty, which had furnished only one sounding apparatus. The Terrible had got no deep-sea sounding apparatus. There was none on board of the Great Eastern. In deep-sea soundings a special apparatus is requisite, and the leads and the lines ordinarily used by men-of-war only penetrate the upper strata of the waters of the Atlantic. It was conjectured that we had passed over the 2,050 fathoms’ soundings, and the Cable proved, by a slightly increased pressure on the dynamometer, that its trail was lengthening in the watery waste ere it ruffled the smooth surface of the ooze two miles below. The insulation tests showed an improvement, and the transmission of signals between the ship and the shore afforded most satisfactory indications. At night the wind came round to the north-west, the sea somewhat decreased, and as evening closed in, the Terrible drew up on our beam, working two boilers; but when night fell, the Sphinx was scarcely visible on the distant horizon.

E. Walker, lith from a drawing by R. Dudley London, Day & Sons. Limited, Lith. VIEW (LOOKING AFT) FROM THE PORT PADDLE BOX OF GREAT EASTERN SHOWING THE TROUGH FOR CABLE &c.[larger view]E. Walker, lith from a drawing by R. DudleyLondon, Day & Sons. Limited, Lith.VIEW (LOOKING AFT) FROM THE PORT PADDLE BOX OF GREAT EASTERN SHOWING THETROUGH FOR CABLE &c.

G. McCulloch, lith from a drawing by R. Dudley London, Day & Sons, Limited, Lith. THE FORGE ON DECK. NIGHT OF AUGUST 9TH PREPARING THE IRON PLATING FOR CAPSTAN.[larger view]G. McCulloch, lith from a drawing by R. Dudley London,Day & Sons, Limited, Lith.THE FORGE ON DECK. NIGHT OF AUGUST 9TH PREPARING THE IRON PLATING FORCAPSTAN.

July 27th.—Morning broke on a bright bounding sea and clear blue sky. From the Testing-Room came gratifying reports of the improved insulation ofthe Cable, which had been caused by the immersion of the Cable in colder water. We were now approaching an undulation in the bed of the Atlantic in which the soundings decreased rather abruptly from 2,100 to 1,529 fathoms. The engineers were perfectly satisfied with the manner in which the machinery was working, and the mode in which the Cable ran out. The complete success of the enterprise, after this fair start, appeared to be a matter beyond doubt. The fore tank was now got ready for the paying-out of the Cable as soon as the coils in the after tank should be exhausted, and the framework for the crinoline was erected over the hatchway. At noon, our position by observation was Lat. 52° 34´ 30´´, Long. 19° 0´ 30´´, distance run 141 miles, distance from Valentia 320 miles, Cable paid out 158 miles. The Terrible was on our port beam at some distance, but the Sphinx was nowhere visible, although our speed had not much exceeded 6 knots an hour. There was in the universal benevolence of the moment a feeling of sympathy for our lagging guardians. The conviction grew that the work was nearly accomplished. Some were planning out journeys through the United States, others speculated on the probability of sport in Newfoundland: the date of our arrival was already determined upon. The sound of the piano, a tribute to our own contentment, rose from the saloon, and now and then the notes of a violin became entwined in the melodious labyrinth through which the amateur professors wandered with uncertain fingers. The artists sketched vigorously. Men stretched their legs lustily along the decks, or penetrated, with easy curiosity for the first time into the recesses of the Leviathan that bore them. None of them indeed found out the hiding-place of the ghost who haunts the ship; but they discovered crypts under the tanks, and meandered and crept about the shafts and boilers of the tremendous gloominess—vast and dark as the Halls of Eblis. The ghost on board the Great Eastern, to which I have alluded, is believed to be the disembodied essence of a poor plate-riveter, who disappeared in some aperture of the nascent ship, never to be seen of mortal eye again, and who was supposed to have been riveted up by the hammers of preparation so closely that not even his spirit could escape. And so it, or he, is heard at all hours, with ghostly hammer, tap-tap-tapping on the iron walls of his prison as incessant as that cruel Raven, even through the clangour of donkey-engines and the crash of matter. There was now and then a slight indication of unsteadiness, which made one uncertain whether the wine was very strong or the Great Eastern unusually frolicsome; but, as a matter of fact and truth, not a man aboard could imagine as he sat in the grand saloon that he was at sea at all. Every hour on board the ship increased our regard for all her qualities, except her capacity of making noise and producing smoke,but both of these were tokens and necessary conditions of her high working energies.

July 28th.—A night more of joyous progress—all going on most successfully—not a hitch in Cable, machinery, or ship. It was worth while to go aft and look at the Cable as, every inch scanned by watchful eyes, and noted in books, it flew through the whole apparatus of jockeys and drums and dynamometers, and then in a gentle curve skimmed the surface of the ocean more than 200 feet astern ere it went “plump, plunging down amid the assembly of the whales.” Our course was N.W. ½ W., and the wind at W.N.W., not too strong, was just what we desired. The Terrible kept on our port beam. The Sphinx was not to be seen. Our position at noon was Lat. 52° 45´, Long. 23° 18´ 4´´ (another reading gave 23° 15´ 45´´), distance run since yesterday 155½ miles, Cable paid out 174 miles. Distance from Valentia 474 miles; distance from Heart’s Content 1,188·5 miles. The water was supposed to vary from 1,529 to 1950 fathoms in depth. There was something almost monotonous in our success; no ships to be seen, only our severe-looking consort, with her black hull and two funnels and paddle-boxes, on the round blue shield of which the Great Eastern was the boss. Even the sea-birds had begun to leave us, and a whale and a few porpoises which revealed their beauties to a favoured few were regarded as an envied treat. As the departure of the Sphinx had left one flank open, and that the most vulnerable, the Great Eastern signalled to the Terrible to prevent any vessel from the N.W. crossing our course, and soon afterwards the man-of-war steamed and took up her station on our starboard quarter, where she remained throughout the day and night. There was a sense of companionship in seeing her near us.

Saturday, July 29th.—“Everything has gone on most admirably during the night.” Such was the report from electricians, and engineers, and officers this morning. The electrical condition of the Cable furnished results most satisfactory to Mr. Varley and to Professor Thomson. The tests showed that in copper-resistance, insulation, and every other particular, the Cable was exhibiting an excellence far beyond the specified standard. Coil after coil whirled off from the tank and passed away to sea as easily as the lightning flash itself; and Valentia was joined to us by a lengthening thread, which seemed stronger and more sentient as it lengthened. In the night the Terrible had vanished, but she came in sight in the morning, and drew up closer to us. As the sea was calm, and the Cable ran out so beautifully, the speed of the steamer, and consequent rate of paying-out of the Cable, were increased; and it looked as if there was really no limit to the velocity at which the process could be conducted under favouring circumstances. Yes;“Heart’s Content” on August 5th was certain. What could prevent it? The fault which had occurred was caused by an accident most unlikely to happen again. So we pored over our maps and marked out the soundings in the little bay in Newfoundland, and imagined what sort of place it was, as men will do of spots they have never visited.

At noon our position was, Lat. 52° 33´ 30´´ (another reading, 52° 38´ 30´´), Long. 27° 40´. Distance run, 160 miles. Distance from Valentia, 634·4 miles. Distance to Heart’s Content, 1,028 miles. The Great Eastern had passed over the valley in the plateau where the Atlantic deepens to 2,400 fathoms. At 9 a.m. we had shoaled our water to 2000 fathoms, or 2 nautical miles.

Happy is the Cable-laying that has no history. Here might the day’s record have well been closed. But it was not so to be. At 1·10 p.m. (ship’s time), an ill-omened activity about the Testing-Room, which had been visible for some time, reached its climax. The engines were slowed, in five minutes the great ship was motionless. In an instant afterwards every one was on deck, and the evil tidings flew from lip to lip. Something was wrong with the Cable again. But the worst was not known. “Another fault,” was the word. When I went into the Testing-Room and found all the electricians so grave, I suspected more serious mischief than a diminution of insulation; and so it was. They had found “dead earth”—in other words, a complete destruction of insulation, and an uninterrupted escape of the current into the sea. About 716 miles (nautical) had been payed-out when the ship stopped so suddenly. Up to 2·40 o’clock, p.m. (Greenwich time), signals had been received from the shore in regular routine. At 3 o’clock the electricians on board began to send the current through to the shore, and in three minutes afterwards the galvanometer indicated “dead earth.” So it was pretty clear the injury was close to the ship, and had gone over in the interval between 2·40 p.m. and 3·4 p.m. At 3h3´ 30´´ (Greenwich time), the electrician on duty saw the index light of Thomson’s galvanometer fly out of bounds whilst he was passing a current to Valentia. The nature of the injury was so decided as to admit of no doubt.

But in order to make assurance doubly sure two cuts were made in the Cable, whilst the steam was being got up forward to be in readiness for the most retrograde of all backward movements—picking-up. The whole length of Cable in the tanks was first tested, and found to be in admirable condition. Then a test outward gave “dead earth” not far overboard. The next cut at the bottom of the coil in the after tank gave the same result. The third cut was near the top of the coil in the after tank, and confirmed the testimony of the other two tests. The usual preparations were then made to shackle the Cable ereit was cut and cast overboard with its tow rope of iron wire, an operation which always caused the gravest misgivings. It was admitted that there was a certain amount of danger in it, and more in the picking-up; but then, when the question was asked “What would you do?” the answer was not so easy. At first it might appear natural to back the ship, and take up the Cable from the stern; but unfortunately ships in general will not steer stern foremost, and the Great Eastern certainly would not. It was obvious that if Cables could not be secured against “faults,” the mode of taking them in would have to be amended.

This was one of the most harassing days we had yet encountered; but it proved not to be the most trying we were to endure in our short eventful history. All our calculations were falsified. Newfoundland was seen at its true distance, the piano ceased, men discussed various schemes for avoiding the transfer of the Cable from stern to the bow, on every occasion of picking-up. But all our difficulty had been overcome with such certainty, and it was so evident all would go well if no more faults existed in the Cable, that faith, in the ultimate success of the enterprise became, strengthened rather than diminished.

Whilst the tests were being made the Cable was running out by its own weight and the drifting of the ship, at a strain varying from 8 cwt. to 20 cwt., giving at every fathom an increase of labour in the subsequent picking up. The sailors regarded the process of cutting the Cable with distrust; but the Cable men, accustomed to it, had no such serious apprehensions. Still the whole system of iron chains, iron rope, stoppers, and bights, is very complicated. The Cable cannot be checked in such cases till an instant before it is cut, and must be let run out for fear of the ship dragging upon it; and to the inexperienced eye it looked as if the Great Eastern were bent on snapping the thin black thread which cut the waves like a knife-blade as she rose and fell on the swell. When the strain increased, the Cable ran with an edge of seething foam frittering before it backwards and forwards in the track of the ship, taut as a bar of steel. It was a relief to see the end cut at last, and splash over, with shackle chain and wire rope, into the water. Then began an orderly tumult of men with stoppers and guy ropes along the bulwarks and in the shrouds, and over the boats, from stern to stem, as length after length of wire rope flew out after the Cable. The men under the command of Mr. Canning were skilful in their work; but as they clamoured and clambered along the sides, and over the boats, and round the paddle-boxes, hauling at hawsers, and slipping bights, and holding on and letting go stoppers, the sense of risk and fear for the Cable could not be got out of one’s head. The chief officer, Mr. Halpin, by personal exertion, made himself conspicuous, and rendered effectual assistance; and Capt.Anderson, on the bridge, watched and directed every movement of the ship with skill and vigilance. But still pitches and foulings would take place for an instant, and it needed all our confidence in Mr. Canning and his staff to tolerate this picking-up system with any temper. Thousands of fathoms down we knew the end of the cable was dragging along the bottom, fiercely tugged at by the Great Eastern through its iron line. If line or Cable parted, down sank the Cable for ever. At last our minds were set at rest by the commencement of the restorative process. The head of the Great Eastern was got round slowly, and pointed eastwards. The iron wire rope was at length coming in over the bows through the picking-up machinery. In due, but in weary time, the end of the Cable appeared above the surface, and was hauled on board and passed aft towards the drum. The stern is on these occasions deserted; the clack of wheels, before so active, ceases; and the forward part of the vessel is crowded with those engaged in the work, and with those who have only to look on. The little chimneys of the boilers at the bows vomit forth clouds of smoke, the two eccentric-looking engines working the pick-up drums and wheels make as much noise as possible, brakesmen take their places, indicator and dynamometer play their parts, and all is life and bustle forwards, as with slow unequal straining the Cable is dragged up from its watery bed.

The day had been foggy or rather hazy. Light grey sheets of drizzling cloud flew over the surface of the sea, and set men talking of icebergs and Arctic storms; but towards evening the wind fell, and a cold clammy vapour settled down on ship and sea, bringing with it a leaden calm; so that the waves lost their tumbled crests, and slept at last in almost unmurmuring slumber. But the big ship slept not. The clank and beat of machinery ceased never, and the dull mill-like clatter of Cable apparatus seemed to become more active as the night wore on. The forge fires glared on her decks, and there, out in the midst of the Atlantic, anvils rang and sparks flew; and the spectator thought of some village far away, where the blacksmith worked, unvexed by Cable anxieties and greed of speedy news. As the blaze shot up, ruddy, mellow, and strong, and flung arms of light aloft and along the glistening decks, and then died into a red centre, masts, spars, and ropes were for the instant touched with a golden gleaming, and strange figures and faces were called out from the darkness—vanished—glinted out again—rushed suddenly into foreground of bright pictures, which faded soon away—flickered—went out—as they were called to life by its warm breath, or were buried in the outer darkness! Outside us all was obscurity; but now and then vast shadows, which moved across the arc of lighted fogbank, were projected far away by the flare; and one might well pardon the passing marinerwhose bark drifted him in the night across the track of the great ship, if, crossing himself and praying with shuddering lips, he fancied he beheld a phantom ship freighted with an evil crew, and ever after told how he had seen the workshops of the Inferno floating on the bosom of the ocean. It was indeed a most wondrous and unearthly sight! The very vanes on the mastheads, the ring-bolts in the bulwarks and decks, the blocks and the cordage, were touched with such brightness that they shone as if on fire; whilst the whole of the fore part of the ship was in darkness; and on looking aft, it appeared as though the stern were on fire, or that blue lights were being burned every moment. For hour after hour, the work of “picking-up” went on. The term is objectionable; it rather indicates a brisk, lively process—a bird picks up a worm—a lady picks up a pin—a sharper picks up a flat—but the machine working at the bows of the Great Eastern assuredly was not in any one way engaged in brisk or lively work. Most doggedly at times did the Cable yield. As if it knew its home was deep in the bed of the Atlantic, and that its insulation and all the objects of its existence would be gained and bettered by remaining there, it strained against the power which sought to pull it forth; and the dynamometer showed that the resistance of the rigid cord was equivalent to 2½ tons. At times, again, it came up merely with coy reluctance, and again became sullen as though it were already troubled by the whims of two worlds and partook of their fancies. No trace was visible of its having touched the bottom for the 2½ miles which were hauled in, but the men observed signs of animal life on it, and certain creatures which they called “worms” were detached and fell on deck, a specimen of which I sought for in vain. As the Cable was hauled in, the men who coiled it aft, and guided it through the machinery, felt it carefully with their hands to detect any “fault” or injured part, and the line of large ship’s lanterns hung up along the deck showed how carefully they did their work. It was 5·40 p.m., Greenwich time, or about 3·40 p.m., ship’s time, when the end of the Cable came in board; but it was not till six hours and ten minutes had elapsed (9·50 p.m., ship’s time) that the part of the Cable where the mischief lay was picked up. The defective portion was found at the very part of the Cable which was going over the stern when the ocean galvanometer indicated “dead earth.” It was at once cut out, and reserved to be examined by Mr. Canning. The necessary steps were next taken to test the rest of the Cable. The shore end was spliced and jointed to a fresh end of the Cable from the after tank. These operations were finished before midnight; but it was not judged expedient to resume the process of paying-out till the morning. As yet no one knew the nature of the injury to the Cable. No one could account for the hitch; but it certainly did not affect any one’s belief in success. Mr. Field, towhom such accidents are never discouraging, remarked pleasantly during the crisis of picking-up, “I have often known Cables to stop working for two hours, no one knew why, and then begin again. Most likely it’s some mistake on shore.” What can discourage a believer? It was even comfort to him to remember that this very day eight years ago, a splice was made in the first Atlantic Cable, very much in the same place. But to all it had been a most trying day. And when night came, and some retired to the rest they had won so well, there, constant on the paddle-box, stood Captain Anderson, watching the course and conduct of his ship.

If the paying-out could have been stopped at once, and the Cable taken in over the stern, the delay would have been very trifling; but that was impossible. The picking-up (necessarily slow under the most favourable circumstances) was rendered unusually tedious by the inefficiency of the boilers. An interval of 19 hours had occurred, and these faults and stoppages had caused so much labour and anxiety that Captain Anderson was obliged to remain on deck for 26 hours, whilst Mr. Halpin, Mr. Clifford, Mr. Canning, the electricians, and the whole staff, were exposed to an equal strain till the Cable was over the paying-out wheels again.

July 30th (Sunday).—The weather was exceedingly thick all night—a fog hung round the ship, and the drizzling rain was so cold as to give an impression there was ice close at hand, but the water showed it was erroneous, as the temperature was 58°. It was a dead calm, and the Great Eastern seemed to float on a grey and polished surface of cloud. The preparations for paying-out were completed and tested. There would have been a better result had not an accident occurred this morning as the Cable was being passed aft from the bow, in order to transfer it from the picking-up to the paying-out machinery. Owing to a sudden jar it flew off from the drum, and before the machinery could be stopped several fathoms had become entangled amid the wheels, and were so much injured that it was necessary to cut out the pieces, and make two new splices and joints. At 10·8 a.m. (ship’s time being 8·10 a.m.) the Cable was veered out astern once more, our communications with Valentia being most satisfactory. The Cable electrically was all that could be desired, its condition being represented by 1,500,000,000 British Association units. At noon our position was Lat. 52° 30´, Long. 28° 17´; distance from Valentia, 650·6 miles; Cable payed-out, 745 miles.

The Cable which was recovered yesterday was strained, and lay twisted in hard curves, presenting a very different appearance from the easy ductile lines in which it lay in the tank. The defective portion of the Cable was not examined to-day, and divine service was postponed till 2·30, in order to give some time for sleep and rest to the exhausted and hard-worked staff and workers of allkinds on board the ship. The weather continued thick and hazy, a fresh breeze from the N.N.W. not dispersing the cold grey clouds and mist. The Terrible alone was in sight, and it was conjectured that the Sphinx must have passed on during the night, and that she would arrive in Heart’s Content before us. The sound and sight of the wheels and drums revolving again after so long a rest were very gratifying, and it was fondly hoped that this fault or dead earth would be the last, as it was now evident nothing else was to be feared, and nothing else humanly speaking could prevent the Cable being laid. In the Cable itself lay all the sources of mischief. If there were no faults or dead earth, the paying-out was a matter of the most easy routine and most positive certainty. When the operation had to be reversed, the whole condition of affairs was reversed also. A swerve of the helm, a rolling billow, an unseen weakness, a moment’s neglect, the accident of an instant, and down went the thread of thought between two continents, with all which depended on it, to rest and rust in the depths of the sea. My mind could never get rid of the image of the Great Eastern pulling at the Cable as if she were animated by a malevolent desire, when she caught some one off the watch, to use her giant’s strength to tear it asunder. Captain Anderson only expressed the feelings of all who watched the struggle whilst Cable and Ship were adjusting their mutual relations, when—admitting the task was more difficult than he had anticipated, in consequence of the obstacles to the management of the ship, arising from want of steerage way as soon as the engines were stopped—he said, “One feels so powerless—one can do so little to govern events while the affair of picking-up is going on.” The weather was favourable, the ship perfection, and yet here were these delays arising from causes no one could foresee or prevent or remedy in any but the one way, and that a way fraught with danger. A visit to the stern, where the Cable was rolling away into 2000 fathoms water as easily as the thread flies from the reel in a lady’s workbasket, always created a conviction that the enterprise must be carried out; and it was not till the machinery stopped and the words “another fault” recalled us to a sense of the contingencies on which it depended, that we could entertain a doubt of its speedy consummation. For the most indifferent somehow or another became soon interested in the undertaking. There was a wonderful sense of power in the Great Ship and in her work; it was gratifying to human pride to feel that man was mastering space, and triumphing over the winds and waves; that from his hands down in the eternal night of waters there was trailing a slender channel through which the obedient lightning would flash for ever instinct with the sympathies, passions, and interests of two mighty nations, and binding together the very ends of the earth. And then came “a fault”—or “dead earth” spoke to us.

Monday, July 31st.—We have been passing over the valley in the Atlantic which is more than two miles deep. With the morning came the news that all had gone well during the night. Some had got up an hour after midnight to watch the transfer of the coil from the after to the fore tank, which was looked forward to with interest, as it was supposed to be attended with some little difficulty. But they were agreeably disappointed; the operation was effected with the utmost facility. At 3·30 o’clock a.m. the ship was stopped, to permit the transfer to be made. At 3·50 a.m. the Cable was running out of the fore hold, passing down the trough, and going out over the stern as she steamed ahead again. The Great Eastern was now near a fatal spot—somewhere below us lay the bones of three Atlantic Cables.

But all during the forenoon, engineers and electricians, agreed in the most favourable statements respecting the Cable and its progress. At 9 a.m. (Greenwich time) 868 miles had been run out, and 770 miles made from land. In the forenoon Mr. Canning brought to trial the coils in which the peccant part that had wrought such mischief existed. The Court was held at the door of the Testing-Room. Mr. de Sauty acted as judge. The jury consisted of cells, wires, and galvanometers. The accused cable, cut in junks, was subjected to a silent examination, and many fathoms were pronounced not guilty, flake by flake, till at last the criminal was detected and at once carried off by Mr. Canning. The process of examination was conducted in Mr. Clifford’s cabin, to which a few anxious spectators were admitted. The core was laid bare by untwisting the strands of Manilla covered with iron, and before a foot of it was uncovered an exclamation literally of horror escaped our lips! There, driven right through the centre of the coil so as to touch the inner wires, was a piece of iron wire, bright as if cut with nippers at one end and broken off short at the other. It was tried with the gauge, and found to be of the same thickness as the wire used in making the protecting cover of the Cable. On examining the strands a mark of a cut was perceived on the Manilla where the wire had entered, but it did not come through on the other side. In fact, it corresponded in length exactly with the diameter of the Cable, so that the ends did not project beyond the outer surface of the covering. Now here was at once, we thought, demonstration of a villanous design. No man who saw it could doubt that the wire had been driven in by a skilful hand. And as that was so, was it not likely that the former fault had been caused in a similar manner, and that it was not the result of accident? Then, again, it was curious that the former fault occurred when the same gang of men were at work in the tank. It was known there were enemies to the manufacturers of the Cable; whispers went about that one of the cablemen had expressedgratification when the first fault occurred. It was a very solicitous moment, and Mr. Canning felt a great responsibility. He could not tell who was guilty, and in trying to punish them or him he might disgust the good men on whom so much depended. He at once accepted an offer made by the gentlemen on board the ship to take turn about in doing duty in the tank and superintending the men engaged in paying-out the Cable. Then he caused the cablemen to be summoned at the bows, and showed them the coil and the wire. After they had examined it curiously, he asked the men what they thought of the injury, and they one and all, without hesitation, expressed their opinion that it must have been done on purpose by some one in the tanks. Lynch law was talked of, and if the man could have been pounced upon, and left to the mercy of his fellows, he would have fared ill that day. Nor was the feeling of anger and indignation diminished by the knowledge that the punishment awarded by law for offences of such a character was a paltry fine and short imprisonment. The men who were engaged in the tank at the time of the occurrence were transferred to other duties, and the volunteer inspectors established a roster, and began their course of duty—one going on for two hours at a time, and being relieved in order, so that night and day the men engaged in paying-out the Cable were under the eyes of very vigilant watchmen. It was a painful thing to have to do, but the men admitted it was not only justifiable but necessary, and declared they were very glad the measure was adopted. It was fondly hoped that this surveillance would save us from a recurrence of the delay to which the expedition had been subjected, and ulterior steps were postponed till the shore was reached, when it was intended to institute a rigid inquiry. At noon our position was, Lat. 52° 9´ 20´´, Long. 31° 53´. Length of Cable payed-out since yesterday 134 miles: total length paid out, 903 miles. Distance, from Valentia, 793 miles; from Heart’s Content, 871·9 miles. We had crossed the centre of the arc of the great circle.


Back to IndexNext