CURIOSITIES RESPECTING WATERFALLS, LAKES, GULFS, WHIRLPOOLS, &c.
The Falls of Niagara—Lake of Killarney—Lake Solfatara—Whirlpool near Suderoe—Maelstrom—Gulf Stream—New Island starting from the Sea.
The Falls of Niagara—Lake of Killarney—Lake Solfatara—Whirlpool near Suderoe—Maelstrom—Gulf Stream—New Island starting from the Sea.
Niagarais a river of the United States, which flows from Lake Erie, and runs by a north-west course into the south-west end of Lake Ontario, constituting part of the boundary between the United States and Canada. It is thirty-four miles long, including its meanders. About twenty miles below Lake Erie is the great cataract, calledThe Falls of Niagara, which is justly reckoned one of the greatest natural curiosities in the world. These falls run from south-south-east to north-north-west; and the rock of the falls crosses them, not in a right line, but forms a kind of figure like a hollow semicircle, or horse-shoe. Above the falls, in the middle of the river, is an island called Grand Isle, about nine hundred or one thousand feet long, the lower end of which is just at the perpendicular edge of the fall. On both sides of this island runs all the water that comes from the lakes of Canada; viz. Lakes Superior, Michigan, Huron, and Erie. Before the water comes to this island, it runs but slowly, compared with its motion afterwards, when it grows the most rapid in the world, running with a surprising swiftness before it comes to the fall. It is perfectly white, and in many places is thrown high up into the air. At this island, the river divides into twochannels: the perpendicular descent of the north-east channel, as measured by Dr. M‘Causlin, is one hundred and sixty-three feet; that of the north-west, one hundred and forty-three; and the breadth of the cataract and island, above a mile.
The water that runs down on the west side is more rapid, flows in greater abundance, and is whiter, than that on the east side, and seems to outfly an arrow in swiftness. At the principal fall, on looking up the river, one may see that the water is every where exceedingly steep, almost like the side of a hill; but upon looking at the fall itself, it is impossible to express the amazement it occasions. The height of it, as measured by mathematical instruments, is exactly one hundred and thirty-seven feet; and when the water is come to the bottom, it rebounds back to a very great height in the air. The noise is heard at the distance of forty-five miles. At fort Niagara, when they hear the noise of the fall more loud than ordinary, they are sure that a north-east wind will follow; which is the most surprising, as the fort lies south-west from the fall. Sometimes the fall makes a much greater noise than at others, and this is held for an infallible sign of approaching rain or bad weather. From the place where the water falls, there arises a great quantity of vapour, like very thick smoke, insomuch, that when viewed at a distance, one would think that the Indians had set the forests on fire. These vapours rise high in the air when it is calm, but are dispersed by the wind when it blows hard. In September and October, such quantities of dead water-fowl are found every morning below the fall, on the shore, that the garrison of the fort live chiefly upon them. Besides the fowls, they find several sorts of dead fish, also deer, bears, and other animals, which have tried to cross the water above the fall: the larger animals are generally found broken to pieces. Just below, a little way from the great fall, the water is not rapid, but goes in circles, and whirls like a boiling pot; which however does not hinder the Indians going upon it in small canoes a fishing; but a little further, and lower, the other smaller falls begin.
There is an island in the middle of the river above the fall, where the Indians go often to kill deer, which have tried to cross the river, and are driven upon it by the stream. On the west side of this island are some small islands or rocks of no consequence. The east side of the river is almost perpendicular, the west side more sloping. In former times, a part of the rock, at the fall which is on the west side of the island, hung over in such a manner, that the water which fell perpendicularly from it, left a vacancy below, so that people could go under between the rock and the water; but the prominent part some years ago broke off, and fell down. The breadth ofthe great fall, as it runs in a semicircle, is reckoned to be about 300 feet. Below the fall, in the holes of the rocks, are great plenty of eels, which the Indians and French catch with their hands. Every day, when the sun shines, may be seen from tenA. M.till twoP. M.below the fall, a glorious rainbow, and sometimes two, one within the other. The more vapours that float, the brighter and clearer is the rainbow. When the wind carries the vapours from that place, the rainbow is gone, but appears again as soon as new vapours arise. From the fall to the landing above it, where the canoes from the Lake Erie put ashore, (or from the fall to the upper end of the carrying place,) is half a mile. Lower than this, the canoes dare not venture. They have often found below the fall, fragments of human bodies, that have unhappily been precipitated over the fall. The French say, that they have often thrown great trees into the water above, to see them carried over this precipice with the vast body of water, which nothing can resist: these go down with surprising swiftness, but can never be seen afterwards; from whence has arisen the conjecture that there was a bottomless abyss just under the fall. But the most reasonable supposition is, that, by the powerful agency of the water, they were broken into such diminutive fragments, as to render it impossible that they should ever be recognized for the same. The rock of the fall is composed of a gray limestone.
We shall next take a view of some of the most remarkable lakes; and the first we would notice, is theLake of Killarney.—This is a beautiful lake of Ireland, in the county of Kerry, otherwise calledLough Lean, from its being surrounded by high mountains. It is divided into three parts, called the Lower, Middle, and Upper Lake. The northern, or lower lake, is six miles in length, and from three to four in breadth. On the side of one of the mountains is O’Sullivan’s Cascade, which falls into the lake with a roar that strikes the timid with awe. The view of this sheet of water is uncommonly fine; it appears as if it were descending from an arch of wood, which overhangs it above seventy feet in height. The promontory of Mucruss, which divides the upper from the lower lake, is quite enchanting; and a road is carried through the centre of its promontory, which unfolds all the interior beauties of the place. Among the distant mountains, Turk appears an object of magnificence; while Mangerton’s more lofty, though less interesting summit, soars above the whole. The passage to the upper lake is round the extremity of Mucruss, which confines it on one side, and the approaching mountains on the other. Here is a celebrated rock, called the Eagle’s Nest, which produces wonderful echoes; thereport of a single cannon is answered by a succession of peals resembling the loudest thunder, and at length dies away among the distant mountains. The upper is four miles long, and from two to three broad. It is almost surrounded by mountains, from which descend a number of beautiful cascades. The islands in this lake are numerous, and afford an amazing variety of picturesque views. The centre lake, which communicates with the upper, is small in comparison with the other two, and cannot boast of equal variety; but the shores are, in many places, indented with beautiful bays, surrounded by dark groves of trees. The east boundary is formed by the base of Mangerton, down the steep side of which descends a cascade, visible for 150 yards. This fall of water is supplied by a circular lake, near the summit of the mountain, called the Devil’s Punch Bowl; which, on account of its immense depth, and the continual overflow of water, is considered as one of the greatest curiosities in Killarney. One of the most delightful prospects which this universally admired lake affords, is from a rising ground near the ruined cathedral of Aghadoe.
Lake Solfatara.—This lake is in the Compagna of Rome, near Tivoli, anciently called Albulus. It has what are called three floating islands, but they are only apparently so, being composed of bunches of sedges and bulrushes, glued together by the bitumen which swims on the lake, and the sulphur with which it is impregnated, and covered with sand and dust blown from the adjacent banks of the lake. These islands are from twelve to fifteen yards long, and the soil is strong enough to bear six persons, who, by a pole, may move to different parts of the lake. This lake has an outlet, whence its waters run, forming a whitish muddy stream, into the Teverone, the ancient Anio, emitting a vapour of a sulphureous smell as they flow. The ground near this rivulet, as well as on the banks of the lake, resounds with a hollow sound when a horse gallops over it. The water has also a petrifying quality, covering every substance that it passes over with a hard white stony substance. On throwing a bundle of sticks or shrubs into the lake, they will in a few days be covered with this stony crust; and this petrifying quality is even stronger in the rivulet that runs from it, than in the lake itself, and still increases till it falls into the Teverone. These small white incrustations that cover the pebbles in the bottom of the lake and rivulet, being somewhat like sugar-plums, are called Confections of Tivoli. Fish abound in the Teverone above and below Tivoli, till it receives the petrifying water; after which, during the remainder of its course to the Tiber, there are none.
Our next object of curiosity is aWhirlpoolnearSuderoe.—Suderoe is one of the Fero isles, situated to the north of Scotland. Near this place there is a remarkable whirlpool, occasioned by a crater sixty-one fathoms deep in the centre, and from fifty to fifty-five on the sides. The water forms four fierce circumgyrations. The point they begin at is on the side of a large bason, where commences a range of rocks, running spirally, and terminating at the verge of the crater. This range is extremely rugged, and covered with water, from the depth of twelve to eight fathoms only. It forms four equidistant wreaths, with a channel from thirty-five to twenty fathoms deep between each. On the outside, beyond that depth, the sea suddenly sinks to eighty and ninety. On the south border of the bason is a lofty rock, called Sumboe Munk, noted for the multitude of birds which frequent it. On one side the water is only three or four fathoms deep, on the other fifteen. The danger at most times, especially in storms, is very great. Ships are irresistibly drawn in; the rudder loses its power; and the waves beat as high as the masts; so that an escape is almost miraculous: yet at the reflux, in fine weather, the inhabitants venture for the sake of fishing.
Our next subject is the celebratedMaelstrom.—This is a very dangerous whirlpool on the coast of Norway, in the province of Nordland, and district of Lofoden, near the island of Moskoe, whence it also has its name of Moskoe-strom. Of this amazing whirlpool, Jonas Ramus gives the following account:—“The mountain of Helseggen, in Lofoden, lies a league from the island of Ver, and betwixt these two runs that large and dreadful stream called Moskoe-strom, from the island of Moskoe, which is in the middle of it; together with several circumjacent isles, as Ambaaran, half a quarter of a league north, Iflesen, Hoeholm, Kiedholm, Suarven, and Buckholm. Moskoe lies about half a quarter of a mile south of the island of Ver, and betwixt them these small islands, Otterholm, Flimen, Sandfiesen, and Stockholm. Betwixt Lofoden and Moskoe, the depth of the water is between thirty-six and forty fathoms; but on the side towards Ver, the depth decreases so as not to afford a convenient passage for a vessel, without the risk of splitting on the rocks, which sometimes happens even in the calmest weather: when it is flood, the stream runs up the country between Lofoden and Moskoe with a boisterous rapidity; but the roar of its impetuous ebb to the sea is scarce equalled by the loudest and most dreadful cataracts, the noise being heard several leagues off; and the vortices, or pits, are of such an extent and depth, that if a ship comes within its attraction, it is inevitably absorbed and carried down to the bottom, and there beaten to pieces againstthe rocks; and when the water relaxes, the fragments thereof are thrown up again: but these intervals of tranquillity are only at the turn of the ebb and flood, in calm weather, and last but a quarter of an hour, its violence gradually returning. When the stream is most boisterous, and its fury heightened by a storm, it is dangerous to come within a Norway mile of it; boats, ships, and yachts, having been carried away, by not guarding against it before they were within its reach. It likewise happens frequently, that whales come too near the stream, and are overpowered by its violence; and then it is impossible to describe their howlings and bellowings, in their fruitless struggles to disengage themselves. A bear, once attempting to swim from Lofoden to Moskoe, with a design of preying upon the sheep at pasture in the island, afforded the like spectacle to the people; the stream caught him, and bore him down, whilst he roared terribly, so as to be heard on shore. Large stocks of fir and pine trees, after being absorbed by the current, rise again, broken and torn to such a degree as if bristles grew on them. This plainly shews the bottom to consist of craggy rocks, among which they are whirled to and fro. This stream is regulated by the flux and reflux of the sea, it being constantly high and low water every six hours. In 1645, early in the morning of Sexagesima Sunday, it raged with such noise and impetuosity, that on the island of Moskoe, the very stones of the houses fell to the ground. When this whirlpool is agitated by a storm, its vortex will reach vessels five or six miles distant.”
Gulf-Stream.—This is a remarkable current in the ocean, which runs along the coast, at unequal distances, from Cape Florida to the Isle of Sables and the banks of Newfoundland, where it turns off and runs through the Western Islands, thence to the coast of Africa, and along that coast in a southern direction till it arrives at and supplies the place of those waters carried by the constant trade-winds from the coast of Africa towards the west; thus producing a constant circulating current. This stream is about seventy-five miles from the shores of the southern states, and the distance increases as you proceed northward. The breadth of it is about forty or fifty miles, widening towards the north. Its common rapidity is three miles an hour. A north-east wind narrows the stream, renders it more rapid, and drives it nearer the coast. North-west and west winds produce a contrary effect. The Gulf-stream is supposed to be occasioned by the trade-winds, that are constantly driving the water to the westward, which being compressed in the gulf of Mexico, finds a passage between Florida and the Bahama islands, and runs to the north-east along the American coast.
A chart of this Gulf-stream was published by Dr. Franklin, in 1768, principally from the information of Captain Folger. This was confirmed by the ingenious experiments of Dr. Blagden, published in 1781, who found that the water of the gulf-stream was from six to eleven degrees warmer than the water of the sea, through which it runs; which must have been occasioned by its being brought from a hotter climate.
We close the present chapter with anAccount of a New Island emerging from the Sea.—The description is taken from the Edinburgh Review, No. 46, September, 1814.
In the neighbourhood of Oonalashca, which is situated about the centre of the Alentian chain, a new island, nearly twenty miles in circumference, has been formed within these twenty years. The following is the account of it, which M. Lisiansky collected from eye-witnesses at Cadinck:—
“In the evening, while I was alone, employed in writing the memorandums of my journal, a Russian introduced himself, who had resided on the island of Oonalashca, when a new island started up in its vicinity. I had heard of this phenomenon, and was therefore desirous to learn what he knew respecting it. He said, that about the middle of April, 1797, a small island was seen where none had been seen before: that the first intimation of its appearance had been brought by some Alentians to Captain’s Harbour, who, returning from fishing, observed a great smoke issuing out of the sea: that this was the smoke of the volcano, which was then gradually rising above the surface of the sea, and which, in May, 1798, burst forth with a blaze, that was distinctly seen from a settlement called Macooshina, on the island of Oonalashca, at the distance of no less than forty miles to the north-west. This new island is tolerably high, and about twenty miles in circumference. It has been remarked, that it has not increased in size since the year 1799; and that no alteration has taken place in its appearance, except that some of the highest points have been thrown down by violent eruptions.”
CURIOSITIES RESPECTING BURNING SPRINGS.
Naphtha Springs—Burning Springs in Kentucky—Hot Springs of Iceland—Hot Springs of Ouachitta—Other Burning Springs.
Naphtha Springs—Burning Springs in Kentucky—Hot Springs of Iceland—Hot Springs of Ouachitta—Other Burning Springs.
Naphtha Springs.—Dr. James Mounsey, and Jonas Hanway, Esq., have given a particular account of these springs. Both gentlemen, by their travels, their residence in Muscovy, and their acquaintance with several people who have been upon the spot, have had great opportunities of becoming perfectly informed of every thing relating to the subject; and whose judgment and veracity may be depended on. Both their accounts agree, that on the western coast of the Caspian Sea, not far from the city of Baku, there is a large spot of ground, where, on taking off two or three inches of the surface of the earth, and then applying a live coal, and blowing, a flame immediately issues forth, without either burning the reed or paper, provided the edges be covered with clay. This method supplies the want of candle in their houses. Three or four of these will also boil water in a pot, and they dress their victuals in this way. The flame may be blown out like that of a lamp, but otherwise it continues burning; it smells somewhat sulphureous, or rather like naphtha, but very little offensive. The ground is dry and stony, and the more stony the ground, the stronger and clearer the flame. Near this place they dig out brimstone, and here are also the naphtha springs. But the chief place for naphtha is Swieten Island, a small tract of land on the western coast of the Caspian Sea, and uninhabited, except at such seasons as they fetch naphtha from thence, which the Persians load in their wretched embarkations, without barrels or any other vessels, so that sometimes you see the sea covered with it for leagues together. The springs boil up highest in thick and heavy weather, and the naphtha sometimes takes fire on the surface, and runs lighted or burning into the sea in great quantities, and to great distances. In clear weather, it does not bubble above two or three feet. People make cisterns near the springs, into which they convey what overflows by troughs, taking off the naphtha from the surface, under which there is a mixture of water, or some other heavier fluid. The greater part is of adark gray colour, very unpleasant to the smell, but used in lamps by the poorer sort. There are also springs of black naphtha, which is thick, and in distillation grows not clear, but yellow; but the most valuable is the white naphtha, which is naturally clear and yellowish, and bears a great price. The Russians drink it as a cordial, but it does not intoxicate: it is used externally in paralytic disorders, and is carried into India as a great rarity, where they make with it the most beautiful and lasting Japan that has ever yet been known.
What the Indians call the Everlasting Fire, lies about ten English miles north-east-by-east from the city of Baku, on dry rocky ground. There are several ancient temples, built with stone, supposed to have been all dedicated to Fire: most of them are low arched vaults, from ten to fifteen feet high. Amongst the rest, there is a temple in which the Indians now worship; near the altar, about three feet high, there is a large hollow cave, from the end of which issues a flame, in colour and gentleness, not unlike a lamp that burns with spirits. The Indians affirm that this flame has continued burning some thousands of years, and believe it will last to the end of the world; and that if it was resisted or suppressed in this place, it would rise in some other. By the number of temples, it is probable there were formerly a great number of worshippers of fire, as well Indians as Persians: they are called Gouers. At present there are about twenty persons, who reside there constantly, and go almost naked. In summer it is very hot; and in winter they dwell within doors, and keep what fire they please, in the manner above described: they live upon roots and herbs for the most part, and are supposed to attend as mediators for the sins of many who are absent; and by their applications to this fire, in which the Deity is supposed to be present and visible, they atone for the sins of others. A little way from the temple just now mentioned, near Baku, is a low cliff of a rock, in which there is a horizontal gap, two feet from the ground, between five and six long, and about three feet broad, out of which issues a constant flame, much of the colour mentioned already, being a light blue. It rises sometimes eight feet high, but is lower in still weather. They do not perceive the rock waste in the least. This also the Indians worship, and say it cannot be put out. About twenty yards on the back of this cliff is a well, and a rock twelve or fourteen fathoms deep, with exceedingly good water.
We shall next introduce an account of aBurning Spring in Kentucky.—This is a phenomenon which has for several years excited the attention of travellers, under the name of a burning spring: it exists in one of the principal forks of Lickingriver in Kentucky. It is situated about three-fourths of a mile from the banks of the river, and about eighty miles above its junction with Ohio, opposite Cincinnati. A spring here breaks out at the foot of a hill, forming a basin of water about six feet in diameter and two feet deep, at the bottom of which issues a stream of gas, which in volume and force is about equal to the blast forced from a common smith’s bellows; but there is no cessation of its force, which is such as to create a violent ebullition in the water. Being heavier than common atmospheric air, the gas, on passing up through the water, constantly occupies the surface, which is still the lower part of an indenture in the earth at that place. On presenting a taper, this gas instantly takes fire, and burns with great brilliancy. There is no absorption of it by the water, which possesses the purity of common spring water, neither is any offensive odour thrown off. This spring has been known to dry up entirely in the summer, when the air rushes out with increased force, accompanied by a hissing noise. There is nothing like smoke emitted.—Schoolcroft, on the Lead Mines of Missouri, p. 216.
Hot Springs of Iceland.—From Sir G. Mackenzie’s Travels in Iceland.
“The hot springs in the valley of Reikholt, or Reikiadal, though not the most magnificent, are not the least curious among the numerous phenomena of this sort that are found in Iceland. On entering the valley, we saw numerous columns of vapour ascending from different parts of it. The first springs we visited, issued from a number of apertures in a sort of platform of rock, covered by a thin coating of calcareous incrustations. From several of the apertures the water rose with great force, and was thrown two or three feet into the air. On plunging the thermometer into such of them as we could approach with safety, we found that it stood at 212°.
“A little further up the valley, there is a rock in the middle of the river, about ten feet high, twelve yards long, and six or eight feet in breadth: from the highest part of this rock a jet of boiling water proceeded with violence; dashing the water up to the height of several feet. Near the middle, and not more than two feet from the edge of the rock, there is a hole, about two feet in diameter, full of water boiling strongly. There is a third hole near the other end of the rock, in which water also boils briskly. At the time we saw these springs, there happened to be less water in the river than usual, and a bank of gravel was left dry a little higher up than the rock. From this bank a considerable quantity of boiling water issued.
“About a mile further down, at the foot of the valley, is the Tungahver, an assemblage of springs the most extraordinary, perhaps, in the whole world. A rock (waoke?) rises from the bog, about twenty feet, and is about fifty yards in length, the breadth not being considerable. This seems formerly to have been a hillock, one side of which remains covered with grass, while the other has been worn away, or perhaps destroyed at the time when the hot water burst forth. Along the face of the rock are arranged no fewer than sixteen springs, all of them boiling furiously, and some of them throwing the water to a considerable height. One of them, however, deserves particular notice. On approaching this place, we observed a high jet of water near one extremity of the rock. Suddenly this jet disappeared, and another, thicker but not so high, rose within a very short distance of it. At first we supposed that a piece of the rock had given way, and that the water had at that moment found a more convenient passage. Having left our horses, we went directly to the place where this had apparently happened; but we had scarcely reached the spot, when this new jet disappeared, and the one we had seen before was renewed. We observed that there were two irregular holes in the rock, within a yard of each other; and while from one a jet proceeded to the height of twelve or fourteen feet, the other was full of boiling water. We had scarcely made this observation, when the first jet began to subside, and the water in the other hole to rise; and as soon as the first had entirely sunk down, the other attained its greatest height, which was about five feet. In this extraordinary manner, these two jets played alternately. The smallest and highest jet continued about four minutes and a half, and the other about three minutes. We remained admiring this very remarkable phenomenon for a considerable time, during which we saw many alternations of the jets, which happened regularly at the intervals already mentioned.
“I have taken the liberty to give a name to this spring, and to call it ‘The Alternating Geyser.’
“These springs have been formerly observed, though the singularity of the alternations does not seem to have been attended to as any thing remarkable. Olafson and Paulson mention, that the jets appear and disappear successively, in the second, third, and fourth openings. We observed no cessations in any of the springs, except in the two under consideration.
“To form a theory of this regular alternation is no easy matter; and it seems to require a kind of mechanism very different from the simple apparatus usually employed by nature in ordinary intermittent or spouting springs. The prime mover in this case is evidently steam, an agent sufficientlypowerful for the phenomena. The two orifices are manifestly connected; for, as the one jet sinks towards the surface, the other rises, and this in a regular and uniform manner. I observed once, that when one of the jets was sinking, and the other beginning to rise, the first rose again a little before it was quite sunk down, and then when this happened, the other ceased to make any efforts to rise, and returned to its former state, till the first again sunk, when the second rose and played as usual. This communication must be formed in such a manner, that it is never complete, but alternately interrupted, first on one side, and then on the other. To effect this without the intervention of valves, seems to be impossible; and yet it is difficult to conceive the natural formation of a set of permanent valves: so that this fountain becomes one of the greatest curiosities ever presented by nature, even though, in attempting to explain the appearances it exhibits, we take every advantage that machinery can give us. If it is occasioned by natural valves, these must be of very durable materials, in order to withstand the continual agitation and consequent attrition.”
We next proceed to a description of theHot Springs of Ouachitta, (Washitaw.)—These springs, which have been known for many years, are situated on a stream called Hot Spring Creek, which falls into the Washitaw River, eight miles below. They lie fifty miles south of the Arkansa River, in Clark county, territory of Arkansa, (lately Missouri,) and six miles west of the road from Cadron to Mount Prairie, on Red River.
The approach to the springs lies up the valley of the creek. On the right of the valley rises the hot mountain, with the springs issuing at its foot; on the left, the cold mountain, which is little more than a confused and mighty pile of stones. The hot mountain is about 300 feet high, rising quite steep, and presenting occasionally ledges of rocks; it terminates above in a confused mass of broken rocks. The steep and otherwise sterile sides are covered with a luxuriant growth of vines. The valley between this and the cold mountain is about fifty yards wide.
The springs issue at the foot of the hot mountain, at an elevation of about ten feet above the level of the creek; they are very numerous all along the hill-side, and the water, which runs in copious streams, is quite hot; it will scald the hand, and boil an egg hard in ten minutes. Its temperature is considered that of boiling water, but Dr. Andrews, of Red River, thinks it is not above 200° Fahr. There is a solitary spring, situated seventy feet higher than the others on the side of the mountain, but it is of an equal temperature, and differs in norespect from those below. A dense fog continually hangs over the springs and upon the side of the hill, which at a distance looks like a number of furnaces in blast. To this fog, condensed into water, is attributed the rank growth of the vines on the side of the mountain.
Very little is known of the chemical nature of the water; an analysis is said to have been made, which indicated a little carbonate of lime. An abundance of beautiful green moss grows at the edges of the springs, and the paths of their waters are marked by a brighter vegetation than occurs elsewhere. The substance of the rocks here, are, limestone, slate, and quartz.—Schoolcroft, Lead Mines of Missouri, p. 258.
We shall conclude this chapter with an account ofvarious other Burning Springs.—There are many burning springs in different parts of the world, particularly one in France, in the department of Isere, near Grenoble; another near Hermanstadt, in Transylvania; a third at Chermay, a village near Switzerland; a fourth in the canton of Friburg; and a fifth not far from the city of Cracow, in Poland. There also is, or was, a famous spring of this kind at Wigan, in Lancashire, which, upon the approach of a lighted candle, would take fire and burn like spirit of wine for a whole day. But the most remarkable one in England, or at least that of which we have the minutest description, was discovered in 1711, at Brosely, in Shropshire. The following account of this remarkable spring was given by the Rev. Mr. Mason Woodwardin, Professor at Cambridge, dated Feb. 18th. 1746:—“The well, for four or five feet deep, is six or seven feet wide; within that, is another less hole of like depth, dug in the clay, in the bottom whereof is placed a cylindric earthen vessel, of about four or five inches diameter at the mouth, having the bottom taken off, and the sides well fixed in the clay, which is rammed close about it. Within the pot is a brown water, thick and puddly, continually forced up with a violent motion beyond that of boiling water, and a rumbling hollow noise, rising or falling by fits, five or six inches; but there was no appearance of any vapour rising, which perhaps might have been visible, had not the sun shone so bright. Upon putting a candle down at the end of a stick, at about a quarter of a yard distance, it took fire, darting and flashing after a very violent manner for about half a yard high, much in the manner of spirits in a lamp, but with great agitation. It was said, that a teakettle had been made to boil in nine minutes, and that it had been left burning for forty-eight hours without any sensible diminution. It was extinguished by putting a wet mop upon it; which must be kept there for a little time, otherwise it would not go out. Upon the removal of the mop, there arises asulphureous smoke, lasting about a minute, and yet the water is very cold to the touch.” In 1755, this well totally disappeared, by the sinking of a coal-pit in its neighbourhood. The cause of the inflammable property of such waters is with great probability supposed to be their mixture with petroleum, which is one of the most inflammable substances in nature, and has the property of burning on the surface of water.
CURIOSITIES RESPECTING EARTHQUAKES.
Earthquakes and their Causes.—From A. de Humboldt’s Personal Narrative of Travels, translated by Helen Maria Williams.
“It is a very old and commonly received opinion at Cumana, Acapulca, and Lima, that a perceptible connection existsbetween earthquakes, and the state of the atmosphere that precedes these phenomena. On the coast of New Andalusia, the inhabitants are alarmed, when, in excessively hot weather, and after long droughts, the breeze suddenly ceases to blow, and the sky, clear and without clouds at the zenith, exhibits near the horizon, at six or eight degrees elevation, the appearance of a reddish vapour. These prognostics are however very uncertain; and when the whole of the meteorological variations, at the times when the globe has been the most agitated, are called to mind, it is found, that violent shocks take place equally in dry and in wet weather, when the coolest winds blow, or during a dead and suffocating calm. From the great number of earthquakes, which I have witnessed to the north and south of the equator; on the continent, and in the bason of the seas; on the coasts, and at 2500 toises height; it appears to me, that the oscillations are generally very independent of the previous state of the atmosphere. This opinion is embraced by a number of enlightened persons, who inhabit the Spanish colonies; and whose experience extends, if not over a greater space of the globe, at least to a greater number of years than mine. On the contrary, in parts of Europe where earthquakes are rare compared to America, natural philosophers are inclined to admit an intimate connection between the undulations of the ground, and certain meteors, which usually take place at the same epocha. In Italy, for instance, the sirocco and earthquakes are suspected to have some connection; and at London, the frequency of falling stars, and those southern lights which have since been often observed by Mr. Dalton, were considered as the forerunners of those shocks which were felt from 1748 to 1756.
EFFECTS OF AN EARTHQUAKE.—Page 499.
The engraving represents the great earthquake of 1755, in which the city of Lisbon,in Portugal, was entirely destroyed, and 20,000 persons were killed.
SAND STORM OR SAND FLOOD IN THE DESERTS OF ARABIA.—Page 521.
In these terrible whirlwinds of sand, whole caravans are sometimes overwhelmed and destroyed.
“On the days when the earth is agitated by violent shocks, the regularity of the horary variations of the barometer is not disturbed under the tropics. I have verified this observation at Cumana, at Lima, and at Riobamba; and it is so much the more worthy of fixing the attention of natural philosophers, as in St. Domingo, at the town of Cape François, it is asserted that a water barometer was observed to sink two inches and a half immediately before the earthquake of 1770. It is also related, that at the time of the destruction of Oran, a druggist fled with his family, because, observing accidentally, a few minutes before the earthquake, the height of the mercury in his barometer, he perceived that the column sunk in an extraordinary manner. I know not whether we can give credit to this assertion: but as it is nearly impossible to examine the variations of the weight of the atmosphere during the shocks, we must be satisfied in observing the barometer before or after these phenomena have taken place. In the temperate zone, the aurora borealis does not always modify the variationof the needle, and the intensity of the magnetic forces: perhaps also earthquakes do not act constantly in the same manner on the air that surrounds us.
“We can scarcely doubt, that the earth, when opened and agitated by shocks, occasionally sends forth gaseous exhalations through the atmosphere, in places remote from the mouths of volcanoes not extinct. At Cumana, as we have already observed, flames and vapours, mixed with sulphureous acid, spring up from the most arid soil. In other parts of the same province, the earth ejects water and petroleum. At Riobamba, a muddy and inflammable mass, which is called moya, issues from crevices that close again, and accumulates into elevated hills. At seven leagues from Lisbon, near Colares, during the terrible earthquake of the 1st of November, 1755, flames, and a column of thick smoke, were seen to issue from the flanks of the rocks of Alvidras, and, according to some witnesses, from the bosom of the sea. This smoke lasted several days, and it was the more abundant in proportion as the subterraneous noise, which accompanied the shocks, was louder.
“Elastic fluids thrown into the atmosphere may act locally on the barometer, not by their mass, which is very small compared to the mass of the atmosphere; but because, at the moment of the great explosions, an ascending current is probably formed, which diminishes the pressure of the air. I am inclined to think, that in the greater number of earthquakes, nothing escapes from the agitated earth, and that, when gaseous exhalations and vapours take place, they oftener accompany or follow, than precede, the shocks. This last circumstance explains a fact, which seems indubitable; I mean that mysterious influence, in equinoctial America, of earthquakes accompanying a change of climate, and the order of the dry and rainy seasons. If the earth generally acts on the air only at the moment of the shocks, we can conceive why it is so rare that a sensible meteorological change becomes the presage of these great revolutions of nature.
“The hypothesis, according to which, in the earthquakes of Cumana, elastic fluids escape from the surface of the soil, seems confirmed by the observation of the dreadful noise which is heard during the shocks at the borders of the wells in the plain of Charas. Water and sand are sometimes thrown out twenty feet high. Similar phenomena have not escaped the observation of the ancient inhabitants of Greece and Asia Minor, abounding with caverns, crevices, and subterraneous rivers. Nature, in its uniform progress, every where suggests the same ideas of the causes of earthquakes, and the means by which man, forgetting the measure of his strength, pretends to diminish the effect of the subterraneous explosions.What a great Roman naturalist has said of the utility of wells and caverns, is repeated in the New World by the most ignorant Indians of Quito, when they shew travellers the guaicos, or crevices of Pichincha.
“The subterraneous noise, so frequent during earthquakes, is generally not in the ratio of the strength of the shocks. At Cumana it constantly precedes them; while at Quito, and lately at Caraccas, and in the West India Islands, a noise like the discharge of a battery was heard a long time after the shocks had ceased. A third kind of phenomenon, the most remarkable of the whole, is the rolling of those subterraneous thunders, which last several months, without being accompanied by the least oscillating motion of the ground.
“In every country subject to earthquakes, the point where (probably by a disposition of the stony strata) the effects are the most sensible, is considered as the cause and the focus of the shocks. Thus, at Cumana, the hill of the castle of St. Antonio, and particularly the eminence on which the convent of St. Francis is placed, are believed to contain an enormous quantity of sulphur, and other inflammable matter. We forget, that the rapidity with which the undulations are propagated to great distances, even across the basin of the ocean, proves that the centre of action is very remote from the surface of the globe. From this same cause, no doubt, earthquakes are not restrained to certain species of rocks, as some naturalists pretend, but all are fitted to propagate the movement. In order to keep within the limits of my own experience, I shall here cite the granites of Lima and Acapulco; the gneiss of Caraccas; the mica-slate of the peninsula of Araya; the primitive thonschiefer of Tepecuacuilco, in Mexico; the secondary limestones of the Apennines; Spain, and new Andalusia; and finally, the trappean porphyries of Quito and Popayan. In these different places the ground is frequently agitated by the most violent shocks; but sometimes, in the same rock, the superior strata form invincible obstacles to the propagation of the motion. Thus, in the mines of Saxony, we have seen workmen hasten up, affrighted by oscillations which were not felt at the surface of the ground.
“If, in regions the most remote from each other, primitive, secondary, and volcanic rock, share equally in the convulsive movements of the globe; we cannot but admire also, that in ground of little extent, certain classes of rocks oppose themselves to the propagation of the shocks. At Cumana, for instance, before the catastrophe of 1797, the earthquakes were felt only along the southern and calcareous coast of the gulf of Cariaco, as far as the town of this name; while in the peninsula of Araya, and at the village of Marinaquez, the ground did not partake of the same agitation. The inhabitants ofthis northern coast, which is composed of mica-slate, built their huts on a motionless earth; a gulf three or four thousand fathoms in breadth separated them from a plain covered with ruins, and overturned by earthquakes. This security, founded on the experience of several ages, has vanished; and since the fourteenth of December, 1797, new communications appear to have been opened in the interior of the globe. At present the peninsula of Araya is not merely subject to the agitation of the soil of Cumana; the promontory of mica-slate is become in its turn a particular centre of the movements. The earth is sometimes strongly shaken at the village of Marinaquez, when on the coast of Cumana the inhabitants enjoy the most perfect tranquillity. The gulf of Cariaco nevertheless is only sixty or eighty fathoms deep.
“It is thought, from observations made both on the continent and in the islands, that the western and southern coasts are most exposed to shocks. This observation is connected with the ideas which geologists have long formed of the position of the high chains of mountains, and the direction of their steepest declivities: the volcanic phenomena of the Cordilleras and Caraccas, and the frequency of the oscillations on the eastern and northern coast of Terra Firma, in the gulf of Paria, at Carupano, at Cariaco, and at Cumana, are proofs of the certainty of this opinion. In New Andalusia, as well as in Chili and Peru, the shocks follow the course of the shore, and extend but little inland. This circumstance, as we shall soon find, indicates an intimate connection between the causes that produce earthquakes and volcanic eruptions. If the earth was most agitated on the coasts, because they are the lowest part of the land, why should not the oscillations be equally strong and frequent on those vast savannas or meadows, which are scarcely eight or ten toises above the level of the ocean?
“The earthquakes of Cumana are connected with those of the West India Islands; and it has even been suspected, that they have some connection with the volcanic phenomena of the Cordilleras of the Andes. On the fourth of November, 1797, the soil of the province of Quito underwent such a destructive commotion, that, notwithstanding the extreme thinness of the population of that country, near forty thousand natives perished, buried under the ruins of their houses, swallowed up in the crevices, or drowned in lakes that were suddenly formed. At the same period, the inhabitants of the eastern Antilles were alarmed by shocks, which continued during eight months, when the volcano of Guadaloupe threw out pumice stones, ashes, and gusts of sulphureous vapours. This eruption of the twenty-seventh of September, during which very long-continued subterraneous noises were heard, wasfollowed on the fourteenth of December by the great earthquake of Cumana. Another volcano of the West India Islands, that of St. Vincent’s, has lately given a fresh instance of these extraordinary connections. This volcano had not emitted flames since 1718, when they burst forth anew, in 1812. The total ruin of the city of Caraccas preceded this explosion thirty-five days, and violent oscillations of the ground were felt, both in the islands, and on the coasts of Terra Firma.
“It has long been remarked, that the effects of great earthquakes extend much farther than the phenomena arising from burning volcanoes. In studying the physical revolutions of Italy, and carefully examining the series of the eruptions of Vesuvius and Etna, we can scarcely recognize, notwithstanding the proximity of these mountains, any traces of simultaneous action. It is, on the contrary, undeniable, that at the period of the last and preceding destruction of Lisbon, the sea was violently agitated even as far as the New World, for instance, at the island of Barbadoes, more than twelve hundred leagues distant from the coasts of Portugal.
“Several facts tend to prove, that the causes which produce earthquakes have a near connection with those that act in volcanic eruptions. We learnt at Pasto, that the column of black and thick smoke, which in 1797 issued for several months from the volcano near this shore, disappeared at the very hour when, sixty leagues to the south, the towns of Riobamba, Hambato, and Tacunga, were overturned by an enormous shock. When, in the interior of a burning crater, we are seated near those hillocks formed by ejections of scoria and ashes, we feel the motion of the ground several seconds before each partial eruption takes place. We observed this phenomenon at Vesuvius in 1805, while the mountain threw out scoria; we were witnesses of it in 1812, on the brink of the immense crater of Pichincha, from which nevertheless at that time clouds of sulphureous acid vapours only issued.
“Every thing in earthquakes seems to indicate the action of elastic fluids seeking an outlet to spread themselves in the atmosphere. Often, on the coasts of the South Sea, the action is almost instantaneously communicated from Chili to the gulf of Guayaquil, a distance of six hundred leagues; and, what is very remarkable, the shocks appear to be so much the stronger, as the country is more distant from burning volcanoes. The granitic mountains of Calabria, covered with very recent breccia, the calcareous chain of the Apennines, the country of Pignerol, the coasts of Portugal and Greece, and those of Peru and Terra Firma, afford striking proofs of this assertion. The globe, it may be said, is agitated with greaterforce, in proportion as the surface has a smaller number of funnels communicating with the caverns of the interior. At Naples and Messina, at the foot of Cotopaxi and of Tunguragua, earthquakes are dreaded only when vapours and flames do not issue from the crater. In the kingdom of Quito, the great catastrophe of Riobamba, which we have before mentioned, has led several well-informed persons to think, that this unfortunate country would be less often desolate, if the subterraneous fire would break the porphyritic dome of Chimborazo; and this colossal mountain should become a burning volcano. At all times analogous facts have led to the same hypothesis. The Greeks, who, like ourselves, attributed the oscillations of the ground to the action of elastic fluids, cited, in favour of their opinion, the total cessation of the shocks at the island of Eubœa, by the opening of a crevice in the Lelantine plain.”
The following is an account of an Earthquake of Caraccas; by M. Palacio Faxar:—
“The ridge of mountains, which branches out from the Andes near the isthmus of Panama, and which, taking the direction of the eastern coast, crosses part of New Granada and Venezuela, seems to have been the seat of that earthquake, which, on the 26th March, 1812, destroyed many populous towns of the province of Caraccas. It is this branch of the Cordilleras, that forms the Sierra-nevada of Chita, that of Merida de Maracaybo, and the height called La Silla de Caracca; and it is between these three remarkable points that the gold mines of Pamplona, the mineral water of Merida de Maracaybo, and the copper mines of Aroa, are found. Between the picturesque Sierra-nevada of Merida de Maracaybo, and La Silla de Caracca, where spring is perpetual, the earthquake was most strongly felt.
“At the south-east of this ridge of mountains, there are plains of an immense extent, covered with different species of grasses, and watered by innumerable torrents, which falling from the mountains, and uniting in different bodies, majestically enter the Orinoco. These plains were likewise convulsed for above 120 leagues in Venezuela: the towns situate immediately at the foot of the Cordilliera, or in the valleys between them, suffered most severely: those seated in the plains did not suffer considerable injury, though violently shaken. For five months a continued drought had parched the earth, no rain having fallen, and in the preceding month of December, a slight shock of an earthquake had been felt at Caraccas. It was on the eve of the Crucifixion, when Catholics assembled together in their churches, to commemorate, with public prayers and processions, the sufferings and meritsof their Redeemer, that this sad catastrophe had happened. The weather was fine, and the air serene, when between four and fiveP. M.a hollow sound like the roar of a cannon was heard, which was followed by a violent oscillatory motion from west to east, which lasted about seventeen seconds, and which stopped all the public clocks; the convulsion diminished for some moments, but was succeeded by a more violent shock than the first, for nearly twenty seconds, keeping the same direction; a calm followed, which lasted about fourteen seconds, after which, a most alarming trepidation of the earth took place for fifteen seconds: the total duration about one minute and fifteen seconds. The inhabitants of Caraccas, struck with terror, unitedly and loudly implored the protection of Heaven: some ran wildly through the streets; some remained immoveable with astonishment; while others, crowding into the churches, sought refuge at the foot of the altar. The crash of falling buildings, the clouds of dust which filled the air, and the anxious cries of mothers, who inquired in vain for their children lost in the tumult, increased the horrors of this sad day. To this scene of disorder succeeded the most horrible despair. Dead bodies, wounded persons crying for protection, presented themselves every where to those who had escaped from the catastrophe, and who could not turn their eyes from these objects of pity and horror, without meeting with heaps of ruin, which had buried hundreds of unfortunate persons, whose lamentations uselessly pierced their hearts, for it was impossible to give relief or assistance to all.
“It has been computed, that in this calamitous day, near 20,000 persons perished at Venezuela. A great part of the veteran troops were of this number; and all the arms destined for the defence of their country, were buried under the ruins of the barracks. The towns of Caraccas, Merida de Maracaybo, and Laguaira, were totally destroyed; those of Barquirineto, Sanfelipe, and others, suffered considerably. It is to be remarked, that Truxillo, which is situate between Merida de Maracaybo and Sanfelipe, experienced very little damage. At the last place, near the mines of Aroa, the first signal they had of the earthquake was an electric shock, which deprived many persons of their power of motion; and in Valencia, Caraccas, and the neighbouring country, the inhabitants were, for about twenty days after the earthquake, in an extraordinary state of irritability. Many persons, who suffered from intermittent fevers, recovered immediately, in consequence of the effect of the earthquake.
“At Vallecillo, near Valencia, a rivulet spouted out from a hill, which continued to flow for some hours after the earthquake, and which I visited a few days after. The river Guaire, which runs through the valley of Caraccas, was greatly swelledsoon after the earthquake, and remained in that state for several days. The water of the bay of Maracaybo withdrew considerably, and it is said that the mountain Avila, which separates Caraccas from Laguaira, sunk several feet into the earth.
“The earthquakes continued for many days, we may say, without interruption: they diminished as it were by degrees, though the last were remarkably strong. So late as the month of October in the same year, there was a violent shock. The earthquake of the 26th March was felt at Santafé de Bogotá, and even at Carthagena, though it was very little felt at Cumana.
“In the following April, a volcano burst out in the island of St. Vincent. About the time of the eruption, a noise like that occasioned by the discharge of a cannon was heard at Caraccas and Laguaira, which caused a general alarm, the inhabitants of each place supposing that the neighbouring town was attacked by the enemy. This roaring noise was distinctly heard where the river Nula falls into the Apure, which is more than 100 leagues from Caraccas. In the same year, 1812, many strong shocks of an earthquake were felt at Samaica and Curaçoa.
“The earthquake of the 26th March alarmed so deeply the inhabitants of Venezuela, that they expected to see the earth open and swallow them at every convulsion; and as it happened on the anniversary of their political revolution, they supposed that event had incurred the displeasure of the Almighty. The clergy, who were enemies to the revolution, as their privileges had been diminished by the new constitution of Venezuela, availed themselves of the disposition of the people, and preached every where against the new republic. Such was the beginning of the civil war at Venezuela; a war, which has desolated those beautiful countries, and which has destroyed the tenth part of their population.”
The celebrated poet Cowper, in the second book of his admirable poem, The Task, has given us a very accurate and sublime description of the effects of Earthquakes, from which the following is an extract:—
The rocks fall headlong, and the valleys rise,The rivers die into offensive pools,And, charg’d with putrid verdure, breathe a grossAnd mortal nuisance into all the air.What solid was, by transformation strange,Grows fluid; and the fixt and rooted earth,Tormented into billows, heaves and swells,Or with vortiginous and hideous whirlSucks down its prey insatiable. ImmenseThe tumult and the overthrow, the pangsAnd agonies of human and of bruteMultitudes, fugitive on ev’ry side,And fugitive in vain. The sylvan sceneMigrates uplifted; and, with all its soil,Alighting on far distant fields, finds outA new possessor, and survives the change.Ocean has caught the frenzy, and, upwroughtTo an enormous and o’erbearing height,Not by a mighty wind, but by that voiceWhich winds and waves obey, invades the shoreResistless. Never such a sudden flood,Upridg’d so high, and sent on such a charge,Possess’d an inland scene. Where now the throngThat press’d the beach, and, hasty to depart,Look’d to the sea for safety? They are gone,Gone with the refluent wave into the deep—A prince with half his people.
It is a consolation to every good man, to consider that the world is governed by a wise and good, as well as powerfulBeing, who gives liberty to the powers of nature to range, or restrains them, as may best suit his divine purposes; which have always the ultimate good of the whole creation in view.
CURIOSITIES RESPECTING WINDS, HURRICANES, &c.