PART II.
PART II.
CHAPTER IX.
CHAPTER IX.
MATERIALS—BRAZILWOOD—HORSEHAIR—THEACTION OFROSIN.
It is curious to pass in review the strange events—the causes, heterogeneous and improbable, that have produced many of the most important results in the history of man. What fiddler, for instance, when indulging in the customary smoke after an evening's "grind," realises his indebtedness for half his enjoyment to an unscrupulous Genoese pirate of the fifteenth century? Yet, seeing that in addition to wooden nutmegs, banjoes and other blessings of civilization emanating from the New World, America gives us both tobacco and Brazil wood (the only material of which it is possible to make a thoroughly good bow), I think that, if I may liken the violinist's mind to a temple of many shrines erected to all those who have contributed to his welfare and enjoyment, there should be one niche reserved for Christopher Columbus of egg-balancing fame.
It is also of interest to note how, as soon as violinists were ready for a perfect bow, François Tourte appeared on the scene and provided the much desired article. How he experimentalized on common sugar-barrel wood I have already set down in its proper place. This was, of course, to gain proficiency in the use of his new tools. In his search after a wood that should contain the essential qualities of strength, lightness and spring, he made bows of many kinds of wood, but was not satisfied until he tried the red wood imported for dyeing purposes from Pernambuco. I am afraid there are few who reflect on the significance of the fact that the exact wood requireddidactually exist. Formerly the bow-maker had to buy the wood in the rough state just as shipped over, and then would begin the weary work of selecting those pieces suitable for his purpose. As a matter of fact they are few and far between, for this wood is particularly full of twists, knots and splits. Now this is done for him by firms who buy the raw material, select that with the desired straight grain and cut it into square rods ready for the craftsmen to work up into bows. A few years ago bow makers demanded very dense wood under the impression that it would be advantageous to have them as slender as possible, for the denser the wood the thinner must be the stick to preserve a normal weight. The fallacy of this method, however, soon made itself apparent, for, though you may thin down a stickad libitum, the headmustbe a certain height and breadth, consequently these bows were all more or less top heavy. A much lighter variety of wood therefore is now being used, and I must say the appearance of some recent bows by our best English makers is extremely fine; there is a greater sense of proportion apparent to the eye as well as to the hand.
Some of the cheap German and French trade bows are made of what the dealers call Brazilette wood, a wood somewhat allied to the true Brazil wood, but totally lacking in spring or firmness. I wonder whether violinists often realise when they take up a bow how many remote parts of the earth have contributed to this little magic wand! Wood from the West, ivory from the East, mother-of-pearl from the sea, gold or silver from Eastern, Western, or, it may be, Antipodean mines; and, when we add thereto the hair from the horse's tail, we levy a tax upon the three kingdoms, vegetable, animal and mineral, to minister to our enjoyment.
As much discrimination has to be exercised in selecting the hair as in the case with the wood, for it is essential that every hair in the bow be absolutely cylindrical and of equal thickness throughout. These have to be sought for very carefully and are not so plentiful as one would suppose, for the shape of a hair is regulated by that of the pore from which it grows and these are seldom circular, many being flat on one side, some, even, square or triangular. It has been estimated that the proportion of suitable hairs is not more than ten per cent. Tourte, according to Fétis, always preferred French hair for his bows as he found it "larger and stronger than that of other countries." I believe at present a quantity of Russian hair is used.
Tourte's daughter was of great assistance to him in selecting and preparing the hair. His method was to thoroughly cleanse the hair with ordinary soap, then to soak it in bran water and then, after removing all foreign matter, to dip in "blue water." A few years ago some misguided people tried bleaching the hair chemically. This, however, made it quite dry and brittle, and it has happily been abandoned.
The average number of hairs in a bow now-a-days is from 150 to 200. In Tourte's day a similar number were used.
A few words on the structure and action of bow hair and the real part played by rosin may not be amiss. As Mr. Heron-Allen truly observes "it is astonishing how few violinists know anything about the mechanical and scientific action of powdered rosin on tone production." And for the laity he says again that many think, when they see a bow being rosined, that it is being "greased to make it go faster."
If we examine a hair microscopically we discover a surface covered with minute scales. Ordinarily these scales lie close to the main shaft, but when rosin is rubbed along the hair small particles get fixed under the scales causing them to stand up somewhat like the teeth of a saw. These erected scales act on the string like so many infinitesimalplectraand thus produce in perfection the sustained sound attempted in a grosser manner by the tremolo of the mandoline. It is simply a rapid series of shocks. A moment's consideration will suffice to realize that continuous pressure on a string would act as a deterrent rather than a promoter of vibration. In fact an unrosined bow gives continuous pressure and therefore produces no sound.
The hair is usually inserted in a bow in the natural position of its growth,i.e., the root end at the top, thus, as the scales point downwards, giving the greatest attack to the down bow. Some have tried placing half one way and half the other but I do not think a very perceptible difference results from this proceeding.
CHAPTER X.
CHAPTER X.
QUALITIESESSENTIAL IN ABOWMAKER—SHAPING THESTICK—SETTING THECambre—THEFACES—THETRENCHES—THENUT.
The manufacture of the bow is an industry calling for rare qualities of patience and concentration on the part of its followers. The skill required is of quite a distinct kind. Strength and delicacy of hand must both be exceptionally pronounced, and mathematical accuracy of eye is essential. Delicacy of touch to readily appreciate the varying degrees of elasticity found not only in different sticks but often in the same piece of wood. Strength to work with precision in such hard wood. And for this kind of work the strength required is not that of the carpenter who can use the weight and swing of his body; it is, rather, a self-contained strength in which opposing forces must co-operate in order to ensure the absolute accuracy so indispensable in a bow. Then the sight must be of unerring judgment, for nearly all the work depends on the eye. Bow making is distinctly nervous work for it keeps the mind constantly alert.
I am indebted for most of the details given in this chapter to the late Alfred Tubbs, son of James, and a good workman, who died comparatively young in 1909. He told me that he only made one bow at a time for the reason that each stick has its own individuality, some intrinsic feature that has to be borne in mind through all the details of fitting, mounting and adjusting. The mind is apt to lose its certainty of retention when exercised on as few, even, as three sticks simultaneously. Therefore each bow is completed before the next is commenced.
Taking the rough stick as shown in Fig. 34, the first operation is that of "rounding the throat," in other words the square rod is made round for a few inches just below the rough block left for the head to be cut from, this portion being called by some the "throat," and by others the "neck" of the bow. After this the corners of the remaining square portion are planed away, thereby making the stick octagonal in section. Should it be intended that the finished bow be octagonal, naturally the throat is not rounded but the planing away of the corners is carried out with extreme care right up to the head. The next operation is to lay the pattern (Fig. 35) on the projecting block and, with a fine pointed pencil, to mark out the outline of the head. This is the only part of the work on the stick itself wherein the eye is assisted by actual measurement or pattern. The shaping, or modelling of the head, as also, later, the gradation in thickness of the stick depending entirely upon optic precision. The absolute accuracy of hand and eye required for such work is only to be attained by long years of constant application.
After roughly shaping the head comes the delicate operation of "setting." This is also known as putting in the "spring" orcambre. The principle upon which the amount of curve is determined is that an imaginary straight line drawn from the face of the head to the face of the nut shall coincide with the stick at the point of its greatest deviation from the horizontal. There is no fixed distance from either end for this extreme point of deviation to occur. It is a matter that rests entirely on the judgment of the maker, who, if thoroughly experienced, regulates the curve by any variation in rigidity he may discover in the stick. Thus should his observations point to the fact that a certain portion of the stick is slightly weaker than the rest, there will he put the greatest amount of "spring." It must be understood, however, that a good maker never uses a stick that is palpably unequal. He will only take this trouble to correct infinitesimal weaknesses (discernible only to a hand of great experience) in wood of exceptionally good grain. It is astonishing how many violinists seem to think good bows are made by accident. Few know that there are some men who canmakea fine bow.
The prime factor in the "setting" of a bow is heat, by the judicious application of which the straight rod is made to assume and retain the desiredcambre. The heat used now-a-days is that produced by an ordinary gas flame. Dry heat is absolutely essential, as the slightest moisture draws all the pigmentary matter out of the cells in the wood and leaves the bow as colourless and mean in appearance as a stick of deal. As it is, with dry heat even, the amount of colour exuded by a good stick during this process is quite enough to stain the hands a deep purple.
The great point to be observed in "setting" a bow is to make sure that the fibres are all heated equally right through to the centre of the stick. If this does not receive sufficient attention the bow can not possibly retain its curve, for the inner fibres that have not been affected by the heat will always be trying to resume their original straight position, and are bound ultimately to overcome the resistance of the heated outer fibres, with the result that the bow either becomes straight or warped and twisted, most probably the latter. To understand that this must be so it is only necessary to remember that any elastic rod, a walking stick for example, can be held so as to form a curve but as soon as the pressure is released it immediately recovers its normal state. This is what happens with the unheated inner fibres in an inferior bow. The constant strife of opposing forcesmustresult in victory for the active force of the inner fibres over the passive resistance of the heated outer fibres.
For the operation of "setting" the bow is left about half as thick again as the finished stick is intended to be: this to allow for scorching or burning the outer surface. When the "setting" is satisfactorily accomplished the stick is planed up round, after which the bottom trench is cut. This is the slot in which the screw-eye of the nut travels. Then the hole for the screw itself is drilled out in a lathe fitted with a "Cushman chuck." The next thing is to put on the "black face." This is a thin slab of ebony glued on to the under surface of the head, which helps to strengthen the head and forms a solid bed for the ivory or metal plate which forms the outer facing of the head. The ivory faces are cut out of the solid tusk to the shape shown in Fig. 36. They are glued on with the very best glue procurable and tied down with strong twine. This is another matter of extreme difficulty and delicacy, as ivory is a very stubborn material to work in and it is easy to crack it in forcing it down to the curve of the face, that is if it is sufficiently thick adequately to fulfil its original purpose as a strengthener and protector of the head. One often sees in cheap bows faces of ivory so thin as to show the ebony face through in a bluish tint. Such a face is of as much value to the bow as a piece of paper, but it was easy to put on!
Metal faces are growing more and more into favour but, personally, I prefer a substantial ivory face, for though the metal may be stronger in itself I think an ivory face well glued on is more homogeneous. The successive layers of ebony and ivory on the already hard wood forms a more equal gradation of density.
After both the faces are adjusted a circular hole is drilled in the head and then chiselled out square to form the top trench or box to receive the hair. The nut is then fitted. Many people imagine that even the best makers buy the nuts wholesale and fit the sticks to them, but good makers always make the nut for each bow as it is wanted. They can by this means better regulate the balance of the bow.
Fig. 37 shows a gauge to determine the various dimensions of the nuts of violin, viola and 'cello bows. Before the bow is finally "cleaned up" it is haired*and screwed to see if it is all true, for there may be something faulty in thecambrewhich can be corrected at this stage. If all is satisfactory the bow is finished and polished, the whole process, from the rough stick in Fig. 34 to the finished bow ready for the artist to melt, delight and amuse his hearers, being one day's work.
* For details of bow hairing seeChapter XII.
CHAPTER XI.
CHAPTER XI.
POSSIBLEREPAIRS—SPLICING—RENEWINGCUPS—RESTORING THENUT—RE-FACING.
Bow repairing is a matter calling for almost more skill than the actual manufacture of new bows, and it is one about which very hazy ideas exist outside the trade itself. One can divide violinists roughly into two sections. On the one hand there are those who believe anything is possible in this way, and on the other there are many who have no faith whatever in such repairs.
I recollect when only a lad meeting an elderly amateur violinist of the pompous class who not only was kind enough to pay the most embarrassing attention to my solos but further favoured me with his conversation and advice. "Now," said he, "you must get a steel bow; tell your father about it; absolutely necessary. You see this stick of a thing you are playing with" (alas, my cherished Lupot!) "is all very wellnow, but by-and-bye the hairs will come out and it will be worthless." I ventured to suggest that it could be re-haired. "Ah yes, yes, yes!" he replied, "I know itcanbe done, and itisdone, very often, but it is never the same thing. No, once the hairs begin to go, there is nothing to do but buy a new bow, but if you have a steel bow the hairs cannot come out and you have an article that will endure in its original state all your life." (!)
I may observe that this gentleman had not the slightest commercial interest in steel bows.
I also came in contact once with an example of the opposite class. This gentleman had a little son who was in the habit of borrowing his father's violin bow surreptitiously for the purpose of perfecting himself in the useful art of single stick practice. The inevitable happened, and when I saw the bow it was proudly exhibited to me as an example of what could be done with a little ingenuity. The two halves of the broken bow had been well glued together, two steel pen nibs had been placed so as to form a sort of metal tube to protect the fracture, and the whole was bound securely with strong silk. In its owner's estimation it was "as good as ever, sir, as good as ever."
I propose to state here briefly what can be done and what is advisable to have done in the way of bow-repairing.
If a bow is broken in the upper part of the stick it is just possible to splice on a new head and throat, but it is not worth doing, for thecambreand balance of the original can never be reproduced. In the first place there is a different piece of wood which, however well matched, is bound to be sufficiently strange to disturb such a delicate instrument. And then thecambreof the new piece has to be set before it is joined on to the old stick and thus it becomes impossible to make a satisfactory curve throughout.
To re-adjust the original head is not feasible, as the only joint that will stand the strain to which a bow is subjected is a long diagonal one extending for several inches.
Splicing a new "handle" (Fig. 38d) is, however, frequently done, and is often advisable. It occasionally happens that a valuable bow becomes so worn by the pressure of the fingers or thumb, or by the friction of the nut and screw, as to be beyond the reach of the more usual repairs. It then becomes necessary to substitute a new handle, and this can be done by skilful repairers as to make absolutely no difference to the balance of the stick. The joint is in this case also a diagonal one extending usually from near the upper extremity of the "lapping" downwards for some four or five inches. It should be seen that the surfaces brought in contact in such a joint are so placed as to be perpendicular to the plane of the hair. Otherwise it cannot endure for any length of time.
Very often the original handle can be restored and made sound. Thus, when the screw hole becomes worn and the "cup" (see Fig. 39, which shows the two "cups," that at the extremity of the stick and that in the "tip") broken, it is customary to drill out the hole, turn up a piece of well-seasoned bow wood in the lathe to the exact diameter of the enlarged hole, and glue it well in place. When thoroughly dry a new screw hole of the original dimensions can be drilled just as in making a new bow. Sometimes, when there are cracks in the handle, the trench has to be filled up and re-cut, as is also done to the head if it is cracked through the pressure of the plug (Fig. 40a). Repairs to the nut are also done when the nut is original,i.e., when it belongs to the bow and is of a distinguished maker. Old nuts frequently get cracked down the sides where they come in contact with the stick. In this case the worn part of the nut is cut away and new wood glued on and worked up to the original shape. I have seen a nut so restored by Mr. Tubbs in which it was absolutely impossible to discover where the new piece was joined on.
With regard to the screw hole, it often becomes worn to an oval shape just above the trench owing to the screw being too short. This is frequently found in old French bows, even by the best makers, and causes the unsightly tilting of the tip. In Fig. 41 is shown a section of the nut and handle showing the action of the screw and the way the hair is inserted. The screw in this diagram is the exact length necessary to prevent the wearing away of the hole described above.
Bow repairers are often perplexed as to their customers' meaning when sending instructions by post for the restoration of the "tip," as many people use this word to denote the extremity of the head (Fig. 40d).
This, however, is known to experts as the "peak," and the word "tip" is applied solely to the octagonal piece at the opposite end of the bow, by means of which the screw is turned and the tension of the hair regulated.
In some bows the octagonal portion, known as the handle (Fig. 38d) on which the nut travels has the lower face rather larger than the rest as in the section shown in Fig. 42. The object of this enlargement is to give the nut a broader surface to travel on and thus prevent the tendency to rock exhibited by some nuts. But, though there is some merit in the idea it has been found that the rocking can be avoided in a normal bow having the eight sides of the handle equal by extra care in fitting. And though the other pattern may be easier to fit in the first instance, the projecting sides of the nut that travel on the adjacent faces of the handle are very small and weak; consequently before long the nut shows longitudinal cracks at this part and becomes extremely rocky, though from a different cause.
One of the most frequent repairs is the operation of re-facing. The handsome central gasalier of the modern room is a great enemy to the violin and seems to lie in wait for the peak of an unwary violinist's bow. Fortunately the damage is not very serious, and an experienced bow repairer will not be long in restoring the head to its original elegance of outline.
CHAPTER XII.
CHAPTER XII.
RE-LAPPING—RE-HAIRING—CHOICE OFROSIN.
The lapping frequently wears out and becomes a source of great irritation until one has an opportunity of having it newly done. For this reason a lapping of leather is the most convenient and economical, but nothing looks better than a good quality of silver cord, and when it is bound with leather just where otherwise it would suffer from the pressure and friction of the thumb nail it is really very durable. Messrs. W. E. Hill and Sons have an extremely handsome speciality in the way of lapping. This consists of whalebone, sometimes bleached or dyed, and is practically indestructible. Bound on in alternate strands of different colours it has a very effective and neat appearance.
Sometimes the ordinary thread lapping gets cut through and interferes with the player, and it is as well to know how to fasten it off at once. I will assume that it is cut at the end nearest the nut (where it usually happens). Take out the screw and wind the hair loosely but securely round the upper part of the bow. Then unwind the lapping for about an inch and a half. Take a piece of strong thread and double it, then place it on the bow with the doubled end towards the handle. Get a kind friend to hold the end of the lapping cord firmly and commence winding it on again evenly andoverthe doubled thread by slowly rotating the bow. When within half an inch of the end of the thread, take it all in your own hand and pass the end through the loop of doubled thread and, taking the loose ends of the thread that will hang out at the point where you started re-winding, pull the doubled thread smartly out. This brings the end of the lapping right through under the re-wound portion, where it will be held secure until again cut through by the thumb-nail. This is the method employed in fastening off new lappings. If you have not the time or patience to do it this way a little sealing wax will hold the loose end down during an evening's practice.
Considering that re-hairing is one of the most natural and most frequent events in the life of a bow, it seems somewhat anomalous to include it under the heading of "repairs." However, I will crave the reader's kind indulgence for so doing.
At the outset I must emphatically assert that I do not advise amateurs or artists to attempt to hair their own bows if any value attaches to them, for it is astonishing how soon even a fine bow will lose itscambreif persistently haired in an unskilful manner. It requires enormous experience to enable one to get the pull of the hair equal in every case, and the slightest extra pull on one side or the other gives the bow a twist that renders its action erratic and extremely disturbing to a good violinist. The preceding operation to re-hairing is that of unhairing. This is comparatively a simple matter. The hair is first cut off short at each end, then hair at the head is lifted up to disclose the plug (Fig. 40a). This is readily lifted out with a pointed tool, and the curled up knot lying beneath is pulled out. So much for the head. The nut is slightly more complex. First the ferrule (Fig. 41d) is pulled off and the slide (Fig. 41f) is pushed out. After this the hair is raised as with the head, and the plug (Fig. 41e) picked out in the same manner. The wedge in the nut (Fig. 41c) is used to spread the hair and keep it firm at the heel, to give a good attack for heavy down strokes. This is usually destroyed in unhairing, as it frequently has to be cut away, owing to its being glued into position.
The process of re-hairing is now identical with that of hairing a new bow in the first instance. Some keep the hair ready made up into "hanks" of the right quantity for a bow, and others have it in large bundles, pulling it out as required. One soon gets practice in this to judge by the eye alone how much will be sufficient. At one end it is tied securely with waxed silk or thread, and the short ends are cut off to within about a sixteenth of an inch from the thread. To prevent the thread being pulled off the end of the hair, the ends are burnt with rosin so as to spread them out slightly (very slightly) mushroom wise, over the thread binding. The usual way of doing this is to fill the short end—which resembles a small stencil brush—with finely powdered rosin and then, by pressing it against a red-hot iron, to shape it into a firm, unyielding knot. This knot is laid in the trench of the head, and the plug pressed firmly into position, so that its upper surface is exactly level with that of the plate or face. The hair, of course, must be brought over the wedge in an even ribbon. The hair should now be well combed with a fine comb and then steeped, coil fashion, in warm water for several minutes. It then should be thoroughly combed again from top to bottom, holding it firmly the while at the lower end. The nut is now placed in position with the screw-eye rather above the centre of the slot in which it travels, then a careful estimate is made of the length of hair required to go just far enough round the plug (Fig. 41e) to be secure, and a knot exactly like the one described for the head is made at the point decided on. This requires considerable experience, as it is very easy to make it too long orvice versa, both of which faults hamper the nicety of adjustment of tension required for some particular style of bowing technique. When this lower knot is made the ferrule is slipped over the hair, the knot is laid in the trench and the plug put in as before—the nut being completely detached from the stick. The nut is then re-adjusted and slightly screwed up. The hair is then combed again, the slide pushed in, and the ferrule slipped over the extremity of the nut. After this a thin wedge is driven in (behind the hair) usually with a spot of glue on the side next the hair, as atc, in Fig. 41. The bow is now haired, and all that remains to make it ready for use is to rosin it. As new hair never bites on a block of rosin, it is necessary to spread a quantity of powdered rosin on a card or sheet of stout paper and rub the hair over it till it is quite full; after this it will take freely from the block. A newly haired bow is always extremely rough and is apt to produce a harsh, scratchy tone, but this defect wears off in a very short time.
I must again repeat my opinion regarding the inadvisability of violinists hairing their own bows, and I have only given the above details to gratify the curiosity of those who like to know "how it's done."
It is extraordinary the number and variety of rosins in the market; some in most wonderfully contrived boxes designed to keep the rosin dust from making the fingers sticky, or—more probably—tosell!Of all the different patents in this way, I find the ordinary book-shape by far the most satisfactory. The first quality of rosin is prepared by boiling down Venice turpentine. In a certain authority on violin matters I read that many soloists of celebrity use common kitchen rosin, but I cannot say I have much faith in the source from whence he can have received such information. It is advisable never to change the rosin used until the bow is re-haired, as in each there is some slight difference in composition that may not harmonize with what is already on the bow.
CHAPTER XIII.
CHAPTER XIII.
THEPERFECTION OF THEMODERNBOW—DR. NICHOLSON'SPATENTBOW—VUILLAUME'SINVENTIONS—SELF-HAIRINGBOWS—A FOLDINGBOW—THE"KETTERIDGEBOW."
It is worthy of note, as a testimony to the simplicity and perfection of the bow, that there have been so few attempts, since Tourte's day, to alter or "improve" it in any particular. The few experiments that have been made in this direction have in nearly every case proved failures and have sunk into speedy oblivion.
One of the most remarkable productions in this way was the ponderous monstrosity invented by one Dr. Nicholson (Fig. 43). This hideous and unwieldy weapon was put forth by its inventor as the only correct form for a violin bow! It had to be haired with precisely 150 horse hairs dyed red. The reasons for this and the eccentric curve of the stick are subtleties into which I dare not venture!
Vuillaume's erratic genius was responsible for sundry attempts at improving the bow, the most complex being the fixed nut. He was struck by the fact that with the ordinary nut advancing and retreating by the action of the screw it was possible for it to be not always mathematically in the same place. Also that as the hair gradually stretched by use, the length thereof increased as the same tension was obtained each time it was screwed up for use. This, of course, made a minute difference in the balance of the bow. He apparently considered this a serious defect and set about inventing a nut that should render the balance and the length of the hair immutable. This was his patent "hausse fixé." As the name implies the nut was a fixture externally but contained a smaller metal nut that travelled inside it. These nuts were very unsightly as they were much more bulky than the ordinary nut. It is curious that it never occurred to him that the movement of the internal nut would similarly affect the balance. A sort of windlass in the nut would have been more exact, but, as a matter of fact the difference is more theoretical than practical, and is imperceptible to the player, so the fixed nut, like many other examples of wasted ingenuity, died a natural death.
Another of Vuillaume's patents was the steel bow. This was often a handsome looking instrument. Some were "got up" to look like Brazil wood and others were of a bright blue. As this was the natural colour of the metal it was more commendable but had a very odd appearance. These bows were not much heavier, if at all, than the average bow as they were hollow throughout. They were deficient in balance and had one great drawback. Though stronger and tougher in one sense than the wooden bow they would not stand so much knocking about. A bow, even in the hands of those accustomed to handling them, is liable to have an occasional fall, and if not broken, is as good as ever; in fact a bow rarely breaks unless it falls peak downwards. On the other hand the steel bow would generally "kink" or get dinted and bent if it came in contact with anything in a fall and would then be entirely useless. A third mistake of Vuillaume's was the curved ferrule. Thinking it would be advantageous to give the player a good spread of hair at the heel he made a ferrule that gave the ribbon of hair as it left the nut something the appearance of the hair in the primitive Egyptian bow illustrated in Fig. 11. This is still to be met with in some cheap foreign bows. A further notion of his was calculated to be of great benefit to such players as might find themselves in out-of-the-way places with a bow in need of new hair and noluthieror bow-repairer within reach. This was the "patent self-hairing bow." Its principles were sometimes used in conjunction with the "fixed nut" and steel bows. The hair for this bow was sold ready made into ribbons of the exact length by having a small brass rod placed transversely at either end; these rods slipped into appropriately shaped notches in the head and nut and the bow was haired. It does not appear to have been satisfactory and has gone the way of the other innovations of this and other makers. One other thing in connexion with Vuillaume's bows I will mention here though it is not in the nature of an "improvement" properly so-called, albeit I have no doubt Vuillaume thought it a great embellishment. In the nuts of some of his bows, just where the mother-o'-pearl "eye" is usually placed, he had inserted a minute and powerful lens with a microscopic transparent portrait of himself that could be seen therein on holding the nut to the light. It was just like the views one sometimes sees in penholders brought as presents from popular seaside resorts.
I have recently heard of another variety of self-hairing bow patented in America, but have not yet seen one. From that country, where, so I have heard, the bows drawn are of quite exceptional length, emanated a patent bow wherein fine cords are substituted for hair and also a contrivance, whereby, when the hair becomes smooth and useless on the one side, it can be taken out, turned round and then enters on a rejuvenated existence the other way about.
To return to Vuillaume's patent bows. All of these, excepting the steel bows, are splendid sticks, for they were made by Simon, Fonclouse, and other noted workmen. It is therefore a profitable thing to have them altered into normal bows. This can be done by skilful workmen so that the bow is as good as any other ordinary bow by the same maker, and is free from the encumbrance of the patent.
G. Chanot, of Manchester, I am told, has a patent bow that is made to fold in two for convenience in packing for travelling purposes. The idea is not as original as its inventor may think, for the Japanese kokiu which is fast becoming obsolete had an extremely long and flexible bow that was jointed together like a fishing rod.
The "improved bow," patented by Chas. Ketteridge, is distinctly novel and has much to commend it. The hair in this bow is placed at such an angle that, though the player holds his hand in the usual position, the full width of the hair lies evenly on the string from end to end. It has been well spoken of by the press and several noted artists. For chord playing it possesses distinct advantages, and I should think it would be very useful for certain orchestral players; it does not, however, seem to have attracted more than passing attention.
Truly the "fiddlestick" is a magic wand in more senses than one. As mentioned above it is significant that so little has been attempted in the way of alteration or improvement, and it is still more so that of that little such a small proportion is worthy of a second thought. As Bach stands in relation to the fugue, as Beethoven to the symphony and Stradivari to the violin, so is Tourte to the bow. Superior alike to his predecessors and successors, he stands high poised upon the pedestal of his incomparable genius.
PART III.
PART III.
CHAPTER XIV.
CHAPTER XIV.
THEUNDECIDEDASPECT OFTECHNIQUE—IMPORTANCE OF AKNOWLEDGE OF THEANATOMY OF THEHAND—THEFUNCTION OF THETHUMB—INDIVIDUALITY INTECHNIQUE.
In treating of the somewhat complex and, in many details, highly-disputed subject of the functions of the bow, I shall prefer to handle the question in the abstract rather than to launch myself on the choppy sea of "technique"; a sea abounding in shoals, reefs, undercurrents and whirlpools; extremely difficult to navigate inasmuch as that no two charts agree. Consequently when the mariner launches his boat the danger to himself and his passengers is considerable. In plain English the difficulty of explaining all the well-nigh imperceptible differences of movement in bone and muscle required for the various styles of bowing is so enormous that he who attempts to do so on paper lies under the grave danger of being misunderstood, and the student under the scarcely less grave one of misunderstanding. The danger is reciprocative, just as, to return to my nautical simile, the peril of the helmsman is shared by each passenger if he by mischance steers upon a submerged rock.
Therefore, dear reader, I will survey the whole prospect from a secure coign of vantage upon the mainland, and trust my impressions thereof may prove of some slight service to you. As I have disclaimed all intention of making this portion of my work a handbook of bowing technique it seems superfluous to add that my observations are addressed more to the teacher than the student. I use these words in their accepted and arbitrary meanings for the sake of distinguishing between two separate classes. Of course, from the higher standpoint, a good teacher is always a student. If it were not so the following pages would be written to no purpose.
Some years ago a certain eminent M.D. collaborated with a more or less well known singing master in a work on the Larynx. The musical world talked of little else but vocal chords and soft palates for many months, and the musical press was teeming with correspondence in which the pros and cons of such studies were hotly discussed, many of the antagonistic writers opining that the knowledge of the anatomy of the throat would be of as much service to a vocalist as that of the hand to a violinist. Which reasoning sounds at first glance quite complete, yet, on examination, it will be observed that there is no such close analogy as these writers appeared to think. To begin with, in singing the mind only occupies itself with the sound produced. To learn singing is to practise mimicry. We cannot determine the position of the vocal chords before producing the note. Our consciousness begins at the other end; the mind conjures up a certain ideal sound which we attempt to realize vocally; if the desiredtimbreis produced the laryngeal action is correct. With the violin thought commences with the means. The hand is trained; we say set the fingers so, and the thumb so. Now practice; when the action is perfect the tone will be right. Briefly in singing we strive for the tone and the action follows, in the violin we strive for the action and the tone follows. Thus it is clear that a knowledge of the structure of the hand is of distinct value to a violinist—in particular, a teacher—while, on the other hand, the knowledge of the anatomy of the throat can be little more than interesting to the vocalist.
A knowledge of the structure and functions of the various parts of the hand on the part of a teacher would smooth over many disheartening experiences of his pupils. Just as it is of value to study the mental characteristics of a pupil so, also, is it of value to thoroughly examine his physical peculiarities. I wonder how many violin teachers have noticed, or have profited by so noticing, that no two hands are alike, or that thumbs are of different lengths and set on in various degrees of opposition to the fingers. It is seldom that such apparently unimportant details are observed by teachers, the majority of whom make all their pupils hold the bow alike, long thumbs or short thumbs it makes no difference. I remember having for a pupil a young lady who had been taught to hold her bow at the extreme tips of her fingers. Naturally she gained no facility and every attempt at semiquavers sent the bow flying across the room to the imminent danger of the teacher's optics. I surmised the cause of this eccentricity and was ultimately able to verify my conjectures. The master who had been so conscientious in making her hold the bow in this strained and ungainly position was blessed with an abnormally long thumb; the pupil's thumb was short. What came natural to the one was a strain on the other.
The function of the thumb is that of a pivot; a fulcrum. The bow is a lever resting thereon, and its pressure on the string is regulated by the first and second fingers on the one side and by the third and fourth on the other. It would thus appear that the best place for the thumb would be exactly between the second and third fingers. But it is not given to every thumb to dropnaturallyinto this position. And here is to be noted the germ of facility in bowing. Every thumb closes naturally on a certain spot; it may be on the second finger, or on the third. If the former it can be made to rest on the third or even the fourth without apparent effort, but minute observation will detect an infinitesimal strain when the thumb is taken beyond its natural resting place. Therefore I maintain that the best position for the thumb is to be determined by examination of the hand and thumb, and will differ slightly in each individual player. It is curious to note how many teachers, some of extreme eminence, take such pains to perpetuate their own bad habits in their pupils under the impression that they are teaching a perfect and superior technique. I am afraid that it sounds somewhat of a heresy to speak of great players and teachers having "bad habits"; the expression is, perhaps, rather strong, but what I refer to is the "personal equation." Such a player has a tendency to part his fingers, another elevates the fourth finger in certain passages, this one has a peculiar movement of the elbow, etc., etc. All these divergencies from rigid and pedantic technique being the result of their several physical differences. When these men prove themselves great artists and attain high positions as teachers their advice is sought on matters of technique. Finding themselves oracles they first consult the oracle by aid of looking glasses, analyse in this way their own actions, and then the one who parts his fingers lays it down as a law that the fingers should be parted, and the one with the peculiar movement of the elbow will not rest until all his pupils have acquired the same eccentricity. I will quote another example of this sort of thing that came under my own observation some years ago. It deals with the left hand, but displays the spirit so well that I feel it is not out of place in this connexion. A thin, delicate lad, with fingers "like needles"—as a brother violinist described them to me—was sent to a German professor whose digits resembled nothing so much as the handles of table knives. This was an excellent violinist, or rather "geiger," for the Germans make this distinction, but owing to the size of his fingertips he could only play semitones in the third position by removing the finger stopping the lower note while putting down the higher one. If he retained the second finger on E on the A string, third position, the third finger would fall too sharp for F natural. This seemed to him such an unalterable law of nature that he made the lad do the same, notwithstanding that the boy could have stopped quarter tones with ease had they been wanted!
Had this man made even a superficial study of the hand he would have been spared much profanity and the pupil much heartache and disappointment. Tuition is twofold. There is direct teaching and there is development. The seed is sown and then the soil is watered and tended in the manner calculated to nourish and develop the particular plant to the best advantage. Again, the gardener does not plant his roses in damp shady corners or his ferns in sand.
Teachers require to use more of the gardener's judgment. They must cease to look upon their pupils as defective copies of themselves and must not fit them out with technique as soldiers are with clothing. The technique should be made for the particular player. A violinist with an ill-fitting technique is about as elegant as a short man in clothes intended for a tall one, or vice versa. Many cases of bad or defective technique are directly attributable to the teacher's want of perception of "fit."
Thus we see players whose natural movements are bold and free trussed up in a small and finicking technique, and others whose bent is towards neatness, struggling manfully with a cumbersome "large style." I have heard a "gentleman" defined as "a man who wears clothes that belong to him." Similarly we may say that a good violinist is one whose technique belongs to him. Every movement should come naturally, it should be as much a part of his personality as his tone of voice or the glance of his eye, and it should be the teacher's aim to develop this personality and not to stifle it as is too often the case. Of course great judgment is required in this development, or the personality will become marked mannerism, than which nothing could be worse. True art always displays a certain reticence; excess at either end of the gamut of emotion is avoided. Calmness is not coldness, and passion carried too far becomes caricature. Tone must be developed also, but it should always be borne in mind that exertion is not power; a mistake too frequently made. How often do we see a well meaning but physically weak player trying to tear the tone out of a violin by "main strength." Such efforts are useless, particularly when practised on a fine violin. A really good instrument is of too sensitive an organisation to respond to bullying. Teachers cry out to their pupils sometimes "lay it on!" "pull it out!" and other contradictory sounding phrases with the same meaning, and occasionally such admonitions and encouragements bear good fruit, but there is always the danger of "effort" being engendered thereby. There should be no effort in art. Effort, too, defeats its own ends. It weakens; exercise strengthens. Therefore let the strength with which to "lay it on" or "pull it out" be gradually and naturally developed by constant and gentle practice. The muscles will gain strength thus, and the result will be a full round tone, capable of every inflection and free from everything like harshness.
Power should be implied rather than displayed. The instrument will then respond freely and fully as a woman to the caress of a strong manly arm.