Chapter 37

To make a Glass of Water appear to boil and sparkle.

Take a glass nearly full of water, or other liquor, and setting one hand upon the foot of it to hold it fast, turnslightly one of the fingers of your other hand upon the brim or edge of the glass, (having before privately wet your finger,) and so passing softly on, with your finger pressing a little, then the glass will begin to make a noise, the parts of the glass will sensibly appear to tremble with notable rarefaction and condensation, the water will shake, seem to boil, cast itself out of the glass, and leap out by small drops, to the great astonishment of the observers, if they are ignorant of the cause, which is only the rarefaction of the parts of the glass, occasioned by the motion and pressure of the finger.

How to make a Cork fly out of a Bottle.

Put a little chalk or pounded marble into a phial, and pour on some water, with about a third part of sulphuric acid, and put in a cork: in a few seconds, the cork will be sent off with great violence.

To produce Gas Light, on a small Scale.

Take an ordinary tobacco pipe, and nearly fill the bowl with small coals, and stop the mouth of the bowl with any suitable luting, as pipe-clay, or the mixture of sand and common clay, or, as clay is apt to shrink, of sand and beer, and place the bowl in a fire between the bars of a grate, so that the pipe may stand nearly perpendicular. In a few minutes, if the luting be good, the gas will begin to escape from the stem of the pipe, when, if a piece of lighted paper or candle be applied, it will take fire and burn for several minutes with an intense light. When the light goes out, a residuum of useful products will be found in the bowl.

Thunder Powder.

Take separately, three parts of good dry saltpetre, two parts of dry salt of tartar, and pound them well together in a mortar; then add thereto one part, or rather more, of flour of brimstone, and take care to pound and mix the whole perfectly together: put this composition into a bottle with a glass stopper, for use.

Put about two drams of this mixture in an iron spoon, over a moderate fire, but not in the flame; in a short time it will melt, and go off with an explosion like thunder or a loaded cannon.

To tell, by the Dial of a Watch, at what hour any Person intends to rise.

Let the person set the hand of the dial to any hour he pleases, and tell you what hour that is, and to the number ofthat hour you add, in your mind, 12. After this, tell him to call the hour the index stands at that which he has fixed upon; and by reckoning backwards from this number to the former, it will bring him to the hour required.

Example.

Suppose the hour at which he intends to rise be 8, and that he has placed the hand at 5.

Then, adding 12 to 5, you bid him call the hour at which the index stands, the number on which he thought; and by reckoning back from this number to 17, it will bring him to 8, the hour required.

The following Experiment shews the Power of Attraction.

If we take two pieces of lead, as two musket or pistol balls, and with a knife smooth two plane surfaces, and press them together, they will firmly adhere.

Two plates of metal made very smooth, when rubbed with oil and put together, will so firmly adhere, that it will require a great force to separate them.

If two pieces of wood, or of glass, be wetted with water, and placed together, the one may be lifted up by means of the other. Boys often have a piece of leather on the end of a string, which they wet and put on a stone, and thereby lift it up.

If we take a small tube of glass with a narrow bore, and put it in water, the fluid will rise higher within the tube than in the vessel. The narrower the tube is, the higher the water rises. This is called Capillary Attraction. If we put two pieces of glass together, and place the lower edge in water, it will rise between them, as it does in the capillary tubes. This experiment may be made more pleasing, by putting a shilling or a piece of paper between the two pieces of glass at one end. The water will then rise in a curve line, called an hyperbola, higher and higher as it recedes from the shilling or piece of paper, and the pieces of glass get nearer to each other.

Place a balance equally poised, so that one scale may be made to touch water in a vessel; considerable weight must be put in the other scale, to make it rise up. Put three or four bits of cork to float in a basin of water; they will gradually draw nearer to each other, and the more rapidly as the distance diminishes.

Experiments to shew the Power of Repulsion.

Dip a ball in oil and put it in water; a ditch will be formed all round it. Pour water on oiled paper, and it will run off.

Sprinkle water on a dusty floor, it rolls over it in globules. Sprinkle it upon a floor that has been swept, and this will not be the case, as it then comes in contact with the wood, and is diffused over it.

We may observe that rain water stands in globules on the leaves of cabbages. If we blow up soap-bubbles, and let them fall on the carpet, they will not for some time burst. Let them fall on the table, or any smooth surface, and they will burst instantly.

If we pour as much water into a cup as it will possibly hold, we shall see the water above the level of the sides, if the edge be dry, but otherwise we shall not.

Lay a very fine needle, or a piece of tinfoil, on the surface of water, and it will float, until it become wet, when it sinks.

Lay a piece of gold on mercury, and it will float on the surface; but if depressed below the surface, it will sink to the bottom, like the needle on water.

Experiments respecting the Centre of Gravity.

The centre of gravity is that part of a body, round which all its parts are so equally balanced, that, if it be supported, the whole body will be so too.

Take a book, and find, by trial, under what part the finger must be placed to keep the book from falling; that point is the centre of gravity.

Take a rod, or stick, and find that place about the middle of it, under which the finger being placed, it will be balanced; that is the centre of gravity. The moment the centre of gravity ceases to be supported, the whole body falls.

Move a piece of board to the edge of a table, and gradually farther and farther off it; the instant the centre of gravity gets beyond the edge of the table, the board falls.

Run the point of a knife much slanting into the same board, it may then be brought much farther over the edge of the table than it could before, as the knife, leaning the way of the table, brings the centre of gravity that way.

Take a bottle, with a cork in it; stick in the middle of the cork a needle, with the point, upwards; then take another cork, and with a knife make a slit in one of its ends, in which place a shilling so far as to make it fast; then take two forks, or penknives, and stick one on each side the cork, slanting a little downwards; then place the edge of the shilling on the point of the needle, and it will rest secure. It may be made to revolve, with great rapidity, on the point of the needle, without falling off.

The following Experiment shews the Power of Steam.

Put a little water in a bottle, and cork it securely, covering it with sealing wax; then put the bottle into a kettle of water, and let it boil a short time, and the steam will force out the cork.

Diminution of Heat by Evaporation.

Pour water on a piece of writing-paper, and hold it over a candle; it will boil without burning the paper.

Water may be boiled in an egg-shell on the fire.

Experiment to ascertain the Strength of Spirits of Wine.

It is a common practice for apothecaries, in order to ascertain if spirit of wine be sufficiently strong, to pour some into a cup upon some gunpowder, and then to set fire to it. If the spirit be sufficiently strong, after burning down to the gunpowder, it will make it go off; but if too much water has been poured in, that will not take place, as, after the spirit is consumed, there will still be water enough to keep the powder wet.

To ascertain the Strength of Brine.

To ascertain the strength of brine for salting meat, it is usual to put an egg in the boiling water, and gradually put in salt until the egg be made to swim.

The following Experiments shew the Pressure and Elasticity of Air.

Put an empty bottle with a cork in it near the fire; the cork will be driven out.

Get a vessel of hot water, and put a phial into it, with the mouth downwards; the expanded air will bubble out. Let the water cool, or pour cold water on the phial, of which the mouth has not been drawn above the surface of the water, and as the air is now cooled, and occupies less space, a considerable part of the bottle will be filled with water.

Boil a little water in a glass phial over a candle for a few minutes; then invert the mouth of the phial in water, and, as it cools, the air will contract, and water will be forced up the bottle, by the external air, to occupy the vacant space.

Lay a weighty book on a bladder, and blow into it with a pipe, and the book will be raised. Increase the weight on the bladder very much indeed, and you may still raise it as before.

A bladder filled with air may be compressed, and the moment the force is removed, it will recover its size. If thrown on the ground it will rise like a ball.

Take a cup, and burn a few pieces of paper in it, the heat will expand the air in it. Invert the cup now in a saucer of water, and, as the enclosed air cools, it will return to its former density, and leave a vacuum, and the pressure of the external air will force a great deal of water up into the cup. If this experiment be performed with a large drinking-glass, the water may be seen to rise in the glass.

The pressure of the air may be very sensibly felt, by putting the hole of a common bellows over the knee, and then attempting to raise the upper part of it.

Boil water in a glass phial over a candle for a few minutes, then suddenly removing it, tie a piece of wetted bladder over the mouth, making it fast with a string; the pressure of the air will stretch the bladder, if it do not burst it.

Get a glass vessel, as a common tumbler, if no better be at hand, and put a piece of wetted bladder over the mouth, pressing it down in the middle, and then tie it firm with a string; then lay hold of the bladder in the middle, and try to pull it straight, or level with the rest, and the pressure of the external air will not permit it.

Do exactly the same as before, except that the vessel must be nearly full of water. Turn the vessel upside-down, and the bladder will still continue as it was placed, the pressure of the air overcoming the weight of the water.

Though air be capable of compression, it makes a resistance, and that very considerable. The ball of an air-gun has been burst asunder by overcharging it. If bottles are filled too much, they may be burst in attempting to cork them, from the air between the cork and the liquor being too much condensed.

Put a common wine-glass, with the mouth downwards, into water; and to whatever depth it may be plunged, the air will not allow much water to rise into it, as may be seen by the inside of the glass not being wet. If a bit of cork float inside of the glass, it will point out to the eye still more clearly how high the water rises. This experiment, though so very simple will illustrate the nature of the diving-bell.

Experiments respecting Sound.

Hold a tumbler sideways, and sprinkle a little dust, or powder of any sort, on it; then strike the glass, and make it sound:—the dust keeps dancing about whilst the sound continues; stop the sound, and the dust is at rest.

The sound of a watch laid upon a long table, or upon aplank of wood, will be heard much farther than it otherwise would.

When a vessel on the fire begins to boil, let a communication be made between it and the ear, by means of the poker, and the sound is more distinctly heard.

Tie a string round the end of a poker, and then, winding one end of the string round the fore-finger of the one hand, and the other end of the string round the fore-finger of the other; put the fingers into the ears, and make the poker strike against a table, or any other object, and it will sound like the bell of a church.

Tie a string round the end of a poker, as before, and hold the string with your teeth; when the poker is made to strike against any object, as in the last experiment, the same kind of sound will be transmitted through the teeth.

Make a watch touch your teeth, and you will hear its beating more distinctly.

When a pitchfork is struck, in order to pitch a tune, its end is put on the table, and a greater sound is produced. If the pitchfork, after being struck, be held to the teeth, its sound is still more distinct.

Having shut up both ears with cotton very closely, put your fingers on the teeth of a person who speaks to you, and you will hear his voice.

Electrical Experiments.

If a piece of sealing-wax be rubbed briskly against the sleeve of your coat, or any other woollen substance, for some time, and then held within an inch or less of hair, feathers, bits of paper, or other light bodies; they will be attracted, that is, they will jump up, and adhere to the wax. If a tube of glass, or small phial, be rubbed in a similar manner, it will answer much better. The bottle thus rubbed becomes electric; and when the operation is performed in a dark room, small flashes of divergent flame, ramified somewhat like trees bare of leaves, will dart into the air, from many parts of the surface of the tube, to the distance of six or eight inches, attended with a crackling noise; and sometimes sparks will fly along the tube to the rubber at more than a foot distant.

Cut two bits of cork into the shape and size of a common pea. With a needle, draw a thread through each of the corks, so that they may be made to hang at the ends of the threads with a knot below them. Let the other ends of the threads be inserted in the notch of a small piece of wood, about a foot long, and an inch broad, and the thickness of a common match. Lay the piece of wood over two wine-glasses, a few inches asunder, so that the end of it, in which the threadsare, may project over the edge of the glass nearest it, and the corks may be in contact one with another. Take another wine-glass, and, having rubbed it briskly with a piece of flannel, or upon the skirt or sleeve of a woollen coat, hold its mouth to within about an inch of the corks, and they will suddenly start asunder, and continue so for some time.

Lay a pocket-watch upon a table, and take a common tobacco-pipe, and place it on the face of the watch so that it may balance thereon; then, after rubbing a wine-glass, as described in the former experiment, bring it to within an inch of the smaller end of the tobacco-pipe, and by moving the glass gently round in an horizontal circular track, you will cause the pipe to turn round on the watch-glass, as the needle turns on its centre in a mariner’s compass.

A curious Experiment made by Mr. Symmer, on the Electricity of Silk Stockings.

This gentleman having frequently observed, that on putting off his stockings in the evening, they made a crackling or snapping noise, and that in the dark they emitted sparks of fire, was induced to examine on what circumstances these electrical appearances depended. After a considerable number of observations, directed to this point, he found that it was the combination of white and black which produced the electricity, and that the appearances were the strongest when he wore a white and a black stocking upon the same leg. These, however, discovered no signs of electricity while they were upon the leg, though they were drawn backwards and forwards upon it several times; but the moment they were separated, they were both of them found to be highly electrified, the white positively, and the black negatively; and when they were held at a distance from each other, they appeared inflated to such a degree, that they exhibited the entire shape of the leg.

When two black or two white stockings were held together, they would repel one another to a considerable distance; and when a white and black stocking were presented to each other, they would be mutually attracted, and rush together with great violence, joining as close as if they had been so many folds of silk; and in this case their electricity did not seem to have been in the least impaired by the shock of meeting, for they would be again inflated, attract, repel, and rush together, as before.

When this experiment was performed with two black stockings in one hand, and two white ones in the other, it exhibited a still more curious spectacle. The repulsion of those of the same colour, and the attraction of those of different colours,threw them into an agitation, and made each of them catch at the opposite colour in a way that was very amusing.

What was also very remarkable in these experiments with a white and black stocking, was, the power of electrical cohesion which they exhibited; Mr. Symmer having found, that when they were electrified, and allowed to come together, they frequently stuck so close to each other, that it required a weight of sixteen or seventeen ounces to separate them, and this in a direction parallel to their surfaces.

When one of the stockings was turned inside-out, it required twenty ounces to separate them; and by having the black stockings new dyed, and the white ones washed, and whitened in the fumes of sulphur, and then putting them one within the other, it required three pounds three ounces to separate them.

Trying this experiment with stockings of a more substantial make, he found that, when the white stocking was put within the black one, so that its outside was contiguous to the inside of the other, they raised near nine pounds; and when the white stocking was turned inside-out, and put within the black one, so that their rough surfaces were contiguous, they raised fifteen pounds, which was ninety-two times the weight of the stockings. And, in all these cases, he found that pressing them together with his hands contributed much to strengthen the cohesion.

When the white and black stockings were in cohesion, and another pair, more highly electrified, were separated from each other, and presented to the former, their cohesion would be dissolved, and each stocking of the second pair would catch hold of, and carry away with it, that of its opposite co-lour; but if the degree of electricity of both pairs were equal, the cohesion of the former would be weakened, but not dissolved, and all the four would cohere together in one mass.

Mr. Symmer also observed, that white and black silk, when electrified, not only cohered with each other, but they would also adhere to bodies with broad, and even polished, surfaces, though those bodies were not electrified. This he discovered, by throwing accidentally a stocking out of his hand, which stuck to the paper-hangings of the room, and which, in another experiment of this kind, continued hanging there nearly an hour.

Having stuck up the black and white stockings in this manner, he came with another pair of stockings, highly electrified, and applying the white to the black, and the black to the white, he carried them off from the wall, each of them hanging to that which had been brought to it. The same experiment also held with the painted boards of the room, and likewise with the looking-glass, to the smooth surface ofwhich, the white and black stockings appeared to adhere more tenaciously than to either of the former.

To suspend a Ring by a Thread that has been burnt.

The thread having been previously soaked in chamber lye, or common salt and water, tie it to a ring, not larger than wedding-ring. When you apply the flame of a candle to it, though the thread burn to ashes, it will yet sustain the ring.

Chemical Illuminations.

Put into a middling-sized bottle, with a short wide neck, three ounces of oil or spirit of vitriol, with twelve ounces of common water, and throw into it, at different times, an ounce or two of iron filings. A violent commotion will then take place, and white vapours will arise from the mixture. If a taper be held to the mouth of the bottle, these vapours will inflame, and produce a violent explosion; which may be repeated as long as the vapours continue.

To make the Appearance of a Flash of Lightning when any one enters a Room with a lighted Candle.

Dissolve camphor in spirit of wine, and deposit the vessel containing the solution in a very close room, where the spirit of wine must be made to evaporate by strong and speedy boiling. If any one then enters the room with a lighted candle, the air will inflame; but the combustion will be so sudden, and of so short duration, as to occasion no danger.

The Fiery Fountain.

If twenty grains of phosphorus, cut very small, and mixed with forty grains of powdered zinc, be put into four drachms of water, and two drachms of concentrated sulphuric acid be added thereto, bubbles of inflamed phosphuretted hydrogen gas will quickly cover the whole surface of the fluid in succession, forming a real fountain of fire.

A Lamp that will burn Twelve Months without replenishing.

Take a stick of phosphorus, and put it into a large dry phial, not corked, and it will afford a light sufficient to discern any object in a room, when held near it. The phial should be kept in a cool place, where there is no great current of air, and it will continue its luminous appearance for more than twelve months.

The Magic Oracle.

Get six blank cards, and write on them figures, or numbers, exactly according to the following patterns.

No. I

No. II.

No. III.

No. IV.

No. V.

No. VI.

You deliver the cards to a person, and desire him to think of any number from one to sixty; he is then to look at the cards, and say in which cards the number he thought of is to be found; and you immediately tell him the number thought of.

Explanation.

This surprising and ingenious recreation is done by means of a key number. There is a key number in every card, viz. the last but one in the second row from the top. From this explanation the reader will perceive that the key numbers are 1, 2, 4, 8, 16, 32. Now whatever number is fixed on, from 1 to 60, will be readily found by privately adding together the key numbers of the cards that contain the number thought on. For instance, suppose a person thinks of number 43; he looks at the cards, and gives you No. 1, 2, 4, 5, 6, as cards which contain the number thought on: you expertly perceive that the key numbers are 1, 2, 8, 32; which numbers added together make 43, the number thought on. Suppose he thinks of No. 15, he gives you No. 1, 2, 3, 4: the key numbers are 1, 2, 4, 8; which added, make just 15; and so of all numbers from 1 to 60.

This recreation may be varied many ways; as, telling the age of a person, &c.; but this is left to the ingenious reader’s taste and application.

Cheap and Easy Method of constructing a Voltaic Pile.

Mr. Mitchell, in his useful little work on natural philosophy, proposes the following cheap and easy method of constructing a Voltaic Pile. Zinc is one of the cheapest of metals, and may be easily melted, like lead. Let the student cast twenty or thirty pieces, of the size of a penny-piece, which may easily be done in moulds made in clay. Let him then get as many penny-pieces, and as many pieces of paper, or cloth cut in the same shape, and these he must dip in a solution of salt and water. In building the pile, let him place a piece of zinc, wet paper, (the superabundant water being squeezed out,) after which the copper; then zinc, paper, copper, &c. until the whole be finished. The sides of the pile may be supported with rods of glass, or varnished wood, fixed in the board on which it is built. The following experiment may then be performed:—

Having wetted both hands, touch the lower part of the pile with one hand, and the upper part with the other, constant, little shocks of electricity will be felt until one hand be removed. If the hand be brought back, a similar repetition of shocks will be felt. Put a basin of water near the pile, and put the left hand into it, holding a wire, one end of which touches the top of the battery or pile; then put the end of a silver spoon between the lip and the gum, and with the other end of the spoon touch the lower part of the pile; a strong shock is felt in the gum and in the hand. Take the left hand from the water, but still keep hold of the wire, and thenperform the last experiment in the same manner, and a shock will be felt in the gum only. Hold a silver spoon in one hand, and touch with it the battery at the lower part, then touch the upper part with the tongue; the bitter taste will be extreme.

In performing the above experiments, if, instead of the two ends of the pile, the one end and the middle of it be touched, the sensations will not be nearly so strong. If the student be desirous of having still more sensible proofs of the effect of galvanism, let him hold a wire to the top of the battery, and let him place one end of a silver spoon to the lower part, and the other end within his mouth, so as to touch the gums; a severe set of shocks will be felt. In performing this experiment, move the spoon to the roof of the mouth, and a strong sensation will be felt. Let the end of the spoon be run up the nose so as to touch the cartilaginous bone; shocks like the stabs of a needle will be felt. Let the end of the spoon be put under the eye-brow, close to the ball of the eye; a sensation will be felt like the burning of red-hot iron, but which ceases the instant the spoon is removed.

Magnetical Experiments.

The magnetic attraction will not be destroyed by interposing obstacles between the magnet and the iron.

Lay a small needle on a piece of paper, and put a magnet under the paper; the needle may be moved backwards and forwards.

Lay the needle on a piece of glass, and put the magnet under the glass; it will still attract the needle. The same effects will take place if a board be interposed between the magnet and the iron. This property of the magnet has afforded the means of some very amusing deceptions.

A little figure of a man has been made to spell a person’s name. The hand, in which was a piece of iron, rested on a board, under which a person, concealed from view, with a powerful magnet, contrived to carry it from letter to letter, until the word was made up.

The figure of a goose or swan, with a piece of iron concealed about the head, is set to float in water. A rod, with a concealed magnet at the end, is presented to the bird, and it swims after it. The effect is still more amusing, when some food is put on the end of the rod.

The figure of a fish is thrown into the water, with a small magnet concealed in its mouth. Of course, if a baited hook be suspended near it, the magnet and iron, by mutual attraction, will bring the fish to the bait.

Put a piece of iron in one scale of a balance, and an equalweight in the other scale; bring a magnet under the scale which contains the iron, and it will draw it down. Reverse this experiment, and put the magnet in the scale, and balance it; bring the iron under it, and it will draw down the magnet. Suspend a magnet by a string, and bring a piece of iron near it, and it will attract.

If a magnet suspended by one string, and a piece of iron suspended by another, be brought near one another, they will mutually attract each other, and be drawn to a point between.

Suspend a magnet nicely poised by a thread, and it will point north and south, the same end pointing invariably the same way.

Rub a fine needle with a magnet, and lay it gently on the surface of the water; it will point north and south. Rub various needles with the magnet, and run them through small pieces of cork, and put them to swim in water; they will all point north and south, and the same end will invariably point the same way. This mode of finding the north is sometimes of the utmost service at sea, when the compass is destroyed.

Opposite poles attract; poles of the same name repel. Take two magnets, or two needles rubbed with the magnet, and bring the north and south poles together, and they attract.

Bring the north poles near each other, and they repel. Bring the south poles near each other, and they repel. Rub a needle with a magnet, and run it through a piece of cork, and put it to float in water. Hold a north pole of a magnet near its north pole, and it will keep flying away to avoid it. It may be chased from side to side of a basin. On the other hand, an opposite pole will immediately attract.

Rub four or five needles, and you may lift them up as in a string, the north pole of one needle adhering to the south pole of another.

Put a magnet under a piece of glass, and sprinkle iron-filings on it; they will arrange themselves in a manner that will be very surprising. At each pole will be a vast abundance standing erect, and there will be fewer and fewer as they recede, until there are scarcely any in the middle. If the iron-filings are sprinkled on the magnet itself, they will arrange themselves in a manner very striking.

Lay a needle exactly between the north and south pole, it will move towards neither.

Artificial Coruscations.

There is a method of producing artificial coruscations, or sparkling fiery meteors, which will be visible not only in thedark but at noon-day, and that from two liquors actually cold. Fifteen grains of solid phosphorus are to be melted in about a drachm of water: when this is cold, pour upon it about two ounces of oil of vitriol; let these be shaken together, and they will at first heat, and afterwards they will throw up fiery balls in great numbers, which will adhere like so many stars to the sides of the glass, and continue burning for a considerable time; after this, if a small quantity of oil of turpentine is poured in, without shaking the phial, the mixture will of itself take fire, and burn very furiously. The vessel should be large, and open at the top. Artificial coruscations may also be produced by means of oil of vitriol and iron, in the following manner:—Take a glass body capable of holding three quarts; put into it three ounces of oil of vitriol and twelve ounces of water; then warming the mixture a little, throw in, at several times, two ounces or more of clean iron-filings; upon this, an ebullition and white vapours will arise; then present a lighted candle to the mouth of the vessel, and the vapour will take fire, and will afford a bright illumination, or flash like lightning. Applying the candle in this manner several times, the effect will always be the same; and sometimes the fire will fill the whole body of the glass, and even circulate to the bottom of the liquor; at others, it will only reach a little way down its neck. The great caution to be used in this experiment is, in making the vapour of a proper heat; for, if too cold, few vapours will arise; and, if made too hot, they will come too fast, and only take fire in the neck of the glass, without any remarkable coruscation.

To make an Egg enter a Phial without breaking.

Let the neck of a phial be ever so strait, an egg will go into it without breaking, if it be first steeped in very strong vinegar, for in process of time the vinegar does so soften it, that the shell will bend and extend lengthways without breaking: and when it is in, cold water thrown upon it will recover its primitive hardness, and, as Cardan says, its primitive figure.

Light produced by Friction, even under Water.

Rub two pieces of fine lump sugar together in the dark; the effect is produced, but in a much greater degree, by two pieces of silex, or quartz: but that which affords the strongest light of any thing, is a white quartz[25]from the Land’s End,considerable quantities of which are brought to Bristol, and enter into the composition of china ware. By means of two pieces of such quartz, pretty forcibly rubbed together, you may distinguish the time of the night by a watch: but, what is more surprising, the same effect is produced equally strong by rubbing the pieces of quartz together under water.

Rosin Bubbles.

The following account of a simple and curious experiment is extracted from a letter written by Mr. Morey, of Oxford, New Hampshire, to Dr. Silliman, the editor of the American Journal of Science and Arts.

“If the end of a copper tube, or of a tobacco-pipe stem, be dipped in melted rosin, at a temperature a little above that of boiling water, taken out and held nearly in a vertical position, and blown through, bubbles will be formed of all possible sizes, from that of a hen’s egg down to sizes which can hardly be discerned by the naked eye; and from their silvery lustre, and reflection of the different rays of light, they have a pleasing appearance. Some that have been formed these eight months, are as perfect as when first made. They generally assume the form of a string of beads, many of them perfectly regular, and connected by a very fine fibre; but the production is never twice alike. If expanded by hydrogen gas, they would probably occupy the upper part of the room.

“The formation of these bubbles is ascribed to a common cause, viz. the distention of a viscous fluid by one that is aëriform; and their permanency, to the sudden congelation of the rosin thus imprisoning the air by a thin film of solid matter, and preventing its escape.”

A curious Hydraulic Experiment, called the Magical Bottle.

Take a small bottle, (see Plate) AB, Fig. 9, the neck of which must be very narrow, and provide a glass vessel, CD, the height of which exceeds that of the bottle about two inches; fill the bottle, by means of a small funnel, with red wine, and place it in the vessel CD, which is to be previously filled with water. Then, if the bottle be uncorked, the wine will presently come out of it, and rise in form of a small column, to the surface of the water; and at the same time the water entering the bottle, will supply the place of wine; for water being specifically heavier than wine, it will consequently subside to the lowest place, while the other naturally rises to the top.

A similar effect will be produced, if the bottle be filled with water, and the vessel with wine, for the bottle being placedin the vessel, in an inverted position, the water will descend to the bottom of the vessel, and the wine will rise in the bottle. The same effect may also be produced by any other liquors, the specific gravities of which are considerably different.

Another Hydraulic Experiment, called the Miraculous Vessel.

Take a tin vessel of about six inches in height, and three in diameter, having a mouth of only a quarter of an inch wide, and in the bottom of the vessel make a number of small holes, of a size sufficient to admit a common sewing needle.

Plunge the vessel into water, with its mouth open, and when it is full, cork it, and take it out again; then, as long as the vessel remains corked, no water will come out of it; but as soon as it is uncorked, the water will immediately issue from the small holes at the bottom. It must be observed, however, that if the holes at the bottom of the vessel be more than one-sixth of an inch in diameter, or if they be too numerous, the experiment will not succeed; for, in this case, the pressure of the air against the bottom of the vessel will not be sufficient to confine the water.

A curious Hydraulic Experiment, called Tantalus’s Cup.

Take a glass, or any other vessel, (see Plate) ABCD, fig. 10. which has a small bent pipe, EFG, open at each end, running through the middle of it; then, if water or wine be poured into the glass, it will continue in it till the tube is full up to the bend F, which should be a little lower than the upper edge of the glass; but if, after this, you continue to pour more liquor into it, it will endeavour, as usual, to rise higher in the glass, but not finding room for a farther ascent in the tube, it will descend through the part EG, and run out at the end G, as long as you continue to put it in. To those who are unacquainted with the nature of the syphon, the effect may perhaps appear something more extraordinary, if the longest branch of the tube be concealed in the handle of the cup.

This is called the cup of Tantalus, from its resemblance to an experiment of the same kind, by placing an upright image in the cup, and disposing the syphon in such a manner, that, as soon as the water rises to the chin of the image, it will begin to run out through the longest leg, in the same manner as from the cup above-mentioned.

A curious Chemical Experiment, called the Tree of Diana.

Make an amalgam, without heat, of two drachms of leaf silver with one drachm of quicksilver. Dissolve this amalgamtwo ounces, or a sufficient quantity, of pure nitrous acid of a moderate strength: dilute the solution in about a pound and a half of distilled water, agitate the mixture, and preserve it for use in a glass bottle with a ground stopper. When you would make your tree, put into a phial the quantity of an ounce of the above preparation, and add to it about the size of a pea of amalgam of gold or silver, as soft as butter: the vessel must then be left at rest, and soon afterwards small filaments will appear to issue out of the ball of amalgam, which quickly increase, and shoot out branches in the form of shrubs.

A metallic arborisation, somewhat similar, may be produced in the following manner:—Dissolve a little sugar of lead in water, and fill a phial with the solution. Pass a wire through the cork, and affix to the upper part of the wire a small bit of silver, or zinc, in such a manner that it may be immersed in the solution not far from its surface. Set the phial in some place where it may remain undisturbed, and in about twenty-four hours you will perceive the lead beginning to shoot round the wire: this process will continue going on slowly, till you have a beautiful metallic tree. If you have a wide-mouthed phial, or glass jar, the experiment may be pleasingly diversified, by arranging the wire in various forms.

A remarkable Experiment, called Prince Rupert’s Drops.

Take up a small quantity of the melted matter of glass with a tube, and let a drop of it fall into a vessel of water. This drop will have a small tail, which, being broken, the whole substance of the drop will burst, with great violence, into a fine powder, and give a little pain to the hand, but do no hurt to it.

It is a remarkable circumstance in this experiment, that the bulb, or body, will bear the stroke of a hammer, without breaking; but when the tail is broken, the above-mentioned effect is produced. If the drop be cooled in the air, the same effect will not take place; and if it be ground away on a stone, nothing extraordinary appears; but if it be put into the receiver of an air-pump, and then broken, the effect will be so violent as to produce light.

How to make Sympathetic Inks of various Kinds.

By sympathetic inks, are meant those kinds of liquors, with which if any characters be written, they will remain invisible, till some method is used to give them a colour.

The first class of these inks consists of such as become visible by passing another liquor over them, or by exposing them to the vapour of that liquor.

The second, of those which do not appear so long as they are kept close, but soon become visible on being exposed to the air.

The third, of such as become apparent by strewing or sifting some very fine powder over them.

The fourth, of those which do not become visible till they are exposed to the fire, or heated.

The fifth, like the fourth, of such as appear by heat, but disappear again when the paper becomes cold, or has had a sufficient time to imbibe the moisture of the air.

Sympathetic Inks of the First Class.—Put some litharge into strong distilled vinegar, and let it stand for twenty-four hours; then strain it off, and, after it is quite settled, put it into a bottle closely corked, and preserve it for use. Having done this, put into a pint bottle two ounces of quicklime, one ounce of orpiment in powder, and as much water as will rise two or three fingers’ breadth above them; and when the solution is made, pour the liquid gently off, and let it stand in the sun for two or three days, observing to turn it five or six times each day.

When these liquors are ready for use, any letters written by the first, being exposed to the vapours of the second, will quickly become visible; and if you would have them disappear again, you must draw a sponge, or pencil, dipt in aqua-fortis, or spirit of nitre, over them: and if, after this, you would have them appear again, stay till the paper is quite dry, and then pass the vivifying liquor, made of the solution of orpiment, over them, as before.

Another Ink of this Class.—Dissolve bismuth in the nitrous acid, and any letters written with this ink will become quite black, by being exposed to the vapour of liver of sulphur, which is of so penetrating a nature, that it will act upon the ink through a quire of paper, or even the slight partition of a room.

A Sympathetic Gold Ink of the Second Class.—Put as much gold into a small quantity of aqua-regia as will dissolve it, and then dilute it with two or three times as much distilled water.

Also dissolve, in a separate vessel, fine pewter in aqua-regia; and when it is well saturated, add to it an equal quantity of distilled water.

Then, if any characters be written with the solution of gold, put them in the shade till they become quite dry, and they will not appear for the first seven or eight hours, but if you dip a pencil, or small fine sponge, in the solution of pewter, and draw it lightly over the invisible characters, they will presently appear of a purple colour.

The purple colour of these letters may be effaced again, bywetting them with aqua-regia, and may be produced a second time, by passing the solution of pewter over them as before.

A Sympathetic Ink of the Second Class.—Dissolve fine silver in aqua-fortis, and add some distilled water to the solution, in the same manner as in the gold ink; then, whatever is written with this ink, will remain invisible for three or four months, if it be kept close from the air; but if it be exposed to the sun, it will appear in about an hour, of a gray colour, like that of a slate.

Sympathetic Inks of the Third Class,—or such as become visible by having any fine powder strewed over them,—may be composed of the glutinous and colourless juice of any vegetable, the milk of animals, and several other substances.

Sympathetic Inks of the Fourth Class,—are made by diluting acid of vitriol with about three times its weight of common water, or as much as will prevent it from corroding the paper. The juice of lemons, or onions, will answer the same purpose; but either of them requires more heat than the first, and will not keep so long.

A Green Ink of the Fifth Class.—Take zaffre in powder, and let it remain dissolved in aqua-regia for twenty-four hours; after which pour the liquor off clear, and, adding to it as much common water, keep it in a bottle well corked. Then, if any characters be written with this ink, and exposed to the fire, or strong rays of the sun, they will appear of a lively green.

It is the peculiar property of this ink, that as soon as the paper becomes cold again, the letters will disappear; and this alternate appearance and disappearance may be repeated a great number of times, provided the heat be not too great.

Other Sympathetic Inks.

AYellow Inkof this kind may be made, by steeping the flowers of marigolds seven or eight days in clear distilled vinegar, and then pressing them out, and keeping the liquor well corked in a bottle for use.

For a Red invisible Ink,—take the pure spirit of vitriol, or that of nitre, and add to it eight or ten times as much water, according as you would have it more or less red.

For a Green Ink of this sort,—dissolve salt of tartar, the clearest and driest you can procure, in a sufficient quantity of river water;and for a Violet sympathetic Ink, express the juice of lemons, and keep it in a bottle well corked.

Then, if any characters be written with one of these inks, they will appear in their proper colours, the paper having been dipped in the following liquor.

Take a sufficient quantity of the flowers of pansies, orcommon violets, and after adding some water to them, strain the liquor through a cloth, and keep it in a bottle for use.

A Sympathetic Ink which appears by being wetted with Water.

Mix alum with a sufficient quantity of lemon juice; then, if any letters or characters be written with this mixture, they will be invisible till they are wetted with water, which will make them appear of a grayish colour, and quite transparent.

Or, you may write with a strong solution of roch-alum only, and when the writing is dry, pour a small quantity of water over it, and it will appear of a white colour, like that of the paper before it was wetted.

Also all saline liquors, such as vitriolic, nitrous, and marine acids, diluted with water, the liquor of fixed vegetable alkalis, and even vinegar, will produce the same effect.

If a little aqua-fortis be mixed with the water, the writing will dry well, and not run out of its form when the paper is wetted.

A curious Recreation with Sympathetic Ink, called the Book of Fate.

Make a book, consisting of seventy or eighty leaves, and in the cover at the end of it, let there be a case which opens next to the back, that it may not be perceived. At the top of each right-hand page, write any question you please; and at the beginning of the book, let there be a table of those questions, with the number of the pages in which each is to be found. Then write with common ink on separate papers, each about half the size of the pages, the same questions that are in the book; and under each of them, write the answer with the ink made with the litharge of lead, or the solution of bismuth.

Soak a double paper in the vivifying ink, made of quicklime and orpiment, or the liver of sulphur; and just before you make the experiment, place it in the case that is in the cover of the book.

Having done this, deliver some of the papers on which the questions are written, to the company; and after they have chosen such as they wish to have answered, let them put them into those leaves where the same questions are contained; then shutting the book for a few minutes, the sulphureous spirit, with which the paper in the cover of the book is impregnated, will penetrate the leaves, and make the answer visible, which will be of a brown colour, and more or less deep, in proportion to the time the book has been closed.

A curious Recreation, called the Transcolorated Writing.

Write on a paper, with a violet-coloured liquor, as many letters or words as you please, and ask any person which he will choose to have the writing,—yellow, green, or red. When he has made his choice, have a sponge ready with three sides, which you can easily distinguish, and dip each of its sides in one of the three sympathetic inks; then draw the side of the sponge which corresponds to the colour the person has chosen, over the writing, once only, and it will directly change to the colour required.

An Experiment with Sympathetic Ink, called the Oracular Letters.

Write on several slips of paper different questions, and such as may be answered by the name of some person: for example, Who is the merriest man in company?—Answer, Mr. * * *. To whom will Miss * * * be married?—Answer, To Mr. * * *. These questions are to be written in the sympathetic ink of the fourth class, and exposed to the fire, and the answers written in the same ink, and left invisible. The papers are then to be folded in the form of letters, and in such a manner, that the part where the name is written shall be directly under the seal; in which case, the heat of the wax will make it visible. Then, if the letter be given to the person who requires the answer, he will find it plainly written.

An Experiment with Sympathetic Ink, called Winter changed to Spring.

Take a print which represents winter, and trace over the trees, plants, and ground, with the green sympathetic ink; observing to make some parts deeper than others, according to their distance. When those parts are dry, paint the other objects in their natural colours; then put the print into a glazed frame, and cover the back of it with a paper, pasted over its border only. When this print is exposed to the heat of a moderate fire, or to the warm rays of the sun, all the grass and foliage will turn to a pleasing green; and if a yellow tint be given to some parts of the print, before the sympathetic ink be drawn over it, the green will be of different shades, and the scene, that a minute before represented Winter, will now be changed into Spring. When this print is placed in the cold, Winter will appear again, and be again driven away by the warm rays of the sun; and this alternate change of seasons may be repeated as often as you please, provided the print be not made too hot.

A remarkable Experiment, called the Revivified Rose.

Take a rose that is quite faded, and throw in some common sulphur in a chafing-dish of hot coal. Hold the rose over the fumes, and it will become quite white; then dip it into a basin of water, and giving it to any one, tell him to put it into his box or drawer, and after locking it, to give you the key. About five or six hours afterwards, return him the key, and when he unlocks his drawer, instead of the white rose he put into it, he will find one perfectly red.

How to Write on Glass by means of the Rays of the Sun.

Dissolve chalk in aqua-fortis, to the consistence of milk, and add to it a strong solution of silver; keep this liquor in a glass decanter, well stopped, and cutting out from a paper the letters you wish to appear, paste it on the decanter, and place it in the sun, in such a manner, that its rays may pass through the spaces cut out of the paper, and fall on the surface of the liquor; then will that part of the glass through which the rays pass be turned black, while that under the paper will remain white; but particular care must be taken that the bottle be not moved during the time of the operation.

To produce different Colours, by pouring a colourless Liquor into a clean Glass.

Take a strong solution of quicksilver, made with spirit of nitre; dilute it with water, and pour it into a hot glass, rinsed in strong spirit of sea-salt, and it will instantly become coloured. Or, if a solution of silver, made with spirit of nitre, considerably diluted, be poured into a glass, prepared in the manner above-mentioned, it will produce the same effect. And if you pour hot water upon new-madecrocus metallorum, and put it into a clean glass, rinsed with any acid, it will produce an orange colour.

To produce a Colour which appears and disappears by the Influence of the Air.

Put into a decanter some volatile spirit, in which you have dissolved copper filings, and you will have a fine blue tincture; and if the bottle be stopped, the colour will soon return again; and this experiment may be repeated a considerable number of times.

To turn a colourless Liquor Black, by adding a White Powder to it.

Put a hot weak pellucid infusion of galls into a glass, and throw into it a grain of the vitriol of iron, calcined to whiteness, and considerably heated; then, as it falls to the bottom, it will make a black cloud, which will uniformly diffuse itself through the transparent liquor, and gradually turn it black.

The same effect may also be produced by the addition of a little vitriol of iron calcined to a yellow colour, or by the colcothar of vitriol calcined to redness.

The black liquor, produced as above, may be rendered pellucid again, by pouring the liquor hot into a glass rinsed with the pure acid of vitriol. And to make this transparent liquor black again, pour to it as much hot oil oftartar per deliquiumas will saturate the acid, which has attracted the metallic matter.

Freezing Mixture.

In the time of snow, a freezing mixture may easily be made, by mixing a little snow and common salt in a basin near the fire. If water in an iron cup or phial be put into this mixture, it will immediately be frozen; and if pounded ice and common salt be added, it will have a still more powerful effect.

Experiments with the Microscope.

They who possess this amusing instrument, may easily perform with it a variety of pleasing experiments; among others, the following:—Leave some vinegar exposed in a saucer, for a few days, to the open air; then place a drop of it, by means of a clean pen, or a camel’s hair brush, on the transparent object-plate of the microscope; and if the object-plate be properly illuminated from below, you will observe in this drop of liquor animals resembling some small eels, which are in continual motion.

If you slightly bruise some pepper-corns, and infuse them in water for a few days, and then expose a drop of it to the microscope, a number of animals of a different kind will be visible. These are of an oblong shape, and, like the others, in continual motion, going backwards and forwards in all directions, turning aside when they meet each other, or when their passage is stopped by some obstacle.

In other infusions, as in that of new hay, differently shaped animalcules will be found. When the drop in which they swim, and which to them is like a pond, becomes diminished by evaporation, they gradually retire towards the middle,where they accumulate, and at length perish when entirely deprived of moisture. Previously to this, they appear in great distress, writhe their bodies, and endeavour to escape from that state of uneasiness which they evidently feel.

It the smallest quantity or drop of sulphuric acid be put into a drop of the infusion which swarms with these insects, they immediately throw themselves on their backs, and expire; sometimes losing their skin, which bursts, and suffers small particles of air to escape.

Those who wish to be furnished with microscopic eels, at all seasons, may have them in common paste, such as the bookbinders commonly use. It should neither be too stiff, nor too watery. Expose it to the air, and prevent its hardening or becoming mouldy on the surface, by beating it well together, when it has that tendency. After some days it will become sour; and then, if examined attentively by a microscope, multitudes of exceedingly small, long, and slender animalcules will be visible; these will grow larger, till they are of sufficient size to be seen by the naked eye. A drop or two of vinegar should now and then be poured on the paste; and sometimes, to prevent its being dry, a little vinegar and water. By this means microscopic eels may be had all the year. They must be applied to the microscope upon any flat surface, after having first put on it a very small drop of water for them to swim in. These are very entertaining objects when examined by any kind of microscope, but particularly the solar one, by which the motions of their intestines may very plainly be distinguished; and when the water is nearly dried away, and they are on the point of expiring, their mouths may be seen opening to a considerable width.

If some of the dust of the puff-ball be examined with the microscope, it appears to consist of perfectly round globules, of an orange colour, the diameter of which is only about the one-fiftieth part of the thickness of a hair, so that each of this grain is but the1⁄125000th part of a globule, equal in diameter to the breadth of a hair.

The farina of flowers is found to be regularly or uniformly organized in each kind of plant. In the mallow, for example, each grain is an opaque ball, covered over with small points. The farina of the tulip, and of most of the liliaceous kind of flowers, bears a striking resemblance to the seeds of the cucumber: that of the poppy is like grains of barley.


Back to IndexNext